Dietary Kynurenine Pathway Metabolites—Source, Fate, and Chromatographic Determinations
Abstract
:1. Introduction
2. Kynurenine Pathway—An Overview
3. Circulation of KP Metabolites
4. Biological Functions of KP Metabolites
5. Tryptophan Supplementation and Generation of KP Metabolites
6. Fate and Health Effects of KP Metabolites after Oral Administration and Food Intake
7. Occurrence in Food Products
7.1. Herbs and Species
7.2. Fruits and Vegetables
7.3. Mushrooms
7.4. Honey and Honeybee Products
7.5. Fermented Products
7.5.1. Milk and Milk-Based Fermented Products
7.5.2. Traditional Fermented Food
Product | N | Concentration Range (mg/kg) or (mg/L) | Ref. | ||
---|---|---|---|---|---|
TRP | KYN | KYNA | |||
Bread | 3 | 31.70–72.50 | <LOD–0.14 | <LOD | [18] |
– | n.a. | n.a. | 0.01 | [38] | |
Cheese (white) | 6 | 3.80–37.60 | 0.03–0.32 | 0.03–0.08 | [18] |
Cheese (hard) | – | n.a. | n.a. | 0.008 | [38] |
Milk | 11 | ~0.30 | ~0.08 | n.a. | [16] |
Milk (1.5%) | – | n.a. | n.a. | 0.02 | [38] |
Milk (human) | – | n.a. | n.a. | 0.03 | |
24 | ~200.0–300.0 a | ~0.02–0.07 a | ~0.01–0.04 a | [113] | |
– | n.a. | n.a. | 0.004–0.06 b | [13] | |
82-88 | 0.22–10.90 c | 0.01–0.22 c | n.a. | [93] | |
Kefir | 3 | 2.90-5.40 | 0.37–0.76 | 0.11–0.24 | [18] |
– | n.a. | n.a. | 0.01 | [38] | |
Probiotic drinks | 31 | 0.22-5.16 | ~0.06 | n.a. | [16] |
Yoghurt | 5 | 3.20-13.40 | 0.29–0.75 | 0.07–0.29 | [18] |
9 | ~0.70 | ~0.07 | n.a. | [16] | |
– | n.a. | n.a. | 0.02 | [38] |
7.5.3. Beer
7.5.4. Wine
7.5.5. Other Alcoholic Beverages
7.6. Breast Milk and Baby Formulas
7.7. Tea and Coffee
7.8. Meat
8. Chromatographic Determination of KP Metabolites in Food Commodities
9. Sample Preparation for Chromatographic Determination of KP Metabolites in Food—Practical Aspects
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int. J. Tryptophan Res. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Shi, G.; Yang, M.; Zheng, F.; Zheng, Z.; Zhang, S.; Zhong, S. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Quantitative Profiling of Tryptophan Metabolites in Human Plasma and Its Application to Clinical Study. J. Chromatogr. B 2019, 1128, 121745. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [PubMed]
- La Scala, J.J.; Sands, J.M.; Palmese, G.R. L-Tryptophan: Biochemical, Nutritional and Pharmacological Aspects. AIChE Annu. Meet. Conf. Proc. 1996, 10, 21–47. [Google Scholar] [CrossRef]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [PubMed]
- Sandyk, R. L-Tryptophan in Neuropsychiatry Disorders: A Review. Int. J. Neurosci. 1992, 67, 127–144. [Google Scholar] [CrossRef]
- Takikawa, O. Biochemical and Medical Aspects of the Indoleamine2,3-Dioxygenase-Initiated L-Tryptophan Metabolism. Biochem. Biophys. Res. Commun. 2005, 338, 12–19. [Google Scholar] [CrossRef]
- Silber, B.Y.; Schmitt, J.A.J. Effects of Tryptophan Loading on Human Cognition, Mood, and Sleep. Neurosci. Biobehav. Rev. 2010, 34, 387–407. [Google Scholar] [CrossRef]
- Turska, M.; Rutyna, R.; Paluszkiewicz, M.; Terlecka, P.; Dobrowolski, A.; Pelak, J.; Turski, M.P.; Muszyńska, B.; Dabrowski, W.; Kocki, T.; et al. Presence of Kynurenic Acid in Alcoholic Beverages—Is This Good News, or Bad News? Med. Hypotheses 2019, 122, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Turska, M.; Pelak, J.; Turski, M.P.; Kocki, T.; Dukowski, P.; Plech, T.; Turski, W. Fate and Distribution of Kynurenic Acid Administered as Beverage. Pharmacol. Rep. 2018, 70, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Milart, P.; Paluszkiewicz, P.; Dobrowolski, P.; Tomaszewska, E.; Smolinska, K.; Debinska, I.; Gawel, K.; Walczak, K.; Bednarski, J.; Turska, M.; et al. Kynurenic Acid as the Neglected Ingredient of Commercial Baby Formulas. Sci. Rep. 2019, 9, 6108–6115. [Google Scholar] [CrossRef]
- Turski, M.P.; Chwil, S.; Turska, M.; Chwil, M.; Kocki, T.; Rajtar, G.; Parada-Turska, J. An Exceptionally High Content of Kynurenic Acid in Chestnut Honey and Flowers of Chestnut Tree. J. Food Compos. Anal. 2016, 48, 67–72. [Google Scholar] [CrossRef]
- Soto, M.E.; Ares, A.M.; Bernal, J.; Nozal, M.J.; Bernal, J.L. Simultaneous Determination of Tryptophan, Kynurenine, Kynurenic and Xanthurenic Acids in Honey by Liquid Chromatography with Diode Array, Fluorescence and Tandem Mass Spectrometry Detection. J. Chromatogr. A 2011, 1218, 7592–7600. [Google Scholar] [CrossRef]
- Bertazzo, A.; Ragazzi, E.; Visioli, F. Evolution of Tryptophan and Its Foremost Metabolites’ Concentrations in Milk and Fermented Dairy Products. PharmaNutrition 2016, 4, 62–67. [Google Scholar] [CrossRef]
- Turski, M.P.; Kamiński, P.; Zgrajka, W.; Turska, M.; Turski, W.A. Potato- An Important Source of Nutritional Kynurenic Acid. Plant Foods Hum. Nutr. 2012, 67, 17–23. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Determination of Tryptophan Derivatives in Kynurenine Pathway in Fermented Foods Using Liquid Chromatography Tandem Mass Spectrometry. Food Chem. 2018, 243, 420–427. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Kocki, T.; Turski, W.A.; Paluszkiewicz, P. Kynurenic Acid Content in Selected Culinary Herbs and Spices. J. Chem. 2015, 2015, 617571. [Google Scholar] [CrossRef]
