
Citation: Yánez Arcos, D.L.;

Thirumuruganandham, S.P.

Structural and pKa Estimation of the

Amphipathic HR1 in SARS-CoV-2:

Insights from Constant pH MD,

Linear vs. Nonlinear Normal Mode

Analysis. Int. J. Mol. Sci. 2023, 24,

16190. https://doi.org/10.3390/

ijms242216190

Academic Editor: Paulino

Gómez-Puertas

Received: 15 September 2023

Revised: 19 October 2023

Accepted: 23 October 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Structural and pKa Estimation of the Amphipathic HR1
in SARS-CoV-2: Insights from Constant pH MD,
Linear vs. Nonlinear Normal Mode Analysis
Dayanara Lissette Yánez Arcos and Saravana Prakash Thirumuruganandham *

Centro de Investigación de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica,
Ambato 180103, Ecuador; daya.yz.97@gmail.com
* Correspondence: saravanaprakash@uti.edu.ec

Abstract: A comprehensive understanding of molecular interactions and functions is imperative for
unraveling the intricacies of viral protein behavior and conformational dynamics during cellular entry.
Focusing on the SARS-CoV-2 spike protein (SARS-CoV-2 sp), a Principal Component Analysis (PCA)
on a subset comprising 131 A-chain structures in presence of various inhibitors was conducted. Our
analyses unveiled a compelling correlation between PCA modes and Anisotropic Network Model
(ANM) modes, underscoring the reliability and functional significance of low-frequency modes in
adapting to diverse inhibitor binding scenarios. The role of HR1 in viral processing, both linear
Normal Mode Analysis (NMA) and Nonlinear NMA were implemented. Linear NMA exhibited
substantial inter-structure variability, as evident from a higher Root Mean Square Deviation (RMSD)
range (7.30 Å), nonlinear NMA show stability throughout the simulations (RMSD 4.85 Å). Frequency
analysis further emphasized that the energy requirements for conformational changes in nonlinear
modes are notably lower compared to their linear counterparts. Using simulations of molecular
dynamics at constant pH (cpH-MD), we successfully predicted the pKa order of the interconnected
residues within the HR1 mutations at lower pH values, suggesting a transition to a post-fusion
structure. The pKa determination study illustrates the profound effects of pH variations on protein
structure. Key results include pKa values of 9.5179 for lys-921 in the D936H mutant, 9.50 for the
D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. To further understand
the behavior and physicochemical characteristics of the protein in a biologically relevant setting, we
also examine hydrophobic regions in the prefused states of the HR1 protein mutants D950N, D936Y,
and D936H in our study. This analysis was conducted to ascertain the hydrophobic moment of the
protein within a lipid environment, shedding light on its behavior and physicochemical properties in
a biologically relevant context.

Keywords: SARS-CoV-2; HR1; principal component analysis; mutations; constant pH molecular
dynamics; nonlinear and linear—Normal Mode Analysis

1. Introduction

Simulations in the realm of biological systems play a pivotal role in unraveling the
mysteries of molecular movement and the analysis of critical variables. These simulations
are essential for obtaining reliable approximations of physiological conditions, shedding
light on intricate processes occurring within living organisms. One of the compelling areas
where computational techniques prove indispensable is in understanding the structural
dynamics associated with the transition from the pre-fusion to the post-fusion state of the
SARS-CoV-2 spike protein (SARS-CoV-2 sp). This transformation unfolds within mere
milliseconds [1], making it virtually impossible to capture experimentally. Computational
methods, capable of simulating the precise physiological conditions and structural motions
characterizing such protein transitions, emerge as a paramount tool in deciphering these
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rapid and elusive phenomena. To achieve this, it is crucial to grasp the intrinsic and physi-
ological factors that impact protein structures, leading to conformational alterations and
unfolding during the transition from the pre-fusion to post-fusion state of viral proteins.
There is ample evidence that intracellular pH is critical in the viral infection mechanism.
This influence is especially noticeable in the endosomal environment, which initially main-
tains a pH of 6.3 and then drops to below 6 during the SARS-CoV-2 viral cycle, meanwhile,
late endosomes at pH of 5.5, emphasizing the importance of pH regulation in several
stages of viral infection [2] as critical for protein unpacking [3]. The unfolding and fusing
of the glycoprotein hemagglutinin with the host membrane depend on pH, according to
earlier studies on influenza virus envelope proteins [4]. Moreover, low pH conformational
alterations have been reported, indicating that strain-to-strain variations may exist in the
pH threshold (5 to 7) at which these changes take place and, therefore, in the kinetic pa-
rameters [5]. In rhabdovirus, conformational changes in receptor-mediated membrane
fusion were observed at an acidic pH below 6.4 [6]. Nevertheless, there is minimal in silico
support for these experimental results of pH-dependent conformational changes of this
protein, the infection rate at pH 6.2 is confirmed by in vivo research on the impact of pH
on the infectivity of SARS-CoV-2 [7]. When simulating a low pH, it was found that the
fusion loop of SARS-CoV-2 is held together by a disulfide bond [8] and undergoes a large
conformational change at a low pH [9]. Our study aimed to use computational methods to
interpret the effects of acidic physiological conditions on protein stability and the transition
between the pre-fusion and post-fusion states of SARS-CoV-2 sp. This was done in light of
previous findings that showed limited computational studies describing the effect of pH on
protein conformation. It is worth mentioning that perturbation techniques have been used
as a method for protein models using Normal Mode Analysis (NMA) [10,11] were used
to visualize the internal motion of the open and closed states of SARS-CoV-2 sp [10,12,13]
to find the globular motions [14] associated with conformational states [15] expressed by
a globular minimum of potential energy [16]. Observation with Anisotropic Network
Model (ANM) confirms that the Receptor Binding Motif (RBM) within the SARS-CoV-2 sp
undergoes pronounced fluctuations, indicating an increased likelihood of interaction with
the ACE2 receptor even when the protein is in its resting state [17].

Implementation of nonlinear analysis enhances the accuracy of the normal modes of a
large molecular system, consequently improving the reliability of various stages within
the protein transition models [18]. The structure that allows coronavirus to enter the
host cell is the spike (S)-glycoprotein [19], a homotrimer that protrudes from the viral
capsid and can trigger viral activity, and this consists of two functional subunits (Figure 1a)
S1 and S2 [20]. S1 contains the N-terminal domain (NTD) [21] and the receptor binding
domain (RBD) [19,22,23]. S2 holds the following subunits (i) fusion peptide (FP), (ii) heptad
repeat 1 (HR1), (iii) central helix (CH), (iv) connector domain (CD), (v) heptad repeat
2 (HR2), (vi) transmembrane domain (TM), and (vii) cytoplasmic tail (CT) [21] and plays
a central role in binding the spike to the host cell receptor [19,24], as it mediates the
structural change that the spike protein undergoes during host cell interaction. Because
of its importance for its conformational changes, our studies focus on understanding how
and under what conditions these changes occur. In addition, the HR1 segment has a helical
stalk that plays an important role in the S2 segment of SARS-CoV-2 [25], where a change
in glycosylation sites can directly affect the infection rate of the virus and its ability to
invade host cells [26]. Recent empirical data highlight the importance of glycosylation
in HR1 and HR2 in regulating viral fusion and virulence [27], and how mutations at the
N-glycosylation sites have structural effects on the integrity of the entire protein surface [28].
As a support to this observation, a study is also carried out on mutations and variations in
the HR1 region aiming on understanding the structural dynamics of SARS-CoV-2 sp [29].
Numerous studies analyzing genome sequences have identified the structural effects of the
new mutations in the HR1 region [30–32] (as shown in Figure 1a,b), which may affect the
stability of the protein and allow flexible and dynamic unfolding and binding between virus
and host membranes. Frequent mutations in the genomic sequence of the SARS-CoV-2 sp
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have resulted in new variants that are more prevalent than previously reported strains, such
as delta (B.1.617.2) [33] and alpha (B.1.1.7) [34], which significant mutations that resulted in
rapid territorial spread due to increased transmissibility. In particular, the mutations in the
spike region in the delta variant, namely D950N, as shown in Table 1, are unique to this
variant and were not present in previous variants such as alpha, beta, gamma, and omicron.
The mutation in HR1, specifically D950N (Table 1 and Figure 1b,c) [35] has been shown to
be a crucial mutation in the fusion process affecting the pathogenicity of the delta variant.

Non-synonymous mutations are thought to reduce protein stability. In particular,
mutation D936H in the HR1 region (see Table 1) has been identified as causing a reduction
in structural stability, with values ranging from −0.61 to −0.94 determined by docking and
binding free energy (DDG) [36]. These destabilizing mutations may have an impact on the
protein’s interaction with its receptor on the host cell.

FP HR1 HR2
788 806 984 1163

QNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSS
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Figure 1. Organization of functional domains in SARS-CoV-2 (a), pre-fusion states (PDB: 6VYB)
(b) and post-fusion states (PDB: 6XRA) (c): The N-terminal domain (NTD), receptor-binding domain
(RBD), 685 (S1/S2) protease cleavage sites, fusion peptide (FP), heptad repeat (HR1), central helix
(CH), connector domain (CD), heptad region 2 (HR2) transmembrane domain (TM), and cytoplasmatic
tail (CT). The sequence of the HR1 of this study is shown in a grey box. The trimer chains of the
SARS-CoV-2 sp are depicted in different colors: purple for chain A, green for chain B, and yellow for
chain C. The structure of HR1 used for this study is highlighted in yellow for the pre-fusion state and
in purple for the post-fusion state. 11 identified mutations are shown at the corresponding position
and color coded in the HR1 structure.

Our study primarily focuses on understanding the conformational changes of HR1 in
the SARS-CoV-2 sp (Q913Nterminal to S986Cterminal ). Using (i) Principal Component Analysis
(PCA) to analyze a subset of 131 structures from a collection of 250 spike proteins, all
subject to various inhibitors, we study the conformational space and its relationship to
intrinsic dynamics to explore the role in defining ligand binding pathways that can be used
for inhibitor design. (ii) ANM was used to study the reliability and functional importance
of low-frequency modes in adapting to different inhibitor binding (iii) Both linear and
nonlinear NMA schemes were used to extrapolate the motions of HR1 from instantaneous
linear and angular velocities, to understand the comparative structural fluctuations of
eight different mutants of pre and post-fusion state of HR1. The aim is to analyze the
dynamic role of HR1 of the spike protein within the viral process. In addition, (iv) cpH-
MD simulations are implemented to provide an analysis of pKa values indicating that
HR1 undergoes conformational changes toward its post-fusion structure at lower pH
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values. These analyses provide valuable insights into the dynamic behavior and structural
variability of the HR1 structure. (v) Finally, we examine the hydrophobic regions in the
pre-fusion state of the HR1 protein to determine its hydrophobic moment.

Table 1. Mutation reported for HR1 region of spike protein.

