Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity
Abstract
:1. Introduction
2. Results
2.1. Effects of YH on Body Composition
2.2. Effects of YH on Area Size of Single Lipid Droplet
2.3. Effects of YH on Locomotor Activity and Gamma-Aminobutyric Acid Content
2.4. Effects of YH on Drosophila Insulin-like Peptides and Unpaired 2 mRNA Expression
2.5. Effects of YH on Lipid Metabolism-Related mRNA Expression
2.6. Effects of Active Compound from YH on Lipid Accumulation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. D. melanogaster Stock and Maintaining Condition
4.3. Analysis of Body Composition
4.4. Lipid Droplet Staining
4.5. Behavioral and Neurotransmitter Assay
4.6. Gene Expression Analysis
4.7. Analysis of Active Compound Contents
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. Fructose and Cardiometabolic Health: What the Evidence from Sugar-Sweetened Beverages Tells Us. J. Am. Coll. Cardiol. 2015, 66, 1615–1624. [Google Scholar] [CrossRef]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Bjorck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Bray, G.A.; Popkin, B.M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes?: Health be damned! Pour on the sugar. Diabetes Care 2014, 37, 950–956. [Google Scholar] [CrossRef]
- Guo, H.; Li, M.; Liu, H. Selenium-Rich Yeast Peptide Fraction Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis in Mice by Inhibiting Inflammation via MAPK and NF-kappaB Signaling Pathways. Int. J. Mol. Sci. 2022, 23, 2112. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Magnani, M.; Pimentel, T.C.; Freire, F.M.S.; da Silva, T.A.F.; Ramalho, R.C.; Alves, A.F.; de Brito Alves, J.L.; de Medeiros, I.A.; Veras, R.C. Carboxymethyl-glucan from Saccharomyces cerevisiae reduces blood pressure and improves baroreflex sensitivity in spontaneously hypertensive rats. Food Funct. 2021, 12, 8552–8560. [Google Scholar] [CrossRef]
- Santas, J.; Lazaro, E.; Cune, J. Effect of a polysaccharide-rich hydrolysate from Saccharomyces cerevisiae (LipiGo(R)) in body weight loss: Randomised, double-blind, placebo-controlled clinical trial in overweight and obese adults. J. Sci. Food Agric. 2017, 97, 4250–4257. [Google Scholar] [CrossRef]
- Okamoto, N.; Yamanaka, N. Nutrition-dependent control of insect development by insulin-like peptides. Curr. Opin. Insect Sci. 2015, 11, 21–30. [Google Scholar] [CrossRef]
- Ecker, A.; Gonzaga, T.; Seeger, R.L.; Santos, M.M.D.; Loreto, J.S.; Boligon, A.A.; Meinerz, D.F.; Lugokenski, T.H.; Rocha, J.; Barbosa, N.V. High-sucrose diet induces diabetic-like phenotypes and oxidative stress in Drosophila melanogaster: Protective role of Syzygium cumini and Bauhinia forficata. Biomed. Pharmacother. 2017, 89, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Musselman, L.P.; Fink, J.L.; Ramachandran, P.V.; Patterson, B.W.; Okunade, A.L.; Maier, E.; Brent, M.R.; Turk, J.; Baranski, T.J. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 2013, 288, 8028–8042. [Google Scholar] [CrossRef] [PubMed]
- Katewa, S.D.; Demontis, F.; Kolipinski, M.; Hubbard, A.; Gill, M.S.; Perrimon, N.; Melov, S.; Kapahi, P. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 2012, 16, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.Y.; Cho, M.K.; Hong, Y.H.; Kim, J.H.; Park, Y.; Chang, U.J.; Suh, H.J. Yeast hydrolysate can reduce body weight and abdominal fat accumulation in obese adults. Nutrition 2014, 30, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.Y.; Lee, J.W.; Hong, Y.H.; Chang, U.J.; Suh, H.J. Low Dose Yeast Hydrolysate in Treatment of Obesity and Weight Loss. Prev. Nutr. Food Sci. 2017, 22, 45–49. [Google Scholar] [CrossRef]
- Rajan, A.; Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151, 123–137. [Google Scholar] [CrossRef]
- Nassel, D.R.; Kubrak, O.I.; Liu, Y.; Luo, J.; Lushchak, O.V. Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 2013, 4, 252. [Google Scholar] [CrossRef]