- Wnorowski, A.; Wnorowska, S.; Kurzepa, J.; Parada-Turska, J. Alterations in Kynurenine and NAD+ Salvage Pathways during the Successful Treatment of Inflammatory Bowel Disease Suggest HCAR3 and NNMT as Potential Drug Targets. Int. J. Mol. Sci. 2021, 22, 13497. [Google Scholar] [CrossRef]
- Sofia, M.A.; Ciorba, M.A.; Meckel, K.; Lim, C.K.; Guillemin, G.J.; Weber, C.R.; Bissonnette, M.; Pekow, J.R. Tryptophan Metabolism through the Kynurenine Pathway Is Associated with Endoscopic Inflammation in Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Whiley, L.; Nye, L.C.; Grant, I.; Andreas, N.; Chappell, K.E.; Sarafian, M.H.; Misra, R.; Plumb, R.S.; Lewis, M.R.; Nicholson, J.K.; et al. Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Quantification of Tryptophan Metabolites and Markers of Gut Health in Serum and Plasma—Application to Clinical and Epidemiology Cohorts. Anal. Chem. 2019, 91, 5207–5216. [Google Scholar] [CrossRef] [PubMed]
- Anesi, A.; Rubert, J.; Oluwagbemigun, K.; Orozco-Ruiz, X.; Nöthlings, U.; Breteler, M.M.B.; Mattivi, F. Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways. Metabolites 2019, 9, 261. [Google Scholar] [CrossRef]
- Sadok, I.; Gamian, A.; Staniszewska, M.M. Chromatographic Analysis of Tryptophan Metabolites. J. Sep. Sci. 2017, 40, 3020–3045. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Stevens, A.P.; Dettmer, K.; Gottfried, E.; Hoves, S.; Kreutz, M.; Holler, E.; Canelas, A.B.; Kema, I.; Oefner, P.J. Quantitative Profiling of Tryptophan Metabolites in Serum, Urine, and Cell Culture Supernatants by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2011, 401, 3249–3261. [Google Scholar] [CrossRef]
- Sadok, I.; Jędruchniewicz, K.; Rawicz-Pruszyński, K.; Staniszewska, M. UHPLC-ESI-MS/MS Quantification of Relevant Substrates and Metabolites of the Kynurenine Pathway Present in Serum and Peritoneal Fluid from Gastric Cancer Patients—Method Development and Validation. Int. J. Mol. Sci. 2021, 22, 6972. [Google Scholar] [CrossRef]
- Maddison, D.C.; Giorgini, F. The Kynurenine Pathway and Neurodegenerative Disease. Semin. Cell Dev. Biol. 2015, 40, 134–141. [Google Scholar] [CrossRef]
- Mithaiwala, M.N.; Santana-Coelho, D.; Porter, G.A.; O’Connor, J.C. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021, 10, 1548. [Google Scholar] [CrossRef]
- Badawy, A.A.B. Kynurenine Pathway and Human Systems. Exp. Gerontol. 2020, 129, 110770. [Google Scholar] [CrossRef]
- Badawy, A.A.B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Mu, C.-L.; Farzi, A.; Zhu, W.-Y. Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Marszalek-Grabska, M.; Walczak, K.; Gawel, K.; Wicha-Komsta, K.; Wnorowska, S.; Wnorowski, A.; Turski, W.A. Kynurenine Emerges from the Shadows—Current Knowledge on Its Fate and Function. Pharmacol. Ther. 2021, 225, 107845. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.-Q. Kynurenines in the Mammalian Brain: When Physiology Meets Pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood–Brain Barrier Transport of Kynurenines: Implications for Brain Synthesis and Metabolism. J. Neurochem. 1991, 56, 2007–2016. [Google Scholar] [CrossRef]
- Goeden, N.; Notarangelo, F.M.; Pocivavsek, A.; Beggiato, S.; Bonnin, A.; Schwarcz, R. Prenatal Dynamics of Kynurenine Pathway Metabolism in Mice: Focus on Kynurenic Acid. Dev. Neurosci. 2017, 39, 519–528. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Paluszkiewicz, P.; Parada-Turska, J.; Oxenkrug, G.F. Kynurenic Acid in the Digestive System—New Facts, New Challenges. Int. J. Tryptophan Res. 2013, 6, 47–55. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Zgrajka, W.; Kuc, D.; Turski, W.A. Presence of Kynurenic Acid in Food and Honeybee Products. Amino Acids 2009, 36, 75–80. [Google Scholar] [CrossRef]
- Turska, M.; Paluszkiewicz, P.; Turski, W.A.; Parada-Turska, J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022, 12, 4182. [Google Scholar] [CrossRef]
- Pawlak, D.; Tankiewicz, A.; Matys, T.; Buczko, W. Peripheral Distribution of Kynurenine Metabolites and Activity of Kynurenine Pathway Enzymes in Renal Failure. J. Physiol. Pharmacol. 2003, 54, 175–189. [Google Scholar]
- Saran, T.; Turska, M.; Kocki, T.; Zawadka, M.; Zieliński, G.; Turski, W.A.; Gawda, P. Effect of 4-Week Physical Exercises on Tryptophan, Kynurenine and Kynurenic Acid Content in Human Sweat. Sci. Rep. 2021, 11, 11092–11098. [Google Scholar] [CrossRef] [PubMed]
- Colín-González, A.L.; Maldonado, P.D.; Santamaría, A. 3-Hydroxykynurenine: An Intriguing Molecule Exerting Dual Actions in the Central Nervous System. Neurotoxicology 2013, 34, 189–204. [Google Scholar] [CrossRef]
- Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; et al. An Endogenous Tumour-Promoting Ligand of the Human Aryl Hydrocarbon Receptor. Nature 2011, 478, 197–203. [Google Scholar] [CrossRef]
- Francisco-Marquez, M.; Aguilar-Fernández, M.; Galano, A. Anthranilic Acid as a Secondary Antioxidant: Implications to the Inhibition of Radical OH Production and the Associated Oxidative Stress. Comput. Theor. Chem. 2016, 1077, 18–24. [Google Scholar] [CrossRef]