No. Mutation Description

1 D950N Promotes membrane fusion to host membrane [37]
2 D936H Generally present in Asia and Oceania [38]
3 D936Y Most numerous and frequently occurring mutations [26]

2. Results and Discussion
2.1. PCA

PCA interprets the relationship between conformational space and intrinsic dynamics
of the SARS-CoV-2 sp in its open state, particularly in relation to ligand binding pathways
(Figure 2). Here to note that, focusing on the chain A subgroup, included residues 22 to
1127 to maintain conformational stability. For the analysis, a subset of 131 structures
from a dataset of 250 structures from the Protein Data Bank (PDB) [39] was considered
based on their structural similarity to the reference structure with an overlap of 80% or
more. These structures were then projected onto the subspace defined by the primary axes
PC1 and PC2, as shown in Figure 2. Subsequent examination revealed that a cluster of
57 structures (red) showed the presence of glycosidic linkages, a cluster of 34 structures
(blue) contained inhibitory binding, and a cluster of 36 structures (light blue) matched
the reported mutations. Figure 2 illustrates the representation of these structures in the
PC1-PC2 subspace and highlights the different types of bonds they possess.

Inhibitor bound

Inhibitor bound

Glycoside bound

Mutation 

Mutation 

-10 -8 -6 -4 -2 0 2 4

-2

-1

0

1

2

3

PC
 2

 (Å
) 

PC 1 (Å)
Figure 2. Projection of two-dimensional that illustrates the distribution of various SARS-CoV-2 sp
structures based on the lowest-frequency modes of PC1 and PC2. Red Circles: These represent
57 structures with glycoside bound. Blue Points: There are 34 with inhibitor bound. Light-Blue Points:
Surrounding the 36 data points in light blue are mutants of SARS-CoV-2 sp.

Hence, Figure 2 shows the 131 structures of SARS-CoV-2 sp. When comparing the pat-
tern of components 1 and 2 of the PCs, groupings based mainly on their binding properties
were observed among the analysed structures. These can be effectively divided into two
distinct groups: those that exhibit glycosyl binding and those that exhibit inhibitory bind-
ing, which occurs when the structure is bound to an antibody. It is important to highlight
that PC1 represents the primary direction of variance, followed by PC2. It is intriguing to
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observe how the dataset structures are distributed within the subspace defined by PC1 and
PC2. This distribution enables us to distinguish or group the conformations according to
their significant structural similarities or differences. This fundamental observation served
as the basis for subsequent predictive modeling, structural heterogeneity, and identification
of the optimal structures of SARS-CoV-2 sp. RNA dynamics and binding have shown that
the first three eigenmodes of the corresponding eigenvectors exhibit remarkable dominant
motions, with 52% of the total variation mainly accounted for by the wild type and 68%
by the mutants. This different behavior could shed light on the structural rearrangements
triggered by RNA binding [40]. Table 2 displays the frequency values associated with the
lowest frequency calculations derived from ANM, commonly referred to as soft modes. To
note, PCA structures and associated values are includesd in the Supplementary Materials.
Remarkably, our results showed that PC1 exhibited the greatest variability of the PC sets,
contributing 85.11% of the total variance, while PC2 contributed 8.17% (see Table 2), with a
total of 93.28% of the total covariance of the complex contained in the 2 first components of
PCA. A similar trend was observed for the reported SARS-CoV-2 structures, and the top
2 PC components had a collective variance of 80% [41].

Table 2. Correlation overlap of the 8 slowest modes of PCA and ANM in the open state SARS-CoV-2 sp.

ANM1 ANM2 ANM3 ANM4 ANM5 ANM6 ANM7 ANM8
(6.26 × 10−4) (1.11 × 10−3) (2.56×10−3) (3.15×10−3) (6.56×10−3) (1.27×10−2) (2.06×10−2) (2.83×10−2)

PC1 (85.11) 0.42 0.72 0.03 0.31 0.07 0.06 0.07 0.01
PC2 (8.17) 0.52 0.25 0.30 0.22 0.09 0.48 0.25 0.29
PC3 (2.11) 0.05 0.28 0.42 0.03 0.17 0.07 0.02 0.02
PC4 (1.68) 0.27 0.35 0.28 0.02 0.15 0.41 0.26 0.06
PC5 (0.54) 0.21 0.04 0.37 0.23 0.47 0.20 0.03 0.30
PC6 (0.52) 0.19 0.11 0.14 0.16 0.19 0.17 0.53 0.48
PC7 (0.34) 0.01 0.27 0.09 0.39 0.19 0.02 0.19 0.18
PC8 (0.23) 0.04 0.09 0.09 0.15 0.19 0.12 0.13 0.17

The structural variations captured by the first two PCs are visually represented in
Figure 3. The color-coded eigenvector trajectories illustrate the conformational changes
associated with these PCs (green eigenvector trajectories). The left panel shows the first
PC, resulting from the analysis of the experimental structures with PCA. The order of PCs
have been reordered to highlight their structural agreement with the ANM predictions (red
eigenvector trajectories). In particular, PC1 shows a strong correlation (0.72) with ANM2
and exhibits similar structural behavior. Similarly, PC2 shows a high correlation (0.52)
with ANM1, indicating a comparable pattern of structural changes.
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r = 0.72 r = 0.52

ANM 2
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Figure 3. Comparison of PCA (PC1, PC2) and ANM (ANM1, ANM2) trajectories with eigenvector
mapping to show the difference; white to blue colored bars represent the magnitude of residual
motion in Å. Arrows indicate directions and lengths of eigenvectors corresponding to ANM (red)
and PC (green).

We performed analyss of the 8 softest modes from the ANM, along with the corre-
sponding PCAs, to explore the correlation between the modes predicted by the ANM, as
well as, the experimental structures predicted by the PCA [42–44]. To assess the effective-
ness of ANM, the modes were generated and their distribution was analyzed in relation to
the corresponding PCs. In the case of PC1 and ANM2, the structures along these two axes
have closely aligned (Figure 4a), indicating the equivalence of these modes, as indicated in
Table 2. The distribution of the ensemble along the corresponding PCs was then examined
by projecting it onto the ANM modes, the arrangement of structures along PC1-ANM2
is seen in Figure 4b, and the corresponding eigenvector projections in structure Figure 4a
yielded a correlation coefficient of 0.72. This strong correlation underscores the reliability
and functional importance of the low-frequency modes in binding structurally diverse
inhibitors as well as mutant and glycosylated structures. These observations highlight the
larger interface and lower frequencies associated with the projection of the ANM and PCA
components and provide valuable insight into their functional role.
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MutationGlycoside
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Figure 4. (a) SARS-CoV-2 sp monomeric conformation in the open state. Blue arrows: Eigenvector
associated with PC1 capturing the dominant conformational change in the SARS-CoV-2 sp monomer.
Red arrow: eigenvector based on ANM2. (b) Projection of 131 structures onto PC1 and ANM2:
glycosidic linkages, inhibitor linkages, and mutants. Red circles: Glycosidic bond. Blue circles:
Inhibitor bond. Light blue circles: mutants.

Having identified the primary modes that are strongly correlated with each other, the
first 8 smoothest modes of PCA and ANM can be seen in the heat map (Figure 5b) for the
open state of SARS-CoV-2. The strongest correlation (r = 0.72) is seen by the overlap of mode
pairs between PC1 and ANM2. In addition, high correlation indices were observed between
modes PC2 and ANM1. Similarly, modes PC8 and ANM7, and PC7 and ANM8 showed
significant correlation. In addition, a high correlation was observed between modes PC2
and ANM1 (r = 0.52). Likewise, modes PC6 and ANM7 (r = 0.53), as well as PC6 and ANM8
(r = 0.48), showed a significant correlation. It is worth noting that pairs with correlation
indices of less than 40% were considered irrelevant for this study. The specific correlation
index shown in Table 2 and Figure 3.

Overlap of PCA and ANM modes

ANM modes

PC
A

 m
od

es

(a) (b)

1 2 3 4 5 6 7 8
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2.19
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Figure 5. (a) The network model for the monomeric open state of SARS-CoV-2 of PC1 with corre-
sponding values of the mobility indicated in the color bar by the square fluctuation of the residues
are shown as blue and white zones in the network structure in a scale of 0.01 Å to 5.47 Å. (b) Overlap
between the 8 PCA modes with the highest rank and the 8 ANM modes with the lowest rank. The
orange square in the visualization indicates a strong correlation (0.72) between these modes.
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In addition, a significant accumulation of glucoside-linked and a substantial num-
ber of inhibitor-linked structures were observed, suggesting that the structural changes
undergone by the spike protein after initial recognition are driven by intrinsic behavior,
independent of the presence or absence of inhibitory bound. In this study, these outcomes
were employed to designate the open state structure for subsequent analysis, specifically
the wild-type structure, aligning with the findings from the PCA and ANM. In contrast,
Majumder et al. [17] studied the closed state structural fluctuation of SARS-CoV-2, SARS-
CoV, and MERS-Cov with ANM showed high mobility of the residues of SARS-CoV-2.
Since these experiments were conducted in the closed state, so it does not have higher
mobility between its residues, especially the structures SARS-CoV and MERS-CoV remain
immobile. To ensure that, a comparative study was performed to evaluate the mobility of
the residues in the open and closed states of the SARS-CoV-2 sp. Figure 6 shows network
structures indicating the mobility index, where blue represents the residues that exhibit
mobility. PC1 mode, the open structure shows higher fluctuations (329.57 Å (Figure 6a)
compared to the closed structure (297.73 Å (Figure 6b). Similarly, significant differences
are observed between the open and closed structure in PC2 mode (18.35 Å (Figure 6a)
and 12.46 Å (Figure 6b), respectively). The open structure in the ANM1 mode exhibits less
variation (11.98 Å (Figure 6a) than the closed structure (15.08 Å (Figure 6b). In ANM2
mode, comparable variations are noted between the open and closed structures (5.47 Å
(Figure 6a) and 5.63 Å (Figure 6b), respectively). These differences can be attributed to the
compactness of the closed structure and the restricted movement between residues, which
is essential for maintaining stability under physiological conditions. This suggests that the
closed structure has lower mobility and higher stability in its closed conformation.