- Enell, L.E.; Kapan, N.; Soderberg, J.A.; Kahsai, L.; Nassel, D.R. Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila. PLoS ONE 2010, 5, e15780. [Google Scholar] [CrossRef]
- Kannan, K.; Fridell, Y.W. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 2013, 4, 288. [Google Scholar] [CrossRef]
- Bai, H.; Kang, P.; Tatar, M. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell 2012, 11, 978–985. [Google Scholar] [CrossRef]
- Sano, H.; Nakamura, A.; Texada, M.J.; Truman, J.W.; Ishimoto, H.; Kamikouchi, A.; Nibu, Y.; Kume, K.; Ida, T.; Kojima, M. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLoS Genet. 2015, 11, e1005209. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. Mechanisms for insulin resistance: Common threads and missing links. Cell 2012, 148, 852–871. [Google Scholar] [CrossRef] [PubMed]
- Buszczak, M.; Lu, X.; Segraves, W.A.; Chang, T.Y.; Cooley, L. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: Diacylglycerol acyltransferase. Genetics 2002, 160, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, X. Lipid metabolism in Drosophila: Development and disease. Acta Biochim. Biophys. Sin. 2013, 45, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Herranz, H.; Cohen, S.M. Drosophila as a Model to Study the Link between Metabolism and Cancer. J. Dev. Biol. 2017, 5, 15. [Google Scholar] [CrossRef]
- Westfall, S.; Lomis, N.; Prakash, S. Longevity extension in Drosophila through gut-brain communication. Sci. Rep. 2018, 8, 8362. [Google Scholar] [CrossRef]
- Herraiz, T. 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid and 1,2, 3,4-tetrahydro-beta-carboline-3-carboxylic acid in fruits. J. Agric. Food Chem. 1999, 47, 4883–4887. [Google Scholar] [CrossRef]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 2017, 25, 340–349. [Google Scholar] [CrossRef]
- Baek, S.C.; Nam, K.H.; Yi, S.A.; Jo, M.S.; Lee, K.H.; Lee, Y.H.; Lee, J.; Kim, K.H. Anti-adipogenic Effect of beta-Carboline Alkaloids from Garlic (Allium sativum). Foods 2019, 8, 673. [Google Scholar] [CrossRef]
- Kim, N.; Lee, S.; Jung, E.J.; Jung, E.Y.; Chang, U.J.; Jin, C.M.; Suh, H.J.; Choi, H.S. Yeast-Hydrolysate-Derived 1-Methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic Acid Inhibits Fat Accumulation during Adipocyte Differentiation. Foods 2023, 12, 3466. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bi, J.F.; Xiang, Y.H.; Chen, H.Y.; Liu, Z.H.; Gronke, S.; Kuhnlein, R.P.; Huang, X. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J. Cell Sci. 2012, 125, 3568–3577. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, J.C.; Finn, S.M.; Panckeri, K.A.; Chavkin, J.; Williams, J.A.; Sehgal, A.; Pack, A.I. Rest in Drosophila is a sleep-like state. Neuron 2000, 25, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Friedman, D.B.; Wang, Z.; Woodruff, E.; Pan, L.Y.; O’Donnell, J.; Broadie, K. Protein expression profiling of the Drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mol. Cell. Proteom. 2005, 4, 278–290. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.; Ahn, Y.; Ko, K.; Kim, B.; Han, K.; Suh, H.J.; Jung, J.; Hong, K.-B. Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity. Int. J. Mol. Sci. 2023, 24, 16302. https://doi.org/10.3390/ijms242216302
Kim N, Ahn Y, Ko K, Kim B, Han K, Suh HJ, Jung J, Hong K-B. Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity. International Journal of Molecular Sciences. 2023; 24(22):16302. https://doi.org/10.3390/ijms242216302
Chicago/Turabian StyleKim, Nari, Yejin Ahn, Kayoung Ko, Boyun Kim, Kisoo Han, Hyung Joo Suh, Jewon Jung, and Ki-Bae Hong. 2023. "Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity" International Journal of Molecular Sciences 24, no. 22: 16302. https://doi.org/10.3390/ijms242216302
APA StyleKim, N., Ahn, Y., Ko, K., Kim, B., Han, K., Suh, H. J., Jung, J., & Hong, K. -B. (2023). Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity. International Journal of Molecular Sciences, 24(22), 16302. https://doi.org/10.3390/ijms242216302