- Guillemin, G.J. Quinolinic Acid, the Inescapable Neurotoxin. FEBS J. 2012, 279, 1325–1365. [Google Scholar] [CrossRef] [PubMed]
- Sadok, I.; Staniszewska, M. Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives. Sensors 2021, 21, 7152. [Google Scholar] [CrossRef]
- Terness, P.; Bauer, T.M.; Röse, L.; Dufter, C.; Watzlik, A.; Simon, H.; Opelz, G. Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase–Expressing Dendritic Cells. J. Exp. Med. 2002, 196, 447–457. [Google Scholar] [CrossRef]
- Frumento, G.; Rotondo, R.; Tonetti, M.; Damonte, G.; Benatti, U.; Ferrara, G.B. Tryptophan-Derived Catabolites Are Responsible for Inhibition of T and Natural Killer Cell Proliferation Induced by Indoleamine 2,3-Dioxygenase. J. Exp. Med. 2002, 196, 459–468. [Google Scholar] [CrossRef]
- Metcalfe, A.J.; Koliamitra, C.; Javelle, F.; Bloch, W.; Zimmer, P. Acute and Chronic Effects of Exercise on the Kynurenine Pathway in Humans—A Brief Review and Future Perspectives. Physiol. Behav. 2018, 194, 583–587. [Google Scholar] [CrossRef]
- Wirleitner, B.; Rudzite, V.; Neurauter, G.; Murr, C.; Kalnins, U.; Erglis, A.; Trusinskis, K.; Fuchs, D. Immune Activation and Degradation of Tryptophan in Coronary Heart Disease. Eur. J. Clin. Investig. 2003, 33, 550–554. [Google Scholar] [CrossRef]
- Qi, Q.; Hua, S.; Clish, C.B.; Scott, J.M.; Hanna, D.B.; Wang, T.; Haberlen, S.A.; Shah, S.J.; Glesby, M.J.; Lazar, J.M.; et al. Plasma Tryptophan-Kynurenine Metabolites Are Altered in Human Immunodeficiency Virus Infection and Associated with Progression of Carotid Artery Atherosclerosis. Clin. Infect. Dis. 2018, 67, 235–242. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; McKenzie, G.; Witting, P.K.; Stasch, J.-P.; Hahn, M.; Changsirivathanathamrong, D.; Wu, B.J.; Ball, H.J.; Thomas, S.R.; et al. Kynurenine Is an Endothelium-Derived Relaxing Factor Produced during Inflammation. Nat. Med. 2010, 16, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, H.P.G.; Costa, A.C.; Gattaz, W.F.; Talib, L.L. Kynurenine Is Correlated with IL-1β in Plasma of Schizophrenia Patients. J. Neural Transm. 2018, 125, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Wirthgen, E.; Hoeflich, A.; Rebl, A.; Günther, J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front. Immunol. 2017, 8, 1957. [Google Scholar] [CrossRef] [PubMed]
- Fallarini, S.; Magliulo, L.; Paoletti, T.; de Lalla, C.; Lombardi, G. Expression of Functional GPR35 in Human INKT Cells. Biochem. Biophys. Res. Commun. 2010, 398, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Elizei, S.S.; Poormasjedi-Meibod, M.-S.; Wang, X.; Kheirandish, M.; Ghahary, A. Kynurenic Acid Downregulates IL-17/1L-23 Axis in Vitro. Mol. Cell. Biochem. 2017, 431, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Tiszlavicz, Z.; Tiszlavicz, Z.; Fülöp, F.; Vécsei, L.; Tápai, K.; Tápai, K.; Mándi, Y. Different Inhibitory Effects of Kynurenic Acid and a Novel Kynurenic Acid Analogue on Tumour Necrosis Factor-α (TNF-α) Production by Mononuclear Cells, HMGB1 Production by Monocytes and HNP1-3 Secretion by Neutrophils. Naunyn. Schmiedebergs. Arch. Pharmacol. 2011, 383, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Walczak, K.; Dąbrowski, W.; Langner, E.; Zgrajka, W.; Piłat, J.; Piłat, J.; Rzeski, W.; Turski, W.A. Kynurenic Acid Synthesis and Kynurenine Aminotransferases Expression in Colon Derived Normal and Cancer Cells. Scand. J. Gastroenterol. 2011, 46, 903–912. [Google Scholar] [CrossRef]
- Kaszaki, J.; Erces, D.; Varga, G.; Szabó, A.; Vécsei, L.; Boros, M. Kynurenines and Intestinal Neurotransmission: The Role of N-Methyl-D-Aspartate Receptors. J. Neural Transm. 2012, 119, 211–223. [Google Scholar] [CrossRef]
- Plitman, E.; Iwata, Y.; Caravaggio, F.; Nakajima, S.; Chung, J.K.; Gerretsen, P.; Kim, J.; Takeuchi, H.; Chakravarty, M.M.; Remington, G.; et al. Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr. Bull. 2017, 43, 764–777. [Google Scholar] [CrossRef]
- Leipnitz, G.; Schumacher, C.; Dalcin, K.B.; Scussiato, K.; Solano, A.; Funchal, C.; Dutra-Filho, C.S.; Wyse, A.T.S.; Wannmacher, C.M.D.; Latini, A.; et al. In Vitro Evidence for an Antioxidant Role of 3-Hydroxykynurenine and 3-Hydroxyanthranilic Acid in the Brain. Neurochem. Int. 2007, 50, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Dorta, E.; Aspée, A.; Pino, E.; González, L.; Lissi, E.; López-Alarcón, C. Controversial Alkoxyl and Peroxyl Radical Scavenging Activity of the Tryptophan Metabolite 3-Hydroxy-Anthranilic Acid. Biomed. Pharmacother. 2017, 90, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Lee, Y.-S.; Choi, J.-H.; Park, S.-G.; Choi, I.-W.; Joo, Y.-D.; Lee, W.-S.; Lee, J.-N.; Choi, I.; Seo, S.-K. Tryptophan Metabolite 3-Hydroxyanthranilic Acid Selectively Induces Activated T Cell Death via Intracellular GSH Depletion. Immunol. Lett. 2010, 132, 53–60. [Google Scholar] [CrossRef]