329.57
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131.95
66.07
0.20
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9.58
7.19
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2.41
0.02
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Figure 6. ANM representation of the SARS-CoV-2 sp monomer in the open and closed states.
(a) SARS-CoV-2 monomer in the open state. On the left: PCA applied to the experimental structures.
On the right: ANM representation of the theoretical structures. (b) SARS-CoV-2 monomer in the
closed state. On the left: PCA applied to the experimental structures. On the right: ANM for the
theoretical structures. For all generated structures, the residues showing mobility are highlighted in
blue. The bar scale (white to blue) indicates the extent of their mobility in Å.
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2.2. Conformational Flexibility and Structural Stability of HR1 Transition

Figure 7a shows the Root Mean Square Fluctuation (RMSF) of the structures of
HR1 with 11 different mutations in the pre-fusion state. The L938F mutation in the fusion
core of HR1 shows a significantly higher degree of residue flexibility compared to the
other structures analyzed. In particular, this mutation showed a larger RMSF range, from a
minimum of 2.57 Å (residue S941) to a maximum of 10.98 Å (residue Q913). Conversely,
the S940F mutation had the lowest residue flexibility, as evidenced by oscillating RMSF
values from 2.97 Å (residue S941) to 8.31 Å (Q913). Among the mutations studied, the
S943P mutation had the highest peak with a value of 7.14 Å at residue G932. A significant
range of shifts in residues A922 to Q957 is observed for all mutations examined. The
residues with the greatest degree of flexibility, from Q913 to I923, are depicted in Figure 7b
in relation to the post-fusion RMSF. In mutation S929I, a substantial shift is evident, with
a range of 9.08 Å at residue N914 and a minimal shift of 0.9 Å at residue S939. Overall,
the structures demonstrate limited variability in displacement, ranging from 5.30 Å at
residue S968 (corresponding to mutation D936Y) to 0.60 Å at residue S940 (corresponding
to mutation S940F). It is emphasized that the mutation exhibiting the lowest shift of its
residues during the simulation is the S939F-S943F combination, with a range of 4.99 Å at
residue Q965 and a minimum of 2.43 Å at residue S940.
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S929I
S929T
S939F
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D936Y
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Figure 7. RMSF (Å) of Cα, showing flexibility in 60 residues of 11 mutants, from the pre- (a) and post-
(b) fusion states. The y-axis represents the RMSF, while the x-axis corresponds to the amino acid
residue numbers. All 11 analyzed mutations are characterized by a specific symbol coding scheme
that allows the evaluation of fluctuations in the carbon alpha of the backbone during the simulation.
The 11 mutants are marked with different colors



Int. J. Mol. Sci. 2023, 24, 16190 10 of 24

The Root Mean Square Deviation (RMSD) (depicted in Figure 8a), which relates to
the HR1 pre-fusion and the other associated mutations, confirmed a remarkable degree of
similarity between the mutant structures. It can be observed that the studied structures
converge to an equilibrium value of about 18 Å, with the highest RMSD value of 20.06 Å
attributed to mutation S145T and the lowest value of 17.11 Å to mutation S943P. First
350 conformational steps of the simulation, observed in all the mutational structures studied,
there is a noteworthy increase in the distance between steps, which remains stable from
this conformation. The trajectory comprising 106 modes in which the 350 conformational
transition frames indicates the increased RMSD, the similar pattern was also found in all
mutants. In contrast, the RMSD values obtained from the post-fusion structure (Figure 8b)
shows a progressive increase during the entire range of the simulation. In particular, the
D936Y and S939F mutations show the largest RMSD of ≈20 Å, noted from conformations
obtained from the transitional frames (0 to 1500). In contrast, the structure of the S939F-
S943F double mutant shows notable stability with the shortest average shift in RMSD of
≈8 Å visible in transitional frames starting from 377 to 1500.
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Figure 8. RMSD of backbone Cα shows different flexibility levels between the 60 residues of HR1
and associated mutants, for the pre (a) and post (b) fusional states. All 11 analyzed mutations are
characterized by a specific symbol coding scheme.

2.3. Linear vs. Nonlinear-NMA of HR1

Pre- and post-fusion of HR1, nonlinear and linear mode analyses were used to estimate
conformational changes. The pre-fusion state of HR1 was used as the reference structure in
the first study (Figure 9 linear (a) and non-linear (b)).
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After performing a linear NMA for the pre-fusion state of HR1, we found an RMSD
value of 7.30 Å. Subsequently, the reference structure was changed to the post-fusion state,
resulting in an RMSD of 4.85 Å Figure 9a. This study allowed us to understand the momen-
tum and flexibility of HR1 in its pre-fusion conformation. The structure predicted by the
linear NMA exhibits a wider range of displacements, leading to instability under large sim-
ulation conditions. In contrast, the trajectory predicted by nonlinear NMA exhibits steady
and stiff motion, resulting in better stability throughout the simulation. The Supplementary
Materials contain information on the NMA structures and frequencies used.

Initial

Final

Initial

Final

Initial

Final

Normal-Mode Analysis Nonlinear Normal-Mode Analysis

Initial

Final

N-terminal

C-terminal

N-terminal

N-terminal

C-terminal

N-terminal

C-terminalC-terminal

(a) (b)

Pre-fusion Post-fusion Pre-fusion Post-fusion

Figure 9. Linear (a) and nonlinear (b) NMA for HR1. Initial (red), and final (blue) structure of
transition. The intermediate states between the initial and final states are shown in gray.

In the following analysis, we restored the reference structure to its pre-fusion state
and examined the structural changes in detail. The calculated RMSD was 2.32 Å Figure 9b,
indicating a small extent of deviation from the initial structure. Surprisingly, the nonlinear
NMA approach resulted in a more stable and stiff structure, allowing a realistic evaluation
of the interactions in a physiological context. Recently, the S proteins of SARS-CoV-1 and
SARS-CoV-2 were studied by cryo-electron microscopy (cryo-EM). Ref. [45] remarkable
conformational differences in the pre-fusion RBDs, confirming that the RBD of SARS-CoV-
2 has a larger surface area and exhibits significant local conformational changes at specific
amino acid residues. These structural differences help to enhance the interactions between
the SARS-CoV-2 RBD and hACE2, which play a critical role in viral entry. These results
indirectly support our observation of the (Figure 9a) intermediate transition states that are
showing grey colored linear NMA, that reflect ts the existence of conformational changes.

Modes with higher frequencies require more energy to induce structural shifts than
modes with lower frequencies. As a result, as the energy requirement increases, the
likelihood of a shift decreases. In a broader sense, the system exhibits more pronounced
shifts along lower frequency or slower modes, which correspond to gradual collective or
extensive conformational changes. Higher frequency modes, on the other hand, primarily
account for fast local motions. Supplementary Movie S1 depicts the structural changes
observed for the first 10 lowest modes as defined by the linear and nonlinear NMA.
We see that the first 15 frequencies calculated with the nonlinear NMA generally have
lower values. For the structure from the pre-fusion state, the frequencies range from
0.000103042 cm−1 to 0.00226008 cm−1 (lowest and highest frequencies), while the post-
fusion structure has a lower frequency of 0.000263012 cm−1 and a higher frequency of
0.0028324 cm−1 (Figure 10a). In contrast, linear NMA yields frequency values from greater
than 0.176 cm−1 to less than 0.019 cm−1 (excluding the first 6 modes) for the structure in
the pre-fusion state and from greater than 0.03 cm−1 to less than 0.23 cm−1 (excluding
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the first 6 modes) for the structure in the post-fusion state (see Figure 10b). In contrast,
the linear NMA, the frequencies without the first 6 modes are distributed as follows, state
before fusion: more than 0.176 cm−1 to less than 0.019 cm−1, state after fusion: more than
0.03 cm−1 to less than 0.23 cm−1 (see Figure 10b).
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Figure 10. Distribution of mode number vs. frequency of the 15 lowest modes using (a) Linear-NMA
and (b) NonLinear-NMA for the pre (light blue bars) and post (blue bars) fusion of HR1.

2.4. Prediction of pKa Values For HR1

The unprotonated fractions at various pH levels, as well as the ongoing estimates of
pKa values, were evaluated to assess the convergence of protonation-state sampling and
pKa values (Table 3). The titration curves presented in Figure 11 illustrate the pKa values
derived from the corresponding titration curves. Our 22.5-ns cpH-MD of HR1 mutants;
D936H, D936Y, and D950N, confirms the ability of single-pH to accurately predict the exper-
imental apparent pKa values of interconnected sites in HR1. It shows that the simulations
account for numerous protonatable sites in HR1 for each variant analyzed and that multiple
sites contribute collectively to the macroscopic pKa values and titratable sites. It is impor-
tant to note that as the simulation system size decreases, the potential of the bulk water
phase shifts toward a negative value. This phenomenon artificially enhances the likelihood
of accepting protonation attempts and diminishes the probability of deprotonation attempts
within the neMD/MC algorithm. To ensure consistency with the probability ratio between
protonated and unprotonated states as defined by the Henderson–Hasselbalch equation.
Consequently, ionizable residues have higher probability of protonation, resulting in an
apparent upshift in the pKa values.

The pKa values shown in Table 3 and outlined in Figure 11 exhibit a high degree of
precision. They accurately reflect the reference values and have a small deviation that
rarely exceeds 0.2 pH units. This result confirms the reliability and robustness of cpH-MD
in predicting pKa values with precision. The supplementary materials contain information
on the specific pka values that were used. It is important to note that the simulations used
in this study follow a conservative approach that allows for large error bars that are two
and a half standard deviations from the mean, in practice, the pKa values estimated by
CpH-MD simulations are generally accurate within a range of about 0.3 units.
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(b)

(c) (d)

(e)

(a)

Figure 11. Protonated fraction vs pH of 5 residues of the three mutants (a) Glu 918, (b) Lys 964,
(c) Lys 921, (d) Lys 933, (e) Lys 947, titrated in water. The dots represent the protonation ratio, the
macroscopic titration curves for the mutant: D936Y (green), D936H (purple), and D950N (light blue).
A fitting procedure (blue line) is based on the Henderson-Hasselbalch equation using pKaestimate

reference values (Table 3). The error bars indicate the presence of estimated 95% confidence intervals.
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Table 3. The pKa values for the HR1 obtained from titration simulations. pKaestimate values, which
were determined using Propka3 (software version 3.4.0), and pKavacumm and pKasolvent obtained from
newMD/MC simulations [46].

Mutation Group pkaestimate pkavacumm pkasolvent

D950N ASP 936 5.26 3.8604 ± 0.0511 4.4001 ± 0.0523
GLU 918 5.90 4.8754 ± 0.0565 4.9693 ± 0.0430
LYS 921 9.77 11.1691 ± 0.0752 9.5000 ± 0.0553
LYS 933 9.54 12.1578 ± 0.1182 9.5000 ± 0.0553
LYS 947 9.83 10.3714 ± 0.0079 8.5296 ± 0.0237
LYS 964 9.68 10.4851 ± 0.0529 9.5000 ± 0.0553

D936H ASP 950 5.50 3.2198 ± 0.0511 4.5541 ± 0.0380
HIS 936 6.702 5.1570 ± 0.0016 5.8596 ± 0.0629
GLU 918 5.90 3.8604 ± 0.0298 5.4325 ± 0.0746
LYS 921 9.77 10.3372 ± 0.0170 9.5179 ± 0.0213
LYS 933 9.53 9.9543 ± 0.0023 8.5244 ± 0.0228
LYS 947 9.82 11.4573 ± 0.0209 10.5839 ± 0.0767
LYS 964 9.68 10.4612 ± 0.0755 9.7427 ± 0.1314

D936Y ASP 950 5.51 3.6691 ± 0.0866 4.0672 ± 0.0809
GLU 918 5.90 5.7565 ± 0.0755 5.6504 ± 0.1109
LYS 921 9.77 10.8356 ± 0.0671 10.4949 ± 0.0192
LYS 933 9.53 10.1694 ± 0.0919 10.4949 ± 0.0192
LYS 947 9.82 10.9075 ± 0.0345 10.4167 ± 0.5285
LYS 964 9.68 11.1651 ± 0.0880 9.5009 ± 0.0007

Recently, a computational method to derive the electrostatic properties of the S proteins
in SARS-CoV and SARS-CoV-2 [47] revealed that the RBDs of both proteins have positively
charged interfaces that allow favorable interactions with the negatively charged surface
of the hACE2 receptor. In account to that, our pH-dependent calculations of the relative
folding energy for the RBDs of SARS-CoV and SARS-CoV-2 were observed to be most stable
in pH range 6 to 9 indicating an optimal pH environment for their structural integrity. The
pH dependence of binding energies showed that the complex structures formed by hACE2
and the S proteins of SARS-CoV/SARS-CoV-2 remain stable in a pH range of 7.5 to 10.5 [47].
These results highlight the ability of both variants to adapt to a similar pH environment
and shed light on their survival strategies. Given the satisfactory agreement observed in
our study, we decided to use the previously obtained model parameters to perform protein
titration simulations.