- Christen, S.; Peterhans, E.; Stocker, R. Antioxidant Activities of Some Tryptophan Metabolites: Possible Implication for Inflammatory Diseases. Proc. Natl. Acad. Sci. USA 1990, 87, 2506–2510. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.; van der Hart, M.; Roeser, J.; Summergrad, P. Anthranilic Acid: A Potential Biomarker and Treatment Target for Schizophrenia. Ann. Psychiatry Ment. Health 2016, 4, 1059. [Google Scholar]
- Gęca, K.; Rawicz-Pruszyński, K.; Mlak, R.; Sadok, I.; Polkowski, W.P.; Staniszewska, M. Kynurenine and Anthranilic Acid in the Peritoneum Correlate With the Stage of Gastric Cancer Disease. Int. J. Tryptophan Res. 2022, 15, 1–10. [Google Scholar] [CrossRef]
- Savitz, J.; Dantzer, R.; Wurfel, B.E.; Victor, T.A.; Ford, B.N.; Bodurka, J.; Bellgowan, P.S.F.; Teague, T.K.; Drevets, W.C. Neuroprotective Kynurenine Metabolite Indices Are Abnormally Reduced and Positively Associated with Hippocampal and Amygdalar Volume in Bipolar Disorder. Psychoneuroendocrinology 2015, 52, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 Dioxygenase and Quinolinic Acid Immunoreactivity in Alzheimer’s Disease Hippocampus. Neuropathol. Appl. Neurobiol. 2005, 31, 395–404. [Google Scholar] [CrossRef]
- Guillemin, G.J.; Brew, B.J. Implications of the Kynurenine Pathway and Quinolinic Acid in Alzheimer’s Disease. Redox Rep. 2002, 7, 199–206. [Google Scholar] [CrossRef]
- Fazio, F.; Lionetto, L.; Curto, M.; Iacovelli, L.; Copeland, C.S.; Neale, S.A.; Bruno, V.; Battaglia, G.; Salt, T.E.; Nicoletti, F. Cinnabarinic Acid and Xanthurenic Acid: Two Kynurenine Metabolites That Interact with Metabotropic Glutamate Receptors. Neuropharmacology 2017, 112, 365–372. [Google Scholar] [CrossRef]
- Fazio, F.; Zappulla, C.; Notartomaso, S.; Busceti, C.; Bessede, A.; Scarselli, P.; Vacca, C.; Gargaro, M.; Volpi, C.; Allegrucci, M.; et al. Cinnabarinic Acid, an Endogenous Agonist of Type-4 Metabotropic Glutamate Receptor, Suppresses Experimental Autoimmune Encephalomyelitis in Mice. Neuropharmacology 2014, 81, 237–243. [Google Scholar] [CrossRef]
- Curto, M.; Lionetto, L.; Fazio, F.; Corigliano, V.; Comparelli, A.; Ferracuti, S.; Simmaco, M.; Nicoletti, F.; Baldessarini, R.J. Serum Xanthurenic Acid Levels: Reduced in Subjects at Ultra High Risk for Psychosis. Schizophr. Res. 2019, 208, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Göçenoğlu, A.; Pazarlioglu, N. Cinnabarinic Acid: Enhanced Production from Pycnoporus Cinnabarinus, Characterization, Structural and Functional Properties. Hacet. J. Biol. Chem. 2014, 42, 281–290. [Google Scholar] [CrossRef]
- Li, K.; Horanyi, P.S.; Collins, R.; Phillips, R.S.; Eriksson, K.-E.L. Investigation of the Role of 3-Hydroxyanthranilic Acid in the Degradation of Lignin by White-Rot Fungus Pycnoporus Cinnabarinus. Enzyme Microb. Technol. 2001, 28, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Waghmare, M.D.; Wasewar, K.L.; Sonawane, S.S.; Shende, D.Z. Reactive Extraction of Picolinic and Nicotinic Acid by Natural Non-Toxic Solvent. Sep. Purif. Technol. 2013, 120, 296–303. [Google Scholar] [CrossRef]
- Senol, A. Influence of Conventional Diluents on Amine Extraction of Picolinic Acid. Sep. Purif. Technol. 2005, 43, 49–57. [Google Scholar] [CrossRef]
- Holt, L.E.; Snyderman, S.E. Protein and Amino Acid Requirements in Human Nutrition. Nutr. Abstr. Rev. 1965, 35, 1–13. [Google Scholar]
- Lieberman, H.R.; Agarwal, S.; Fulgoni, V.L. Tryptophan Intake in the US Adult Population Is Not Related to Liver or Kidney Function but Is Associated with Depression and Sleep Outcomes. J. Nutr. 2016, 146, 2609S–2615S. [Google Scholar] [CrossRef]
- Markus, C.R.; Verschoor, E.; Firk, C.; Kloek, J.; Gerhardt, C.C. Effect of Tryptophan-Rich Egg Protein Hydrolysate on Brain Tryptophan Availability, Stress and Performance. Clin. Nutr. 2010, 29, 610–616. [Google Scholar] [CrossRef]
- Lindseth, G.; Helland, B.; Caspers, J. The Effects of Dietary Tryptophan on Affective Disorders. Arch. Psychiatr. Nurs. 2015, 29, 102–107. [Google Scholar] [CrossRef]
- Ruddick, J.P.; Evans, A.K.; Nutt, D.J.; Lightman, S.L.; Rook, G.A.W.; Lowry, C.A. Tryptophan Metabolism in the Central Nervous System: Medical Implications. Expert Rev. Mol. Med. 2006, 8, 1–27. [Google Scholar] [CrossRef]
- Hegyi, J.; Schwartz, R.A.; Hegyi, V. Pellagra: Dermatitis, Dementia, and Diarrhea. Int. Soc. Dermatol. 2004, 43, 1–5. [Google Scholar] [CrossRef]
- Attenburrow, M.J.; Williams, C.; Odontiadis, J.; Powell, J.; Van de Ouderaa, F.; Williams, M.; Cowen, P.J. The Effect of a Nutritional Source of Tryptophan on Dieting-Induced Changes in Brain 5-HT Function. Psychol. Med. 2003, 33, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, R.; Partonen, T.; Haukka, J.; Virtamo, J.; Albanes, D.; Lönnqvist, J. Association of Dietary Amino Acids with Low Mood. Depress. Anxiety 2003, 18, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.; Abrams, J.; Nutt, D. Tryptophan Depletion and Its Implications for Psychiatry. Br. J. Psychiatry 2001, 178, 399–405. [Google Scholar] [CrossRef]