Our findings suggest that the attachment of HR1 to the host cell membrane surface
requires an acidic environment. This implies that in order to guarantee both efficacy and
safety, upper pH safety limits for alkaline drugs and therapies are essential [48]. The pH was
assessed using the three mutants’ titration curves. Importantly, the pH range of 4–6 is where
the protonation of residues Glu-918 occurred (See Figure 11a and Supplementary Movie S2).
With a pka value of 4.5 in water, the structure is preserved at low pH, in particular the
ionization of Glu had no effect on the shape of the protein. [49]. In addition, protonation
of the Lysine-964 residues was observed at pH 8 to 10 (Figure 11b), with a corresponding
pKa of 9.74 and remarkably for His-936 with a pka of 5.85 (Table 3) for the D936H. This
result is consistent with studies under constant pH conditions, where neutral states of the
catalytic dyads and histidine residues in the active site are essential for maximal enzyme
activity, reflecting a pKa value of 6.9 for histidine-41 in the trimer of SARS-CoV-2 [50].
It is hypothesized that the greater deviation of pKa values in the all-atom constant pH
simulations may be attributed to the reduced accuracy of the electrostatic interactions. The
structural changes that occur at different pH values can be visualized in Supplementary
Movie S1. Lysine, being a basic amino acid, exhibits higher pKa values. For instance,
in the case of Lysine-921, the pKa values are observed in the pH range of 9–10 for the
D936H and D950N mutants, and between 9–11 for the D936Y mutant (Figure 11c). These
values correlate with previous studies performed for lysine, in which lysine-164 plays
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a critical role in suppressing host gene expression, with an approximate pKa value of
9.74 [51]. Further, comparing the pKa values for residue Lys-933 in mutant D936H, mutant
D950N, and variation D936Y, a similar pattern is also evident, with values of 9.50, 8.52, and
10.49, respectively, for Lys-921 (see Table 3). In addition, it should be noted that these
computational studies may be useful in formulating the benefits and limitations of the
alkaline extracellular environment and in establishing pH safety thresholds for the use of
effective and efficient alkaline-based therapy.

2.5. Presence of an Amphipathic Helix in HR1 Wild Type (WT) and Mutants; D950N, D936Y
and D936H

This study demonstrates the importance of amphipathic secondary helices in HR1
binding to membranes. Our findings (Figure 12) provide light on the critical aspects for
understanding HR1-membrane contacts during fusion, which result in structural changes
in the spike protein and fusion with the lipid membrane, influencing spike protein function.
The presence of amphipathic phases within HR1 suggests their potential involvement in
mediating interactions with other molecules or membranes, given their unique ability to
simultaneously associate with hydrophobic and hydrophilic surfaces. Since the amphi-
pathic helical conformation is vital for binding to the host cell membrane. An example is
the conserved amino-terminal amphipathic alpha-helix, which is necessary for targeting
regulators of G protein signaling proteins to the plasma membrane [52]. Mutations D950N,
D936Y, and D936H were introduced to study the hydrophobicity <H>, leading to notable
differentiation. D950N, D936Y and D936H mutants, collectively resulted in an overall
charge of +1 for all these mutant analogs. This charge disparity is in stark contrast to the
neutral charge (0) observed in the HR1 (WT) peptide. As a consequence of these mutation-
induced changes, the structural characteristics of the HR1 were noticeably different. This
was evident in the hydrophobicity <H> values, which provide a quantitative measure of
amphipathicity. Specifically, for the sequence section 16-NSAIGKIQDSLSSTASAL-33 (WT),
the D936Y and D936H mutants exhibited <H> values of 0.397 and 0.351, respectively. These
values represented a significant increase in amphipathicity compared to the wild-type HR1
peptide, which had a <H> value of 0.301, as illustrated in Figure 12. Similarly, the sequence
34-GKLQDVVNQNAQALNTLV-51 (WT) that introduced changes in the sequence section
for the D950N mutant, led to a slightly higher <H> value of 0.311, as compared to the
wild-type <H> value of 0.301. These alterations underscore the substantial impact of
these mutations on the structural features of HR1 peptides, particularly in terms of their
amphipathic character as indicated by the hydrophobic moment.

Conversely, it is worth noting that the introduced mutations in the HR1 peptides
may lead to the emergence of distinct structural features. In particular, these alterations
were observed to have an impact on the hydrophobic moment <µH>, manifesting as a
reduction in the values for the D936Y and D936H mutants when compared to the HR1 (WT)
peptide. Specifically, for the sequence section 16-NSAIGKIQDSLSSTASAL-33 (WT), the
<µH> for the D936Y mutant measured at 0.366, while for the D936H mutant, it was 0.412.
In stark contrast, the wild-type HR1 peptide exhibited a higher <µH> of 0.461, as visually
represented in Figure 12. Similarly, in the case of the D950N mutant, the introduced changes
were found to yield slightly lower <µH> values when compared to the wild-type HR1
peptide. Specifically, for the sequence section 34-GKLQDVVNQNAQALNTLV-51 (WT), the
<µH> for the D950N mutant was observed to be 0.443, which was marginally lower than
the <µH> value of 0.453 observed in the wild-type sequence. These findings suggest that
the helix has a pronounced segregation between its hydrophobic and hydrophilic regions
along its length, resulting in a distinct perpendicular arrangement of these two contrasting
faces. These alterations emphasize the significance of the mutations in influencing the
structural characteristics of the HR1 peptides and, notably, their interactions with biological
membranes. In addition, this helix wheel diagram drawn for the single point mutation
of HR1 helps to understand the variation in structural features such as RMSD and RMSF,
as shown in Figure 8 and Figure 7, and their influence on the normal modes (Figure 9).
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Peptides with hydrophobic regions can disrupt lipid membranes and possibly form pores
or destroy lipid bilayers [53,54]. Studies confirm that peptides with positive hydrophobicity
can interact with viral hydrophobic surfaces [55]. Previous research suggests that the
hydrophilic portion of the amphipathic helix plays a critical role in antiviral function and
that any disruption of this element may reduce efficacy against influenza A virus (IAV) [56].
Prior studies has established the relevance of the hydrophilic location in the amphipathic
helices of viral proteins, emphasizing our findings and the necessity to further discover
and analyze these features.

QNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSS

<H> = 0.301
<µH> = 0.461

<H> = 0.397
<µH> = 0.366

<H> = 0.351
<µH> = 0.412

<H> = 0.301
<µH> = 0.453

<H> = 0.311
<µH> = 0.443

GKLQDVVNQNAQALNTLVNSAIGKIQDSLSSTASAL NSAIGKIQHSLSSTASAL

GKLQDNVNQNAQALNTLV

N’913 C’968

16 33 16 33
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16 33 34 51

34 51
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D936Y
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D950N

Figure 12. Sequence and helical wheel representations of amphipathic structures of HR1 and its
mutants, The hydrophobic moment <µH> is denoted to quantify the amphipathicity of the helices,
<H> represents hydrophobicity. Hydrophobic and aromatic residues (yellow), charged residues
(blue), uncharged polar residues (indigo), and glycine (gray). The hydrophobic phase of the peptide
is indicated by the arrows.

3. Materials and Methods
3.1. Retrieve Dataset

A dataset of experimental structures was created to identify the inherent dynamics of
the SARS-CoV-2 sp in the open state. To facilitate this analysis, a wild-type structure of the
SARS-CoV-2 sp in the open state (PDB:6VYB [19]) was taken as a reference. In the same way,
a wild-type structure of the SARS-CoV-2 sp in the close state (PDB:6VXX [19]) was taken
as a reference to establish a comparison between open and closed states. Structural data
obtained by electron microscopy and available in the Protein Data Bank (RCSB-PDB) [39]
were compared to the reference structure. This was done to compile experimental structures
demonstrating various functionalities, such as those in ligand-bound states with antibodies
or nanostructures. The structures selected for this study are listed in Table 4. We selected
structures with sequence alignment greater than 90% and structure overlap of 80% or more
(see Table 4) compared to the respective reference structure. The experimental structures
collected in the database were analyzed using the following procedure:
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Table 4. Protein dataset of pre-fusion state spike and its mutants in the presence of Inhibitor bound,
Glucoside bound and structures that preset any mutations on its sequence.

Inhibitor bound 6XCM 7CWS 7DZX 7L02 7ONA 7JWB 7BYR 7EJ4
7DCC 7A25 6Z43 7AKD 7K85 7CWL 7C2L 7DL1
7N9T 7CAI 7KMK 7E8C 7LRT 7MKL 7CHH 7KL9
7L3N 7R8M 7SC1 7CAC 6NB6 7OAN 7FAE 7NS6
7LD1 7P40 7K8S 7E3K 7E5R 7VNC

Glucoside bound 6VYB 6VXX 6X79 7CN9 6XLU 6X6P 7BNN 6XF5
7KDG 6VSD 6ZB4 7KDJ 6ZOW 7JJI 7E7B 6XR8
7E7D 6ZP0 6ZP1 7KDK 7MTE 7KD1 7A4N 6ZWV
7DX1 7KRQ 6ZOY 6ZOX 6XS6 7LWW 6XKL 7MJ9
7LWI 7TLC 7N1U 7CAB 7LYK 7M8K 7N1Q 7EDF
7K9H 7CN4 7CN8 6ZGE 5X58 6CRW 7SOB 6X2A
7TLA 7KJ2 7LAA 7LQV 6ACC 7BBH 6ZGF 7SO9
7SBP

Mutation 7V8C 7SBK 7TOU 7SBS 7VX1 7Q6E 7V76 7LWS
7V7N 7OD3 7SXW 7SXV 7V78 7FEM 7SXU 7V7D
7N8H 7SXS 7SXT 7W92 7MJG 7SXR 7VX9 7KDI
7FCD 7EAZ 7BNM 6ZP2
7DZW 6ZGG 6X29 7T9J 7QO7 7WK2 7TB4 7WK4

The mean position (∆Rs
i = [∆xs

i ∆ys
i ∆zs

i ]T) of each structure of the dataset (s) was
calculated with respect to the distance of each alpha carbon (1 ≤ i ≤ N) to the alpha carbon
of the of the reference structure (where each component ∆xs

i = xs
i − 〈xi〉) [57]. These steps

were iteratively applied to each structure within the 250 structures of the initial dataset,
enforcing a threshold of RMSD ≤ 0.001 Å. Structures not meeting this criterion were
excluded, resulting in a refined dataset comprising 131 structures. For this purpose, we use
the ProDy library (software version 2.0) [58] to generate the ensemble of PDB structures
projected onto the library for further analysis.