- Wolf, H.; Brown, R.R.; Arend, A.R. The Kynurenine Load Test, an Adjunct to the Tryptophan Load Test. Scand. J. Clin. Lab. Investig. 1980, 40, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Berger, K.; Fuchs, D. Effects of a Caloric Restriction Weight Loss Diet on Tryptophan Metabolism and Inflammatory Biomarkers in Overweight Adults. Eur. J. Nutr. 2014, 54, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Hiratsuka, C.; Fukuwatari, T.; Shibata, K. Fate of Dietary Tryptophan in Young Japanese Women. Int. J. Tryptophan Res. 2013, 5, 33–47. [Google Scholar] [CrossRef]
- Hiratsuka, C.; Fukuwatari, T.; Sano, M.; Saito, K.; Sasaki, S.; Shibata, K. Supplementing Healthy Women with up to 5.0 g/d of L-Tryptophan Has No Adverse Effects. J. Nutr. 2013, 143, 859–866. [Google Scholar] [CrossRef]
- Hiratsuka, C.; Sano, M.; Fukuwatari, T.; Shibata, K. Time-Dependent Effects of L-Tryptophan Administration on Urinary Excretion of L-Tryptophan Metabolites. J. Nutr. Sci. Vitaminol. 2014, 60, 255–260. [Google Scholar] [CrossRef]
- Al-Karagholi, M.A.-M.; Møller Hansen, J.; Abou-Kassem, D.; Koldbro Hansted, A.; Ubhayasekera, K.; Bergquist, J.; Vécsei, L.; Jansen-Olesen, I.; Ashina, M. Phase 1 Study to Access Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Kynurenine in Healthy Volunteers. Pharmacol. Res. Perspect. 2021, 9, e00741. [Google Scholar] [CrossRef]
- Leklem, J.E.; Rose, D.P.; Brown, R.R. Effect of Oral Contraceptives on Urinary Metabolite Excretions after Administration of L-Tryptophan or L-Kynurenine Sulfate. Metabolism 1973, 22, 1499–1505. [Google Scholar] [CrossRef]
- Marszalek-Grabska, M.; Stachniuk, A.; Iwaniak, P.; Gawel, K.; Sumara, A.; Kocki, T.; Fornal, E.; Milart, P.; Paluszkiewicz, P.; Turski, W. Unexpected Content of Kynurenine in Mother’s Milk and Infant Formulas. Sci. Rep. 2022, 12, 6464–6476. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.-B.; Bano, S. Tryptophan Metabolism in Rat Liver after Administration of Tryptophan, Kynurenine Metabolites, and Kynureninase Inhibitors. Int. J. Tryptophan Res. 2016, 9, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Turski, W.A.; Małaczewska, J.; Marciniak, S.; Bednarski, J.; Turski, M.P.; Jabłoński, M.; Siwicki, A.K. On the Toxicity of Kynurenic Acid in Vivo and in Vitro. Pharmacol. Rep. 2014, 66, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-C.; Holtze, M.; Powell, S.B.; Terrando, N.; Larsson, M.K.; Persson, A.; Olsson, S.K.; Orhan, F.; Kegel, M.; Asp, L.; et al. Behavioral Disturbances in Adult Mice Following Neonatal Virus Infection or Kynurenine Treatment—Role of Brain Kynurenic Acid. Brain. Behav. Immun. 2014, 36, 80–89. [Google Scholar] [CrossRef]
- Rombouts, C.; Hemeryck, L.Y.; Van Hecke, T.; De Smet, S.; De Vos, W.H.; Vanhaecke, L. Untargeted Metabolomics of Colonic Digests Reveals Kynurenine Pathway Metabolites, Dityrosine and 3-Dehydroxycarnitine as Red versus White Meat Discriminating Metabolites. Sci. Rep. 2017, 7, 42514–42527. [Google Scholar] [CrossRef]
- Gostner, J.M.; Becker, K.; Croft, K.D.; Woodman, R.J.; Puddey, I.B.; Fuchs, D.; Hodgson, J.M. Regular Consumption of Black Tea Increases Circulating Kynurenine Concentrations: A Randomized Controlled Trial. BBA Clin. 2015, 3, 31–35. [Google Scholar] [CrossRef]
- Zgrajka, W.; Turska, M.; Rajtar, G.; Majdan, M.; Parada-Turska, J. Kynurenic Acid Content in Anti-Rheumatic Herbs. Ann. Agric. Environ. Med. 2013, 20, 800–802. [Google Scholar]
- Russo, F.; Tolomeo, F.; Vandelli, M.A.; Biagini, G.; Paris, R.; Fulvio, F.; Laganà, A.; Capriotti, A.L.; Carbone, L.; Gigli, G.; et al. Kynurenine and Kynurenic Acid: Two Human Neuromodulators Found in Cannabis Sativa L. J. Pharm. Biomed. Anal. 2022, 211, 114636. [Google Scholar] [CrossRef]
- Vitalini, S.; Dei Cas, M.; Rubino, F.M.; Vigentini, I.; Foschino, R.; Iriti, M.; Paroni, R. LC-MS/MS-Based Profiling of Tryptophan-Related Metabolites in Healthy Plant Foods. Molecules 2020, 25, 311. [Google Scholar] [CrossRef]
- Muszyńska, B.; Sułkowska-Ziaja, K.; Ekiert, H. Analysis of Indole Compounds in Methanolic Extracts from the Fruiting Bodies of Cantharellus Cibarius (the Chanterelle) and from the Mycelium of This Species Cultured in Vitro. J. Food Sci. Technol. 2013, 50, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Sutkowska-Ziaja, K.; Ekiert, H. Indole Compounds in Some Culinary-Medicinal Higher Basidiomycetes from Poland. Int. J. Med. Mushrooms 2011, 13, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Sułkowska-Ziaja, K. Analysis of Indole Compounds in Edible Basidiomycota Species after Thermal Processing. Food Chem. 2012, 132, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Kała, K.; Sułkowska-Ziaja, K.; Gaweł, K.; Zając, M.; Opoka, W. Determination of Indole Compounds Released from Selected Edible Mushrooms and Their Biomass to Artificial Stomach Juice. LWT Food Sci. Technol. 2015, 62, 27–31. [Google Scholar] [CrossRef]
- Ohashi, K.; Kawai, S.; Murata, K. Secretion of Quinolinic Acid, an Intermediate in the Kynurenine Pathway, for Utilization in NAD+ Biosynthesis in the Yeast Saccharomyces Cerevisiae. Eukaryot. Cell 2013, 12, 648–653. [Google Scholar] [CrossRef]