3.2. Preparation of Pre-Fusion State Mutants

The HR1 mutations selected for this study were introduced using CHARM-GUI [59]
(www.charmm-gui.org, accessed on 17 January 2022) [59,60], a web-based platform
specifically designed for the construction of complicated systems. “PDB Reader” [42]
(www.charmm-gui.org/?doc=input/pdbreader, accessed on 17 January 2022) [42,59]. was
used to model missing residues of the HR1 protein. To introduce mutations into the
specific residues, we used the CHARM-GUI platform by selecting the “Mutation” op-
tion [42]. The following eleven mutations were considered for this study: 1. A930V [60],
2. D936Y [60,61], 3. L938F [62], 4. S929I, 5. S929T [26], 6. S939F [26], 7. S943F, 8. S940F [62],
9. S943P [63], 10. S943T [64,65], and a combination of two mutations commonly found
together, 11. S943F-S939F, shown in Figure 1, in addition to the mutations listed in Table 1.
Our assessment is centered on the 11 identified mutations of HR1, with a specific emphasis
on comparing their conformational states between the pre and post fusion forms.

3.3. PCA of the Ensemble

The main modes in our analysis were derived by decomposing the covariance matrix
C for the dataset based on the open and closed states of the spike protein SARS-CoV-2
sp. The covariance matrix (Cov(σ, p)) is a 3N*3N matrix that represents the relation-
ships between dimensions and variable pairs. When considering the covariance matrix
(Cov(σ, σ) = Var(σ, p)), its own variance is significant, and the primary aim was to diago-
nalize it to obtain individual variable variances. Given the commutativity of covariance
(Cov(σ, p) = Cov(p, σ)), the covariance matrix demonstrates symmetry along the diagonal.
This decomposition was calculated using the equation C = ∑3N

i=1 σi p(i)p(i)T , where p(i)

represents the eigenvector corresponding to the ith eigenvalue σi. The eigenvalues and
eigenvectors were obtained by this decomposition process, where σi represents the eigen-

www.charmm-gui.org
www.charmm-gui.org/?doc=input/pdbreader
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value associated with the largest variance component. To enhance the alignment of the
assembly, the optimization process involves the following steps: (i) A random superposition
was conducted utilizing the Kabsch algorithm. (ii) From the preceding step, an ensemble of
mean coordinates is derived, referred to as the “average coordinate”. (iii) Subsequently,
the Kabsch algorithm was repeated, utilizing a pair of superimposed structures gener-
ated from the “average coordinates”. (iv) Steps (ii) and (iii) were iterated until a mean
model was attained, with an RMSD distance constraint between them of 0.001 Å. The main
modes, labeled PC1, PC2, etc., are determined by a ranking process. PC1 corresponds
to the direction of maximum variance in the dataset, followed by PC2 and subsequent
modes. These main modes provide valuable information about the structural variability
within the ensemble of structures. In particular, we were interested in visualizing the
distribution of structures in the dataset in the subspace defined by PC1 and PC2. In this
way, we can effectively distinguish or cluster the conformations based on their distinct
structural similarities or dissimilarities. This alignment determines the mean positions
< Ri >= [< xi >< yi >< zi >]T for the Cα. These mean positions represent the average
coordinates of the Cα in the entire ensemble of structures and provide valuable insight into
the structural properties of the system. The ensemble files, denoted by the Normal Mode
Wizard extension (NMWiz) (software version 1.2) [58], contain coordinate data related to
the normal modes and the reference frame. To visualize these NMWiz files [58], the Visual
Molecular Dynamics (VMD) (software version 1.9.4a55) [66,67] was used to project the
vector components of PCA and the ANM, as well as the interaction network [57,68]. For
the correlation analysis, the highest-ranking correlations of the PCA and ANM modes were
determined. Then, the resulting structures were projected onto the PC1 and PC2 modes, to
facilitate visualization and to create plots, the Matplotlib (software version 3.1.1) tool [69]
was adopted.

3.4. ANM Analysis and Overlap with Modes of PCA

ANM was applied to the open spike protein of SARS-CoV-2 sp and compared with
PCA previously performed on experimental structures. In ANM, the Hessian matrix H was
decomposed into a set of 3N − 6 eigenvalues (λ1) and the direction of the corresponding
eigenvectors u1. The ANM covariance CANM = H−1 such that, 1/λ1 serves as the coun-
terpart to PCA σ1, and u(i) from the ANM serves as the counterpart to p(i) of PCA. The
overlap of the modes from ANM and PCA modes were given by the cosine correlation
Oij = p(i).u(j) [57]. The internal vectors are described by the ANM vectors, and the su-
perposition ensures that the translation and rotation of the rigid body structures remain
unchanged. The matrix C was diagonalized to determine the main modes involved in the
changes of the structures observed during the experiments (p(i)pca) [57]. The stand-alone
ProDy package (software version 2.0) [58] was used to calculate ANM and provided the-
oretical B-factors for each residue. These B-factor values were averaged within protein
segments, such as secondary structure, to obtain flexibility values for these segments. To
predict coordinated movements within the protein, ANM values were used to map the
cross-correlation between residues.

3.5. Linear Normal Mode Analysis (Linear-NMA)

The NMA for the HR1 form of the SARS-CoV-2 sp was performed using NOMAD-
Ref [70] (lorentz.immstr.pasteur.fr/nomad-ref.php, accessed on 17 January 2022) [71]. In
this method, the matrix of the second-order derivative of the potential energy, V, was calcu-
lated at a local minimum. The vectors of the normal modes were determined by solving
the eigenvalue problem of the system ATVA = λ. The normal modes, which represent
the motion patterns, were determined by the eigenvectors (Ak) and their corresponding
eigenvalues (λk). The eigenvalues provide us with useful information about the energy
required to cause displacements along the direction of the corresponding eigenvectors.
Using the NMA, it is possible to determine the energy required for different protein confor-
mations. Therefore, in subsequent analyzes, provided preference to the modes with the
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lowest energy requirements for the protein conformation. NOMAD -Ref was used as a
method to compare ANM developed by Kim et al. [70] to estimate the distances between
residues. In our analysis, we chose an elastic constant of 5 Å and an average RMSD of
1 Å for the calculated trajectories. In addition, ANM cutoff of 1 Å for a total of 106 modes
were considered.

3.6. Nonlinear Normal Mode Analysis (NonLinear NMA)

The pre- and post-fusion transitions of HR1 were calculated using the nonLinear-NMA
implemented in NOLB software (software version 1.9) [18]. It involves a nonlinear extrap-
olation of the instantaneous motion directions described by the normal modes obtained
in the subspace of block rotations and translations, to sustain the angular velocity of the
HR1, it can be interpreted as the outcome of an implicit force, implying that the movement
of the residues can be regarded as a rotational motion around a specific center. Modes
were determined by diagonalizing the mass-weighted stiffness matrix projected onto the
subspace of rotations, translations, and blocks, and the computation involves the diago-
nalization of the rotations-translations of blocks(RTB)-projected mass-weighted stiffness
matrix Kw = (PL̃)Λ̃(PL̃)T , Where L̃ is the matrix that possesses the RTB normal modes
together with the corresponding diagonal eigenvalue matrix Λ̃. To note, diagonalization of
Kw projected by RTB results in a set of eigenvectors that represent the instantaneous linear
(~v = M1/2

b ~vw) and angular velocities (~w = I−1/2~ww) of individual rigid blocks.

3.7. cpH-MD Protocol

A hybrid nonequilibrium molecular dynamics/Monte Carlo (neMD/MC) constant-
pH MD method [72], as implemented in NAMD software version 2.14 [73], was used,
to determine the protonation states of titratable sites within a protein, by predicting the
most likely protonated or non-protonated states. All simulations were performed using
the CHARMM36 force field [74], and titratable amino acids were selected based on these
parameters, covering a pH range of 2 to 14 with intervals of 1 unit, while keeping the
parameters consistent. The simulation protocol involves in (i) preparing the initial structure,
in which selected protein models were solvated in a water box with a 20 Å buffer between
the protein surface and box boundaries. To neutralize the excess charge, Na+ and Cl− ions
were added to the system, along with Periodic boundary conditions, by employing particle
mesh Ewald electrostatics and smooth switching of the Lennard-Jones forces with a cutoff
of 10 Å was applied. Further, for the (ii) simulation phase, the solvated protein system was
subjected to an initial energy minimization of conjugate gradient 2000 steps, followed by
a 10 ns equilibration run under NpT ensemble conditions at a temperature (300 K) and a
pressure of 1 atm. Final structures obtained in the equilibration phase served as the initial
structure for the constant-pH MD (cpH-MD) production run, during the production phase,
a time step of ∆t = 2 ps was used, and temperature control (300 K) was achieved using a
Langevin thermostat with a damping coefficient of 1/ps. Protonation state changes were
attempted every 15 ps during the 22.5 ns (500 neMD/MC cycles), resulting a cumulative
simulation time of 315 ns for each protein system. The pKa reference values were assigned
using the Propka3 (software version 3.4.0) [46] and maintained throughout the simulations
to ensure efficient sampling, although they did not affect the final simulation outcomes.

3.8. Amphipathic Helix Analysis

Heliquest prediction algorithm [75] (https://heliquest.ipmc.cnrs.fr/cgi-bin/Compu
tParams.py, accessed on 17 January 2022) was adopted to elucidate the structural configu-
rations and helical properties of the pre-fusion state of HR1, particularly the hydrophobic
moment <µH>, for helices found in both HR1, wild type and three mutant variants; D950N,
D936Y, and D936H. The principal objective was to study the structural configurations and
helical properties of the pre-fusion state of HR1, specifically focusing on characterizing
amphipathic helices and assessing their physicochemical parameters, such as the <µH> and
hydrophobicity <H>. These parameters are paramount in characterizing the amphipathicity
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of helical segments when adopting an alpha-helix conformation. <µH>, in particular, serves
as a quantitative measure of amphipathicity by calculating the vector sum of hydrophobic
side chains within the helical region. This comprehensive approach allowed us to gain
deeper insights into the structural aspects of the HR1 pre-fusion state, enabling a thorough
analyses of its helical features and alterations induced by the aforementioned mutations.
This analysis serves as a benchmark or analogy to the two NMA mentioned above, where
the amino acid in the amphipathic region of HR1 changes its globular motion for the first
15 modes.

4. Conclusions

We performed a PCA of 131 A-chain structures of the spike protein in the presence
of various inhibitors. Carried out the conformational space and inherent dynamics of the
protein, with a focus on understanding ligand binding pathways for inhibitor design. A
correlation factor of 0.72 between PCA modes and ANM modes, indicates the reliability and
functional importance of low-frequency modes in adapting to different inhibitor binding.
To characterize the function of HR1 dynamics in viral processing, linear NMA and nonlin-
ear NMA approaches are used. The linear NMA exhibited larger RMSD ranges (7.30 Å) and
showed considerable variability between structures, whereas the Nonlinear NMA showed
stability throughout the simulation (RMSD 4.85 Å). Analyses of the frequencies of the linear
and nonlinear modes guarantee that the energy required for conformational changes in the
nonlinear modes is much lower than the energy required for conformational changes in the
estimated linear modes. Specifically, the frequency values for the linear modes showed a
value of 0.000103042 cm−1 for their most stable mode, whereas the nonlinear modes showed
a value of 0.019 cm−1 for their most stable mode in HR1 structures in their pre-fusion form.
This corresponds to a difference of 0.018896 cm−1 in frequencies, indicating the stability of
the medians of the nonlinear modes and lower energetic costs associated with their confor-
mational changes. The single-PH simulations effectively predicted the pKa order of linked
residues in HR1 mutations. Our cpH-MD simulations revealed conformational changes
in HR1 at lower pH values, indicating a shift toward post-fusion structure. Consequently,
the titration curves of HR1 mutants; D936H, D936Y, and D950N indicates numerous proto-
natable site, and the transition from fully protonated to fully deprotonated persists over
a broad pH range (>5 for GLU 918 and >8 for LYS936/933/947/921). The pKa values
determined in this study show the effects of low pH on protein structure. For example, a
pKa value of 9.52 was determined for the Lys-921 residue in the D936H mutant, a value of
9.50 for the D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. These
results are in agreement with similar trends described in other studies. The introduction
of mutations in the HR1 peptides has produced striking modifications in their structural
attributes, particularly evident in the significant increase in amphipathicity compared to
the wild-type HR1 peptide, characterized by a <H> value of 0.301. Notably, the D950N
mutant displayed a slightly higher hydrophobic moment value of 0.213, underlining the
impact of specific mutations on this crucial structural feature. These findings elucidate the
consequential alterations in amphipathic properties brought about by mutations in the HR1
peptides, providing valuable insights into their potential implications for various biological
processes and further highlighting the importance of hydrophobic moment values in the
study of peptide functionality.

Supplementary Materials: The following supporting information can be downloaded at: https://gi
thub.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations (accessed on 26 July
2023), Movie S1: Nlb-Linear HR1 prepost fusion https://github.com/sptmgp/Constant-pH-PCA-NMA-
Non-NMA-on-different-Mutations/blob/main/Movies/Nlb-LinearHR1prepostfusion.mp4 (accessed
on 26 July 2023); Movie S2: Strctures ph mutations https://github.com/sptmgp/Constant-pH-PCA-
NMA-Non-NMA-on-different-Mutations/blob/main/Movies/strcturesphmutations.mp4 (accessed
on 26 July 2023).

https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations
https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations
https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations/blob/main/Movies/Nlb-Linear HR1 prepost fusion.mp4
https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations/blob/main/Movies/Nlb-Linear HR1 prepost fusion.mp4
https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations/blob/main/Movies/strctures ph mutations.mp4
https://github.com/sptmgp/Constant-pH-PCA-NMA-Non-NMA-on-different-Mutations/blob/main/Movies/strctures ph mutations.mp4


Int. J. Mol. Sci. 2023, 24, 16190 21 of 24

Author Contributions: Conceptualisation, S.P.T. methodology, S.P.T.; validation, S.P.T. and D.L.Y.A.;
formal analysis, S.P.T.; investigation, S.P.T. and D.L.Y.A.; resources, S.P.T.; data curation, S.P.T.;
writing—original draft preparation, S.P.T. and D.L.Y.A.; writing—review and editing, S.P.T. and
D.L.Y.A.; visualization S.P.T.; supervision, S.P.T.; project administration, S.P.T.; funding acquisition,
S.P.T. All authors have read and agreed to the published version of the manuscript

Funding: Financial support from the seed grant “Computational modeling of biomaterials and
applications to bioengineering and classical and quantum machine learning for predicting social
engineering (2022–2026, code: INV-0014-03-011)”, Universidad Indoamérica, Ecuador, awarded
to S.P.T.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zimmerman, M.I.; Porter, J.R.; Ward, M.D.; Singh, S.; Vithani, N.; Meller, A.; Mallimadugula, U.L.; Kuhn, C.E.; Borowsky, J.H.;

Wiewiora, R.P.; et al. SARS-CoV-2 Simulations Go Exascale to Predict Dramatic Spike Opening and Cryptic Pockets across the
Proteome. Nat. Chem. 2021, 13, 651–659. [CrossRef]

2. Hu, Y.-B.; Dammer, E.B.; Ren, R.-J.; Wang, G. The Endosomal-Lysosomal System: From Acidification and Cargo Sorting to
Neurodegeneration. Transl. Neurodegener. 2015, 4, 1–10. [CrossRef] [PubMed]

3. Gaudin, Y.; Ruigrok, R.W.H.; Brunner, J. Low-pH Induced Conformational Changes in Viral Fusion Proteins: Implications for the
Fusion Mechanism. J. Gen. Virol. 1995, 76, 1541–1556. [CrossRef] [PubMed]

4. Gao, J.; Gui, M.; Xiang, Y. Structural Intermediates in the Low pH-Induced Transition of Influenza Hemagglutinin. PLoS Pathog.
2020, 16, e1009062. [CrossRef]

5. Caffrey, M.; Lavie, A. pH-Dependent Mechanisms of Influenza Infection Mediated by Hemagglutinin. Front. Mol. Biosci. 2021,
8, 777095. [CrossRef]

6. Gaudin, Y.; Ruigrok, R.W.; Knossow, M.; Flamand, A. Low-pH Conformational Changes of Rabies Virus Glycoprotein and Their
Role in Membrane Fusion. J. Virol. 1993, 67, 1365–1372. [CrossRef] [PubMed]

7. Kreutzberger, A.J.B.; Sanyal, A.; Saminathan, A.; Bloyet, L.-M.; Stumpf, S.; Liu, Z.; Ojha, R.; Patjas, M.T.; Geneid, A.; Scanavachi, G.; et al.
SARS-CoV-2 Requires Acidic pH to Infect Cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2209514119. [CrossRef] [PubMed]

8. Grishin, A.M.; Dolgova, N.V.; Landreth, S.; Fisette, O.; Pickering, I.J.; George, G.N.; Falzarano, D.; Cygler, M. Disulfide Bonds
Play a Critical Role in the Structure and Function of the Receptor-Binding Domain of the SARS-CoV-2 Spike Antigen. J. Mol. Biol.
2022, 434, 167357. [CrossRef] [PubMed]

9. Birtles, D.; Oh, A.E.; Lee, J. Exploring the pH Dependence of the SARS-CoV-2 Complete Fusion Domain and the Role of Its Unique
Structural Features. Protein Sci. 2022, 31, e4390. [CrossRef]

10. Case, D.A. Normal Mode Analysis of Protein Dynamics. Curr. Opin. Struct. Biol. 1994, 4, 285–290. [CrossRef]
11. Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of

Membrane Proteins. Chem. Rev. 2009, 110, 1463–1497. [CrossRef]
12. Ma, J. Usefulness and Limitations of Normal Mode Analysis in Modeling Dynamics of Biomolecular Complexes. Structure 2005,

13, 373–380. [CrossRef]
13. Skjaerven, L.; Hollup, S.M.; Reuter, N. Normal Mode Analysis for Proteins. J. Mol. Struct. Theochem 2009, 898, 42–48. [CrossRef]
14. Mahajan, S.; Sanejouand, Y.-H. On the Relationship between Low-Frequency Normal Modes and the Large-Scale Conformational

Changes of Proteins. Arch. Biochem. Biophys. 2015, 567, 59–65. [CrossRef]
15. Brooks, B.R.; Janezic, D.; Karplus, M. Harmonic Analysis of Large Systems. I. Methodology. J. Comput. Chem. 1995, 16, 1522–1542.

[CrossRef]
16. Mészáros, B.; Park, E.; Malinverni, D.; Sejdiu, B.I.; Immadisetty, K.; Sandhu, M.; Lang, B.; Babu, M.M. Recent Breakthroughs in

Computational Structural Biology Harnessing the Power of Sequences and Structures. Curr. Opin. Struct. Biol. 2023, 80, 102608.
[CrossRef] [PubMed]

17. Majumder, S.; Chaudhuri, D.; Datta, J.; Giri, K. Exploring the Intrinsic Dynamics of SARS-CoV-2, SARS-CoV and MERS-CoV
Spike Glycoprotein through Normal Mode Analysis Using Anisotropic Network Model. J. Mol. Graph. Model. 2021, 102, 107778.
[CrossRef] [PubMed]

18. Hoffmann, A.; Grudinin, S. NOLB: Nonlinear Rigid Block Normal-Mode Analysis Method. J. Chem. Theory Comput. 2017,
13, 2123–2134. [CrossRef] [PubMed]

19. Letko, M.; Marzi, A.; Munster, V. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B
Betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [CrossRef] [PubMed]

http://doi.org/10.1038/s41557-021-00707-0
http://dx.doi.org/10.1186/s40035-015-0041-1
http://www.ncbi.nlm.nih.gov/pubmed/26448863
http://dx.doi.org/10.1099/0022-1317-76-7-1541
http://www.ncbi.nlm.nih.gov/pubmed/9049361
http://dx.doi.org/10.1371/journal.ppat.1009062
http://dx.doi.org/10.3389/fmolb.2021.777095
http://dx.doi.org/10.1128/jvi.67.3.1365-1372.1993
http://www.ncbi.nlm.nih.gov/pubmed/8437221
http://dx.doi.org/10.1073/pnas.2209514119
http://www.ncbi.nlm.nih.gov/pubmed/36048924
http://dx.doi.org/10.1016/j.jmb.2021.167357
http://www.ncbi.nlm.nih.gov/pubmed/34780781
http://dx.doi.org/10.1002/pro.4390
http://dx.doi.org/10.1016/S0959-440X(94)90321-2
http://dx.doi.org/10.1021/cr900095e
http://dx.doi.org/10.1016/j.str.2005.02.002
http://dx.doi.org/10.1016/j.theochem.2008.09.024
http://dx.doi.org/10.1016/j.abb.2014.12.020
http://dx.doi.org/10.1002/jcc.540161209
http://dx.doi.org/10.1016/j.sbi.2023.102608
http://www.ncbi.nlm.nih.gov/pubmed/37182396
http://dx.doi.org/10.1016/j.jmgm.2020.107778
http://www.ncbi.nlm.nih.gov/pubmed/33099199
http://dx.doi.org/10.1021/acs.jctc.7b00197
http://www.ncbi.nlm.nih.gov/pubmed/28379696
http://dx.doi.org/10.1038/s41564-020-0688-y
http://www.ncbi.nlm.nih.gov/pubmed/32094589