- Panozzo, C.; Nawara, M.; Suski, C.; Kucharczyka, R.; Rytka, J.; Herbert, C.J.; Skoneczny, M.; Be, A. Aerobic and Anaerobic NAD+ Metabolism in Saccharomyces Cerevisiae. FEBS Lett. 2002, 517, 97–102. [Google Scholar] [CrossRef]
- Shin, K.M.; Sano, C.U. Metabolism of Tryptophan to Niacin in Saccharomyces Uvarum. J. Nutr. Sci. Vitaminol. 1991, 37, 269–283. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Kinetic Evaluation of the Formation of Tryptophan Derivatives in the Kynurenine Pathway during Wort Fermentation Using Saccharomyces Pastorianus and Saccharomyces Cerevisiae. Food Chem. 2019, 297, 124975. [Google Scholar] [CrossRef] [PubMed]
- Kurnasov, O.; Goral, V.; Colabroy, K.; Gerdes, S.; Anantha, S.; Osterman, A.; Begley, T.P.; Campbell, W.; Drive, P. NAD Biosynthesis: Identification of the Tryptophan to Quinolinate Pathway in Bacteria. Chem. Biol. 2003, 10, 1195–1204. [Google Scholar] [CrossRef]
- Parks, O.W.; Schwartz, D.P.; Nelson, K.; Allen, C. Evidence for Kynurenine in Milk. J. Dairy Sci. 1967, 50, 10–11. [Google Scholar] [CrossRef]
- Kharnaior, P.; Tamang, J.P. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front. Microbiol. 2022, 13, 868383–868402. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, L.; Clarke, G.; Nolan, A.; Watkins, C.; Dinan, T.G.; Stanton, C.; Ross, R.P.; Ryan, C.A. Tryptophan Metabolic Profile in Term and Preterm Breast Milk: Implications for Health. J. Nutr. Sci. 2018, 7, e13–e21. [Google Scholar] [CrossRef]
- Wogulis, M.; Chew, E.R.; Donohoue, P.D.; Wilson, D.K. Identification of Formyl Kynurenine Formamidase and Kynurenine Aminotransferase from Saccharomyces Cerevisiae Using Crystallographic, Bioinformatic and Biochemical Evidence. Biochemistry 2008, 47, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Chaleckis, R.; Takaine, M.; Wheelock, C.E.; Yoshida, S. Kynurenine Aminotransferase Activity of Aro8/Aro9 Engage Tryptophan Degradation by Producing Kynurenic Acid in Saccharomyces Cerevisiae. Sci. Rep. 2017, 7, 12180. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Formation of Amino Acid Derivatives in White and Red Wines during Fermentation: Effects of Non-Saccharomyces Yeasts and Oenococcus Oeni. Food Chem. 2021, 343, 128415. [Google Scholar] [CrossRef] [PubMed]
- Forino, M.; Gambuti, A.; Moio, L. NMR-Based Systematic Analysis of Bioactive Phytochemicals in Red Wine. First Determination of Xanthurenic and Oleanic Acids. Food Chem. 2019, 278, 497–501. [Google Scholar] [CrossRef]
- Stachniuk, A.; Sumara, A.; Milart, P.; Turski, W.A.; Jabłońska-Ryś, E.; Fornal, E. LC-QTOF/MS Determination of Tryptophan and Kynurenine in Infant Formulas. J. Pharm. Biomed. Anal. 2020, 191, 113619. [Google Scholar] [CrossRef] [PubMed]
- Salman, S.; Yılmaz, C.; Gökmen, V.; Özdemir, F. Effects of Fermentation Time and Shooting Period on Amino Acid Derivatives and Free Amino Acid Profiles of Tea. LWT Food Sci. Technol. 2021, 137, 110481. [Google Scholar] [CrossRef]
- Sadok, I.; Jędruchniewicz, K.; Staniszewska, M. Quantification of Nicotinic Acid, Kynurenine, and Kynurenine Acid in Poultry Meat by Validated Liquid Chromatography-Single Quadrupole Mass Spectrometry Method. LWT Food Sci. Technol. 2022, 163, 113582. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and Comprehensive Strategy for Reducing Matrix Effects in LC/MS/MS Analyses. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 22–34. [Google Scholar] [CrossRef] [PubMed]
- King, R.; Bonfiglio, R.; Fernandez-Metzler, C.; Miller-Stein, C.; Olah, T. Mechanistic Investigation of Ionization Suppression in Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 942–950. [Google Scholar] [CrossRef] [PubMed]
Biological Effect | KP Metabolite | Ref. |
---|---|---|
Anticonvulsant properties | KYNA, PIC | [28] |
Anti-inflammatory properties | 3HAA, 3HKyn | [28,42] |
Antimicrobial activity | KYN, KYNA, CA, PIC | [28,43] |
Antioxidant properties | KYNA, XA, AA, 3HKyn | [28,42,44] |
Antiviral properties | PIC | [28] |
Immunomodulation | KYN, CA | [28,43] |
Lipid peroxidation | QA | [45] |
Neurotoxicity | 3HKyn, QA | [42,45] |
Neuroprotective properties | KYNA | [28] |
Oxidative stress regulation | KYN, 3HKyn, 3HAA | [28] |
Proconvulsant properties | QA | [28] |
Pro-oxidant properties | 3HKyn, QA | [28,42] |
Reduction of lipid peroxidation | KYNA | [28] |
Transcription factor | KYN | [28] |
Vasodilator in endothelial cells | KYN | [28] |
Herbs/ Species | Form | Concentration Range (mg/kg) | Ref. | ||||
---|---|---|---|---|---|---|---|
TRP | KYN | 3HAA | AA | KYNA | |||
Basil | leaves | n.a. | n.a. | n.a. | n.a. | 12.75–15.41 | [19] |
Bay leaf | leaves | n.a. | n.a. | n.a. | n.a. | 0.90–0.92 | |
Bean | pericarp and loose herbs | n.a. | n.a. | n.a. | n.a. | 0.50–0.64 | [99] |
Birch | loose herbs | n.a. | n.a. | n.a. | n.a. | 2.28–3.08 | |
Black pepper | fruits | n.a. | n.a. | n.a. | n.a. | 0.09–0.11 | [19] |
Cloves | flower buds | n.a. | n.a. | n.a. | n.a. | 1.22–1.36 | |
Cocoa | powder | 12.9–37.5 | <LOD | n.a. | n.a. | 4.0–4.5 | [18] |
Cumin | seeds | n.a. | n.a. | n.a. | n.a. | 0.61–0.67 | [19] |
Curry | powder and mixture of herbs | n.a. | n.a. | n.a. | n.a. | 3.13–3.65 | |