Int. J. Mol. Sci. 2023, 24, 16190 22 of 24

20. Wu, C.; Yin, W.; Jiang, Y.; Xu, H.E. Structure Genomics of SARS-CoV-2 and Its Omicron Variant: Drug Design Templates for
COVID-19. Acta Pharmacol. Sin. 2022, 43, 3021–3033. [CrossRef]

21. Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus
Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [CrossRef] [PubMed]

22. Yang, H.; Rao, Z. Structural Biology of SARS-CoV-2 and Implications for Therapeutic Development. Nat. Rev. Microbiol. 2021,
19, 685–700. [CrossRef]

23. Hardenbrook, N.J.; Zhang, P. A Structural View of the SARS-CoV-2 Virus and Its Assembly. Curr. Opin. Virol. 2022, 52, 123–134.
[CrossRef] [PubMed]

24. Tai, L.; Zhu, G.; Yang, M.; Cao, L.; Xing, X.; Yin, G.; Chan, C.; Qin, C.; Rao, Z.; Wang, X.; et al. Nanometer-Resolution in Situ
Structure of the SARS-CoV-2 Postfusion Spike Protein. Proc. Natl. Acad. Sci. USA 2021, 118, e2112703118. [CrossRef] [PubMed]

25. Jiang, S.; Zhang, X.; Du, L. Therapeutic Antibodies and Fusion Inhibitors Targeting the Spike Protein of SARS-CoV-2. Expert Opin.
Ther. Targets 2020, 25, 415–421. [CrossRef] [PubMed]

26. Oliva, R.; Shaikh, A.R.; Petta, A.; Vangone, A.; Cavallo, L. D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2
Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules 2021, 26, 2622. [CrossRef]
[PubMed]

27. Samal, S.; Khattar, S.K.; Kumar, S.; Collins, P.L.; Samal, S.K. Coordinate Deletion of N-Glycans from the Heptad Repeats of
the Fusion F Protein of Newcastle Disease Virus Yields a Hyperfusogenic Virus with Increased Replication, Virulence, and
Immunogenicity. J. Virol. 2012, 86, 2501–2511. [CrossRef] [PubMed]

28. Newby, M.L.; Fogarty, C.A.; Allen, J.D.; Butler, J.; Fadda, E.; Crispin, M. Variations within the Glycan Shield of SARS-CoV-2
Impact Viral Spike Dynamics. J. Mol. Biol. 2023, 435, 167928. [CrossRef]

29. Farhud, D.D.; Mojahed, N. SARS-COV-2 Notable Mutations and Variants: A Review Article. Iran. J. Public Health 2022, 51, 1494.
[CrossRef]

30. Pang, W.; Lu, Y.; Zhao, Y.-B.; Shen, F.; Fan, C.-F.; Wang, Q.; He, W.-Q.; He, X.-Y.; Li, Z.-K.; Chen, T.-T.; et al. A Variant-Proof
SARS-CoV-2 Vaccine Targeting HR1 Domain in S2 Subunit of Spike Protein. Cell Res. 2022, 32, 1068–1085. [CrossRef]

31. Bosch, B.J.; Martina, B.E.E.; van der Zee, R.; Lepault, J.; Haijema, B.J.; Versluis, C.; Heck, A.J.R.; de Groot, R.; Osterhaus, A.D.M.E.;
Rottier, P.J.M. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection Inhibition Using Spike Protein Heptad
Repeat-Derived Peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 8455–8460. [CrossRef]

32. Bianchini, F.; Crivelli, V.; Abernathy, M.E.; Guerra, C.; Palus, M.; Muri, J.; Marcotte, H.; Piralla, A.; Pedotti, M.; De Gasparo, R.; et al.
Human Neutralizing Antibodies to Cold Linear Epitopes and Subdomain 1 of the SARS-CoV-2 Spike Glycoprotein. Sci. Immunol.
2023, 8, eade0958. [CrossRef]

33. Zhang, J.; Xiao, T.; Cai, Y.; Lavine, C.L.; Peng, H.; Zhu, H.; Anand, K.; Tong, P.; Gautam, A.; Mayer, M.L.; et al. Membrane Fusion
and Immune Evasion by the Spike Protein of SARS-CoV-2 Delta Variant. Science 2021, 374, 1353–1360. [CrossRef] [PubMed]

34. Hart, W.S.; Miller, E.; Andrews, N.J.; Waight, P.; Maini, P.K.; Funk, S.; Thompson, R.N. Generation Time of the Alpha and Delta
SARS-CoV-2 Variants: An Epidemiological Analysis. Lancet Infect. Dis. 2022, 22, 603–610. [CrossRef] [PubMed]

35. Magazine, N.; Zhang, T.; Wu, Y.; McGee, M.C.; Veggiani, G.; Huang, W. Mutations and Evolution of the SARS-CoV-2 Spike
Protein. Viruses 2022, 14, 640. [CrossRef]

36. Aljindan, R.Y.; Al-Subaie, A.M.; Al-Ohali, A.I.; Kumar D, T.; Doss C, G.P.; Kamaraj, B. Investigation of Nonsynonymous Mutations
in the Spike Protein of SARS-CoV-2 and Its Interaction with the ACE2 Receptor by Molecular Docking and MM/GBSA Approach.
Comput. Biol. Med. 2021, 135, 104654. [CrossRef] [PubMed]

37. Furusawa, Y.; Kiso, M.; Iida, S.; Uraki, R.; Hirata, Y.; Imai, M.; Suzuki, T.; Yamayoshi, S.; Kawaoka, Y. In SARS-CoV-2 Delta
Variants, Spike-P681R and D950N Promote Membrane Fusion, Spike-P681R Enhances Spike Cleavage, but Neither Substitution
Affects Pathogenicity in Hamsters. eBioMedicine 2023, 91, 104561. [CrossRef]

38. Guruprasad, L. Human SARS-CoV-2 Spike Protein Mutations. Proteins 2021, 89, 569–576. [CrossRef]
39. Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al.

RCSB Protein Data Bank (RCSB.Org): Delivery of Experimentally-Determined PDB Structures alongside One Million Computed
Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids Res. 2022, 51, D488–D508. [CrossRef]
[PubMed]

40. Khan, A.; Tahir Khan, M.; Saleem, S.; Junaid, M.; Ali, A.; Shujait Ali, S.; Khan, M.; Wei, D.-Q. Structural Insights into the
Mechanism of RNA Recognition by the N-Terminal RNA-Binding Domain of the SARS-CoV-2 Nucleocapsid Phosphoprotein.
Comput. Struct. Biotechnol. J. 2020, 18, 2174–2184. [CrossRef]

41. Khan, M.H.R.; Hossain, A. Machine Learning Approaches Reveal That the Number of Tests Do Not Matter to the Prediction of
Global Confirmed COVID-19 Cases. Front. Artif. Intell. 2020, 3, 561801. [CrossRef]

42. Park, S.-J.; Kern, N.; Brown, T.; Lee, J.; Im, W. CHARMM-GUI PDB Manipulator: Various PDB Structural Modifications for
Biomolecular Modeling and Simulation. J. Mol. Biol. 2023, 435, 167995. [CrossRef]

43. Fatoki, T.H.; Ibraheem, O.; Ogunyemi, I.O.; Akinmoladun, A.C.; Ugboko, H.U.; Adeseko, C.J.; Awofisayo, O.A.; Olusegun, S.J.;
Enibukun, J.M. Network Analysis, Sequence and Structure Dynamics of Key Proteins of Coronavirus and Human Host, and
Molecular Docking of Selected Phytochemicals of Nine Medicinal Plants. J. Biomol. Struct. Dyn. 2020, 39, 6195–6217. [CrossRef]

44. Wang, B. Adjusting Extracellular pH to Prevent Entry of SARS-CoV-2 into Human Cells. Genome 2021, 64, 595–598.

http://dx.doi.org/10.1038/s41401-021-00851-w
http://dx.doi.org/10.1038/s41401-020-0485-4
http://www.ncbi.nlm.nih.gov/pubmed/32747721
http://dx.doi.org/10.1038/s41579-021-00630-8
http://dx.doi.org/10.1016/j.coviro.2021.11.011
http://www.ncbi.nlm.nih.gov/pubmed/34915287
http://dx.doi.org/10.1073/pnas.2112703118
http://www.ncbi.nlm.nih.gov/pubmed/34782481
http://dx.doi.org/10.1080/14728222.2020.1820482
http://www.ncbi.nlm.nih.gov/pubmed/32941780
http://dx.doi.org/10.3390/molecules26092622
http://www.ncbi.nlm.nih.gov/pubmed/33946306
http://dx.doi.org/10.1128/JVI.06380-11
http://www.ncbi.nlm.nih.gov/pubmed/22205748
http://dx.doi.org/10.1016/j.jmb.2022.167928
http://dx.doi.org/10.18502/ijph.v51i7.10083
http://dx.doi.org/10.1038/s41422-022-00746-3
http://dx.doi.org/10.1073/pnas.0400576101
http://dx.doi.org/10.1126/sciimmunol.ade0958
http://dx.doi.org/10.1126/science.abl9463
http://www.ncbi.nlm.nih.gov/pubmed/34698504
http://dx.doi.org/10.1016/S1473-3099(22)00001-9
http://www.ncbi.nlm.nih.gov/pubmed/35176230
http://dx.doi.org/10.3390/v14030640
http://dx.doi.org/10.1016/j.compbiomed.2021.104654
http://www.ncbi.nlm.nih.gov/pubmed/34346317
http://dx.doi.org/10.1016/j.ebiom.2023.104561
http://dx.doi.org/10.1002/prot.26042
http://dx.doi.org/10.1093/nar/gkac1077
http://www.ncbi.nlm.nih.gov/pubmed/36420884
http://dx.doi.org/10.1016/j.csbj.2020.08.006
http://dx.doi.org/10.3389/frai.2020.561801
http://dx.doi.org/10.1016/j.jmb.2023.167995
http://dx.doi.org/10.1080/07391102.2020.1794971


Int. J. Mol. Sci. 2023, 24, 16190 23 of 24

45. Kumawat, N.; Tucs, A.; Bera, S.; Chuev, G.N.; Fedotova, M.V.; Tsuda, K.; Kruchinin, S.E.; Sljoka, A.; hakraborty, A. Prefusion
Conformation of SARS-CoV-2 Receptor-Binding Domain Favours Interactions with Human Receptor ACE2; Cold Spring Harbor
Laboratory: Cold Spring Harbor, NY, USA, 2021.

46. Søndergaard, C.R.; Olsson, M.H.M.; Rostkowski, M.; Jensen, J.H. Improved Treatment of Ligands and Coupling Effects in
Empirical Calculation and Rationalization of pKa Values. J. Chem. Theory Comput. 2011, 7, 2284–2295. [CrossRef]

47. Xie, Y.; Guo, W.; Lopez-Hernadez, A.; Teng, S.; Li, L. The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process
of Binding to hACE2. Pathogens 2022, 11, 238. [CrossRef]

48. Abdella, S.; Abid, F.; Youssef, S.H.; Kim, S.; Afinjuomo, F.; Malinga, C.; Song, Y.; Garg, S. pH and Its Applications in Targeted
Drug Delivery. Drug Discov. Today 2023, 28, 103414. [CrossRef] [PubMed]

49. Isom, D.G.; Castañeda, C.A.; Cannon, B.R.; García-Moreno E., B. Large Shifts in pK a Values of Lysine Residues Buried inside a
Protein. Proc. Natl. Acad. Sci. USA 2011, 108, 5260–5265. [CrossRef]

50. Al Adem, K.; Ferreira, J.C.; Fadl, S.; Rabeh, W.M. pH Profiles of 3-Chymotrypsin-like Protease (3CLpro) from SARS-CoV-2
Elucidate Its Catalytic Mechanism and a Histidine Residue Critical for Activity. J. Biol. Chem. 2023, 299, 102790. [CrossRef]
[PubMed]

51. Ferreira, J.C.; Fadl, S.; Villanueva, A.J.; Rabeh, W.M. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and
Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Front. Chem. 2021, 9, 692168.
[CrossRef] [PubMed]

52. Heximer, S.P.; Lim, H.; Bernard, J.L.; Blumer, K.J. Mechanisms Governing Subcellular Localization and Function of Human RGS2.
J. Biol. Chem. 2001, 276, 14195–14203. [CrossRef]

53. Su, Y.; Li, S.; Hong, M. Cationic Membrane Peptides: Atomic-Level Insight of Structure–Activity Relationships from Solid-State
NMR. Amino Acids 2012, 44, 821–833. [CrossRef] [PubMed]

54. Kennedy, S.M.; Aiken, E.J.; Beres, K.A.; Hahn, A.R.; Kamin, S.J.; Hagness, S.C.; Booske, J.H.; Murphy, W.L. Cationic Peptide
Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption. PLoS ONE 2014, 9, e92528. [CrossRef] [PubMed]

55. Asensio-Calavia, P.; González-Acosta, S.; Otazo-Pérez, A.; López, M.R.; Morales-delaNuez, A.; Pérez de la Lastra, J.M. Teleost
Piscidins—In Silico Perspective of Natural Peptide Antibiotics from Marine Sources. Antibiotics 2023, 12, 855. [CrossRef]

56. Guo, X.; Steinkühler, J.; Marin, M.; Li, X.; Lu, W.; Dimova, R.; Melikyan, G.B. Interferon-Induced Transmembrane Protein 3 Blocks
Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano 2021, 15, 8155–8170.
[CrossRef] [PubMed]

57. Bakan, A.; Bahar, I. The Intrinsic Dynamics of Enzymes Plays a Dominant Role in Determining the Structural Changes Induced
upon Inhibitor Binding. Proc. Natl. Acad. Sci. USA 2009, 106, 14349–14354. [CrossRef]

58. Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinformatics 2011, 27,
1575–1577. [CrossRef]

59. Jo, S.; Cheng, X.; Islam, S.M.; Huang, L.; Rui, H.; Zhu, A.; Lee, H.S.; Qi, Y.; Han, W.; Vanommeslaeghe, K.; et al. CHARMM-GUI
PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues. Adv. Protein Chem.
Struct. Biol. 2014, 96, 235–265.

60. Stoddard, S.V.; Wallace, F.E.; Stoddard, S.D.; Cheng, Q.; Acosta, D.; Barzani, S.; Bobay, M.; Briant, J.; Cisneros, C.; Feinstein, S.;
et al. In Silico Design of Peptide-Based SARS-CoV-2 Fusion Inhibitors That Target WT and Mutant Versions of SARS-CoV-2 HR1
Domains. Biophysica 2021, 1, 311–327. [CrossRef]

61. Gopalan, V.; Chandran, A.; Arumugam, K.; Sundaram, M.; Velladurai, S.; Govindan, K.; Azhagesan, N.; Jeyavel, P.; Dhandapani, P.;
Sivasubramanian, S.; et al. Distribution and Functional Analyses of Mutations in Spike Protein and Phylogenic Diversity of
SARS-CoV-2 Variants Emerged during the Year 2021 in India. J. Glob. Infect. Dis. 2023, 15, 43–51. [CrossRef]

62. Yang, K.; Wang, C.; White, K.I.; Pfuetzner, R.A.; Esquivies, L.; Brunger, A.T. Structural Conservation among Variants of the
SARS-CoV-2 Spike Postfusion Bundle. Proc. Natl. Acad. Sci. USA 2022, 119, e2119467119. [CrossRef]

63. Cosar, B.; Karagulleoglu, Z.Y.; Unal, S.; Ince, A.T.; Uncuoglu, D.B.; Tuncer, G.; Kilinc, B.R.; Ozkan, Y.E.; Ozkoc, H.C.; Demir, I.N.; et al.
SARS-CoV-2 Mutations and Their Viral Variants. Cytokine Growth Factor Rev. 2022, 63, 10–22. [CrossRef] [PubMed]

64. Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2
Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294.e9. [CrossRef] [PubMed]

65. Wang, L.; Wang, L.; Zhuang, H. Profiling and Characterization of SARS-CoV-2 Mutants’ Infectivity and Antigenicity. Sig.
Transduct. Target. Ther. 2020, 5, 185. [CrossRef] [PubMed]

66. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
67. Ribeiro, J.V.; Bernardi, R.C.; Rudack, T.; Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Schulten, K. QwikMD—Integrative Molecular

Dynamics Toolkit for Novices and Experts. Sci. Rep. 2016, 6, 26536. [CrossRef]
68. Meireles, L.; Gur, M.; Bakan, A.; Bahar, I. Pre-Existing Soft Modes of Motion Uniquely Defined by Native Contact Topology

Facilitate Ligand Binding to Proteins. Protein Sci. 2011, 20, 1645–1658. [CrossRef]
69. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
70. Kim, M.K.; Jernigan, R.L.; Chirikjian, G.S. Efficient Generation of Feasible Pathways for Protein Conformational Transitions.

Biophys. J. 2002, 83, 1620–1630. [CrossRef]
71. Lindahl, E.; Azuara, C.; Koehl, P.; Delarue, M. NOMAD-Ref: Visualization, Deformation and Refinement of Macromolecular

Structures Based on All-Atom Normal Mode Analysis. Nucleic Acids Res. 2006, 34, W52–W56. [CrossRef]

http://dx.doi.org/10.1021/ct200133y
http://dx.doi.org/10.3390/pathogens11020238
http://dx.doi.org/10.1016/j.drudis.2022.103414
http://www.ncbi.nlm.nih.gov/pubmed/36273779
http://dx.doi.org/10.1073/pnas.1010750108
http://dx.doi.org/10.1016/j.jbc.2022.102790
http://www.ncbi.nlm.nih.gov/pubmed/36509143
http://dx.doi.org/10.3389/fchem.2021.692168
http://www.ncbi.nlm.nih.gov/pubmed/34249864
http://dx.doi.org/10.1074/jbc.M009942200
http://dx.doi.org/10.1007/s00726-012-1421-9
http://www.ncbi.nlm.nih.gov/pubmed/23108593
http://dx.doi.org/10.1371/journal.pone.0092528
http://www.ncbi.nlm.nih.gov/pubmed/24671150
http://dx.doi.org/10.3390/antibiotics12050855
http://dx.doi.org/10.1021/acsnano.0c10567
http://www.ncbi.nlm.nih.gov/pubmed/33656312
http://dx.doi.org/10.1073/pnas.0904214106
http://dx.doi.org/10.1093/bioinformatics/btr168
http://dx.doi.org/10.3390/biophysica1030023
http://dx.doi.org/10.4103/jgid.jgid_178_22
http://dx.doi.org/10.1073/pnas.2119467119
http://dx.doi.org/10.1016/j.cytogfr.2021.06.001
http://www.ncbi.nlm.nih.gov/pubmed/34580015
http://dx.doi.org/10.1016/j.cell.2020.07.012
http://www.ncbi.nlm.nih.gov/pubmed/32730807
http://dx.doi.org/10.1038/s41392-020-00302-8
http://www.ncbi.nlm.nih.gov/pubmed/32883949
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1038/srep26536
http://dx.doi.org/10.1002/pro.711
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/S0006-3495(02)73931-3
http://dx.doi.org/10.1093/nar/gkl082


Int. J. Mol. Sci. 2023, 24, 16190 24 of 24

72. Radak, B.K.; Chipot, C.; Suh, D.; Jo, S.; Jiang, W.; Phillips, J.C.; Schulten, K.; Roux, B. Constant-pH Molecular Dynamics
Simulations for Large Biomolecular Systems. J. Chem. Theory Comput. 2017, 13, 5933–5944. [CrossRef] [PubMed]

73. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable
Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [CrossRef] [PubMed]

74. Huang, J.; MacKerell, A.D., Jr. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR
Data. J. Comput. Chem. 2013, 34, 2135–2145. [CrossRef] [PubMed]

75. Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A Web Server to Screen Sequences with Specific α-Helical Properties.
Bioinformatics 2008, 24, 2101–2102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/acs.jctc.7b00875
http://www.ncbi.nlm.nih.gov/pubmed/29111720
http://dx.doi.org/10.1002/jcc.20289
http://www.ncbi.nlm.nih.gov/pubmed/16222654
http://dx.doi.org/10.1002/jcc.23354
http://www.ncbi.nlm.nih.gov/pubmed/23832629
http://dx.doi.org/10.1093/bioinformatics/btn392

	Introduction
	Results and Discussion
	PCA
	Conformational Flexibility and Structural Stability of HR1 Transition
	Linear vs. Nonlinear-NMA of HR1
	Prediction of pKa Values For HR1
	Presence of an Amphipathic Helix in HR1 Wild Type (WT) and Mutants; D950N, D936Y and D936H

	Materials and Methods
	Retrieve Dataset
	Preparation of Pre-Fusion State Mutants
	PCA of the Ensemble
	ANM Analysis and Overlap with Modes of PCA
	Linear Normal Mode Analysis (Linear-NMA)
	Nonlinear Normal Mode Analysis (NonLinear NMA)
	cpH-MD Protocol
	Amphipathic Helix Analysis

	Conclusions
	References