Dandelion | root and loose herbs | n.a. | n.a. | n.a. | n.a. | 0.04–0.06 | [99] |
Elder | flower and loose herbs | n.a. | n.a. | n.a. | n.a. | 1.54–1.92 | |
Fennel | fruits | n.a. | n.a. | n.a. | n.a. | 0.70–0.90 | [19] |
Glechoma | herbs | n.a. | n.a. | n.a. | n.a. | 0.99–1.05 | |
Harpagophytum ** | root and capsules | n.a. | n.a. | n.a. | n.a. | 0.02–0.04 | [99] |
Hemp | leaves | n.a. | 19.0–23.0 * | n.a. | n.a. | 8.1–18.6 * | [100] |
stem | n.a. | 12.8–19.6 * | n.a. | n.a. | 0.5–1.6 | ||
root | n.a. | 6.8–7.4 * | n.a. | n.a. | 0.80 * | ||
Herbs de Provence | mixture of herbs | n.a. | n.a. | n.a. | n.a. | 3.13–3.27 | [19] |
Horsetail | loose herbs | n.a. | n.a. | n.a. | n.a. | 1.91–2.63 | [99] |
Marjoram | herbs | n.a. | n.a. | n.a. | n.a. | 3.70–3.86 | [19] |
Mint | leaves | n.a. | n.a. | n.a. | n.a. | 2.70–3.34 | |
Nettle | loose herbs | n.a. | n.a. | n.a. | n.a. | 2.33–3.09 | [99] |
Oregano | leaves | n.a. | n.a. | n.a. | n.a. | 2.18–2.72 | [19] |
Parsley | leaves | n.a. | n.a. | n.a. | n.a. | 0.67–0.85 | |
Peppermint | loose herbs | n.a. | n.a. | n.a. | n.a. | 3.36–4.28 | [99] |
Reumaflos tea | leaves and sachets | n.a. | n.a. | n.a. | n.a. | 1.73–2.43 | |
Rosemary | leaves | n.a. | n.a. | n.a. | n.a. | 1.17–1.25 | [19] |
Reumatfix | sachets | n.a. | n.a. | n.a. | n.a. | 1.43–1.89 | [99] |
Sage | leaves | n.a. | n.a. | n.a. | n.a. | 1.24–1.32 | [19] |
Savory | herbs | n.a. | n.a. | n.a. | n.a. | 1.14–1.42 | |
Spirulina | ~75.0 | ~0.015 | <LOD | ~0.09 | ~0.10 | [101] | |
Tarragon | leaves | n.a. | n.a. | n.a. | n.a. | 1.00–1.08 | [19] |
Thyme | leaves and branches | n.a. | n.a. | n.a. | n.a. | 7.87–9.70 | |
Turmeric | rhizoma | n.a. | n.a. | n.a. | n.a. | 1.45–1.51 | |
Willow | bark and loose herbs | n.a. | n.a. | n.a. | n.a. | 0.21–0.31 | [99] |
Fruit/ Vegetable | Form | Concentration Range (mg/kg) | Ref. | ||||
---|---|---|---|---|---|---|---|
TRP | KYN | 3HAA | AA | KYNA | |||
Apple | – | n.a. | n.a. | n.a. | n.a. | 0.002 | [38] |
Broccoli | – | n.a. | n.a. | n.a. | n.a. | 0.41 | |
Carrot | – | n.a. | n.a. | n.a. | n.a. | 0.009 | |
Cauliflower | – | n.a. | n.a. | n.a. | n.a. | 0.047 | |
Corn | – | n.a. | n.a. | n.a. | n.a. | 0.016 | |
Cucumber | – | n.a. | n.a. | n.a. | n.a. | 0.004 | |
Garlic | – | n.a. | n.a. | n.a. | n.a. | 0.027 | |
Onion | – | n.a. | n.a. | n.a. | n.a. | 0.023 | |
Soybean | roasted | ~80.0 | ~0.13 | <LOD | ~0.04 | ~0.01 | [101] |
Sesame | – | ~20.0 | ~0.05 | ~0.01 | ~0.01 | ~0.02 | |
Tomato | – | n.a. | n.a. | n.a. | n.a. | 0.006 | [38] |
Pea | – | n.a. | n.a. | n.a. | n.a. | 0.009 | |
Potato | tubers | n.a. | n.a. | n.a. | n.a. | 0.24–3.24 * | [17] |
tubers | n.a. | n.a. | n.a. | n.a. | 0.13 | [38] | |
French fries | n.a. | n.a. | n.a. | n.a. | 0.1–0.65 * | [17] | |
crisps | n.a. | n.a. | n.a. | n.a. | 0.03–0.58 * | ||
flour | n.a. | n.a. | n.a. | n.a. | 0.008–0.04 * | ||
Pumpkin | – | ~80.0 | ~0.08 | ~0.01 | ~0.02 | ~0.05 | [101] |
Red paprika | – | n.a. | n.a. | n.a. | n.a. | 0.001 | [38] |
Rice | – | n.a. | n.a. | n.a. | n.a. | 0.006 |
Type of Honey Product | N | Concentration Range (mg/kg) | Ref. | |||
---|---|---|---|---|---|---|
TRP | KYN | KYNA | XA | |||
Acacia honey dew | 5 | 0.69–0.78 | 0.30–0.36 | 0.11–0.15 | 0.05–0.28 | [15] |
Bee pollen | 2 | n.a | n.a. | 0.65 | n.a. | [38] |
Blackberry | 5 | 0.28–0.35 | 0.18–0.24 | 11.65–12.35 | <LOD–0.02 | [15] |
Buckwheat | 2 | n.a. | n.a. | 0.33 | n.a. | [14] |
2 | n.a. | n.a. | 0.18 | n.a. | [38] | |
Chestnut | 5 | 0.07–0.12 | 0.10–0.15 | 103.50–141.15 | 0.23–0.34 | [15] |
5 | n.a. | n.a. | 129–601 | n.a. | [14] | |
Clover | 1 | n.a. | n.a. | 0.34–0.75 | n.a. | |
Eucalyptus | 5 | 1.57–1.78 | 2.14–4.47 | 0.49–0.54 | 0.03–0.60 | [15] |
1 | n.a. | n.a. | 11.30 | n.a. | [14] | |
Fir | 1 | n.a. | n.a. | 1.06 | n.a. | |
Forest | 5 | 9.56–9.94 | 0.14–0.18 | 1.15–1.18 | <LOD–0.02 | [15] |
Heather | 5 | 0.03–0.11 | 0.03–0.09 | 1.01–1.07 | 0.01–0.35 | |
Holm oak | 5 | 1.04–1.26 | 0.02–0.06 | 0.45–0.50 | <LOD | |
Honey made from Pueblo plants | 1 | n.a. | n.a. | 3.46 | n.a. | [14] |
Honey dew | 1 | n.a. | n.a. | 0.12 | n.a. | |
Lavandin | 5 | 0.63–0.74 | 0.04–0.23 | 0.60–0.71 | 0.01–0.04 | [15] |
Lavender | 2 | n.a. | n.a. | 0.15 | n.a. | [14] |
Lavender (French) | 5 | 2.51–2.87 | 0.84–0.98 | 0.20–0.26 | 0.04–0.28 | [15] |
Lavender (spike) | 5 | 2.73–6.68 | 3.50–5.37 | 0.29–0.37 | <LOD–0.02 | |
Linden | 1 | n.a. | n.a. | 0.18–0.39 | n.a. | [14] |
2 | n.a. | n.a. | 0.18 | n.a. | [38] | |
Luceme | 1 | n.a. | n.a. | 0.10 | n.a. | [14] |
Multifloral | 5 | 1.86–2.16 | 4.68–5.47 | 3.01–3.24 | 0.02–0.03 | [15] |
1 | n.a. | n.a. | 0.09–0.12 | n.a. | [14] | |
2 | n.a. | n.a. | 0.88 | n.a. | [38] | |
Oak | 5 | 1.10–1.35 | 0.13–0.31 | 1.01–1.05 | 0.01–0.03 | [15] |
Orange | 5 | 0.95–1.10 | 1.07–1.32 | 0.02–0.08 | 0.01–0.10 | |
1 | n.a. | n.a. | 0.27–0.61 | n.a. | [14] | |
Pine | 1 | n.a. | n.a. | 14.20 | n.a. | |
Propolis | 2 | n.a. | n.a. | 1.62 | n.a. | [38] |
Rosemary | 5 | 4.88–14.64 | 0.33–0.89 | 0.12–1.17 | <LOD–0.02 | [15] |
Sunflower | 5 | 0.45–0.53 | 3.13–3.77 | 0.31–0.37 | 0.05–0.10 | |
1 | n.a. | n.a. | 1.73 | n.a. | [14] | |
Sulla | 2 | n.a. | n.a. | 0.22 | n.a. | |
Thyme | 5 | 0.14–3.50 | 2.04–3.51 | 0.40–2.12 | 0.02–0.34 | [15] |
1 | n.a. | n.a. | 0.14 | n.a. | [14] | |
Winter savory | 5 | 0.18–1.07 | 0.14–0.23 | 0.26–0.32 | 0.01–0.08 | [15] |
Sample | ABV * (%) | N | TRP | KYN | 3HKyn | KYNA | XA | QA | PIC | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CR (mg/L) | CR (µg/L) | CR (µg/L) | CR (µg/L) | CR (mg/L) | CR (µg/L) | CR (µg/L) | ||||
Beer | 0–7.6 | 6 | 4.8–31.1 | 28.7–86.3 | n.a. | 16.9–52.0 | n.a. | n.a. | n.a. | [18] |
19 | n.a. | n.a. | n.a. | 0.5–5.2 | n.a. | n.a. | n.a. | [11] | ||
Cider | 2.5–13 | 2 | n.a. | n.a. | n.a. | 0.32 | n.a. | n.a. | n.a. | |
Cognac | 40–60 | 1 | n.a. | n.a. | n.a. | 0.06 | n.a. | n.a. | n.a. | |
Liquer | ~15 | 1 | n.a. | n.a. | n.a. | 0.1 | n.a. | n.a. | n.a. | |
Mead | 10–14 | 15 | n.a. | n.a. | n.a. | 9.4–38.1 | n.a. | n.a. | n.a. | |
Red wine | <14 | 7 | n.a. | n.a. | n.a. | 3.3–10.9 | n.a. | n.a. | n.a. | |
4 | 1.0–1.8 | <LOQ | n.a. | 82.4–179.7 | n.a. | n.a. | n.a. | [18] | ||
Vodka | 40–50 | 3 | n.a. | n.a. | n.a. | 0.07–1.6 | n.a. | n.a. | n.a. | [11] |
Whisky | 40–50 | 1 | n.a. | n.a. | n.a. | 0.06 | n.a. | n.a. | n.a. | |
Wine | <14 | 7 | n.a. | n.a. | n.a. | 1.4–4.7 | n.a. | n.a. | n.a. | |
4 | <LOD–8.0 | <LOD–14.8 | <LOD | 1.2–65.0 | n.a | <LOD–307.1 | <LOD–70.2 | [116] | ||
- | n.a. | n.a. | n.a. | n.a. | ~10.0 | n.a. | n.a. | [117] |
Tea/Coffee | Brand/Type | Concentration Range | Ref. | ||||
---|---|---|---|---|---|---|---|
TRP | KYN | KYNA | QA | PIC | |||
Black tea | Ceylon Kenilworth | n.a. | n.a. | 5.25–5.58 µg/mL | n.a. | n.a. | [12] |
Kenya Original GFOP Milima | n.a. | n.a. | 4.99–5.57 µg/mL | n.a. | n.a. | ||
Assam TGFOP 1 Tezpore and Gogra | n.a. | n.a. | 2.95–3.89 µg/mL | n.a. | n.a. | ||
Assam TGFOP 1 Tezpore | n.a. | n.a. | 2.38–3.92 µg/mL | n.a. | n.a. | ||
Pu erh | n.a. | n.a. | 1.90–2.23 µg/mL | n.a. | n.a. | ||
China Huang Jing Cha | n.a. | n.a. | 1.60–2.19 µg/mL | n.a. | n.a. | ||
not specified | 248.0–310.0 mg/kg a | 0.05–0.28 mg/kg a | 0.9–3.4 µg/kg a | n.a. | 0.1–0.25 mg/kg a | [119] | |
Grean tea | Ginkaku Sencha | n.a. | n.a. | 6.58–10.81 µg/mL | n.a. | n.a. | [12] |
Japan Tamaryokucha | n.a. | n.a. | 6.54–8.53 µg/mL | n.a. | n.a. | ||
China Green Yunnan | n.a. | n.a. | 3.57–3.96 µg/mL | n.a. | n.a. | ||
Asairi Houjicha gojobashi | n.a. | n.a. | 3.10–4.32 µg/mL | n.a. | n.a. | ||
Gunpowder Temple of Heaven | n.a. | n.a. | 2.61–3.11 µg/mL | n.a. | n.a. | ||
Che Nhai Dac Biet Jasmine | n.a. | n.a. | 0.46–0.57 µg/mL | n.a. | n.a. | ||
not specified | 39.0–140.0 mg/kg a | 0.07–0.64 mg/kg a | 0.99–3.0 µg/kg a | 0.17–0.32 mg/kg a | n.a. | [119] | |
Herbal tea | Rooibos Origina | n.a. | n.a. | 0.11–0.31 µg/mL | n.a. | n.a. | [12] |
Oolong tea | not specified | 144.0–395.0 mg/kg a | 0.09–0.55 mg/kg a | 0.80–3.40 µg/kg a | 0.17–0.32 mg/kg a | n.a. | [119] |
White tea | Xue Long | n.a. | n.a. | 2.79–3.01 µg/mL | n.a. | n.a. | [12] |
China Pai Mu Tan | n.a. | n.a. | 2.27–2.80 µg/mL | n.a. | n.a. | ||
Yellow tea | China Huang Da Cha | n.a. | n.a. | 2.13–3.67 µg/mL | n.a. | n.a. | |
Ground coffee | Tchibo Family | n.a. | n.a. | 0.31–0.34 µg/mL | n.a. | n.a. | |
Cafe Prima Finezja | n.a. | n.a. | 0.20–0.23 µg/mL | n.a. | n.a. | ||
Douwe Egberts crema silk | n.a. | n.a. | 0.17–0.20 µg/mL | n.a. | n.a. | ||
Tchibo Exclusive 100% Arabica | n.a. | n.a. | 0.06–0.11 µg/mL | n.a. | n.a. | ||
Jacobs Kronung | n.a. | n.a. | 0.08–0.09 µg/mL | n.a. | n.a. | ||
MK Café Premium | n.a. | n.a. | 0.05–0.06 µg/mL | n.a. | n.a. | ||
Instant coffee | Tchibo Exclusive100% Arabica | n.a. | n.a. | 0.53–0.73 µg/mL | n.a. | n.a. | |
Tchibo Gold selection crema | n.a. | n.a. | 0.29–0.34 µg/mL | n.a. | n.a. | ||
Tchibo Family Classic | n.a. | n.a. | 0.26–0.31 µg/mL | n.a. | n.a. | ||
Nescafé Classic | n.a. | n.a. | 0.20–0.25 µg/mL | n.a. | n.a. | ||
Jacobs Cronat Gold | n.a. | n.a. | 0.16–0.22 µg/mL | n.a. | n.a. | ||
Whole-bean coffee | Costa Rican Royal Tarrazu | n.a. | n.a. | 0.03–0.05 µg/mL | n.a. | n.a. | |
Dallmayr Standard 100% Arabica | n.a. | n.a. | 0.02–0.03 µg/mL | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadok, I.; Jędruchniewicz, K. Dietary Kynurenine Pathway Metabolites—Source, Fate, and Chromatographic Determinations. Int. J. Mol. Sci. 2023, 24, 16304. https://doi.org/10.3390/ijms242216304
Sadok I, Jędruchniewicz K. Dietary Kynurenine Pathway Metabolites—Source, Fate, and Chromatographic Determinations. International Journal of Molecular Sciences. 2023; 24(22):16304. https://doi.org/10.3390/ijms242216304
Chicago/Turabian StyleSadok, Ilona, and Katarzyna Jędruchniewicz. 2023. "Dietary Kynurenine Pathway Metabolites—Source, Fate, and Chromatographic Determinations" International Journal of Molecular Sciences 24, no. 22: 16304. https://doi.org/10.3390/ijms242216304
APA StyleSadok, I., & Jędruchniewicz, K. (2023). Dietary Kynurenine Pathway Metabolites—Source, Fate, and Chromatographic Determinations. International Journal of Molecular Sciences, 24(22), 16304. https://doi.org/10.3390/ijms242216304