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Abstract: Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit
ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples
during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcrip-
tome investigations were carried out. These investigations were conducted using pulp samples
collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature
fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones,
coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from
YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs)
and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs
revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid,
and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq
analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid
biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin
metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes
related to the organic acid accumulations were upregulated and downregulated, respectively. Impor-
tantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism
of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the
intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our
understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific
insight into the molecular breeding of pineapples.

Keywords: pineapple; ripening; yellowing; fruit quality; metabolomics; transcriptomics

1. Introduction

Pineapple (Ananas comosus L. Merr.), a member of the Bromeliaceae family, ranks
as the third most commercially significant tropical and subtropical fruit globally, earn-
ing widespread acclaim for its nutritional value [1,2]. Biologically categorized as a non-
climacteric species, pineapple does not undergo a post-ripening process and, post-harvest,
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progressively experiences a decline in quality acceptability. However, pineapple fruit ripen-
ing is accompanied by a gradual increase in respiration and ethylene release, resembling
the behavior of climacteric fruits that undergo transformations in appearance, texture, and
nutrient metabolism [3,4].

As aggregate fruit with a unique ripening profile, understanding the ripening char-
acteristics of pineapple is important from both scientific and market perspectives. The
transition in pulp color from white to yellow is believed to be a complex interplay between
carotenoids and flavonoids, flavonoids being the predominant pigments [5]. The texture
of fleshy fruit, a pivotal quality attribute, not only constitutes a vital component of the
primary cell wall polysaccharide but also significantly contributes to fruit hardness and
overall edibility [6]. Organic acids, which comprise diverse components, play a pivotal
role in regulating fruit flavor. While some aspects of the content and alteration patterns
of organic acids in pineapple fruit have been investigated in detail [7], questions remain
regarding which components change as the fruit matures.

Furthermore, the biosynthesis of phenylpropanoid and phenylpropanoid, along with
organic acid metabolism, coincidentally, three crucial pathways responsive to oxidative
stress, result in subsequent alterations in color, texture, and flavor, driven by the produc-
tion of reactive oxygen species (ROS) during pineapple fruit ripening [8,9]. For instance,
redox mechanisms have been identified as critical in the ripening of the Smooth Cayenne
variety [10]. Antioxidant compounds, such as flavonoids and polyphenols, have also been
extensively investigated in various pineapple cultivars, including Smooth Cayenne, Red
Spanish, MD-2, and Queen, during fruit ripening [11–14], underscoring the association
between ROS derived from plant secondary metabolites and diverse ripening responses.

Despite prior investigations into alterations in cellular lipids, including lipid degra-
dation and peroxidation, during fruit ripening in the ‘Comte de Paris’ cultivar, the chief
pineapple variety cultivated in China, little is known about the molecular events and
metabolites involved in transformations associated with fruit yellowing, softening, and
quality improvement during ripening [15]. Variations in pigments, especially flavonoids
and total phenols, attributed to fruit yellowing have not been comprehensively investi-
gated and need further elucidation. Therefore, the primary objective of this study was to
examine ripening-related physicochemical parameters, including color, phenols, flavones,
lignin, and quality. These findings were subsequently integrated with metabolomics and
transcriptomics to elucidate the corresponding metabolites and genetic factors that govern
fruit ripening. This comprehensive investigation is expected to significantly advance our
understanding of the alterations in fruit color and quality during the fruit ripening process
in ‘Comte de Paris’ pineapples, ultimately offering valuable insights into the molecular
breeding of this fruit.

2. Results
2.1. L*, a*, and b* Values of Peel and Pulp

As illustrated in Figure 1A, noticeable alterations in the morphology of both the peel
and pulp color were observed during the transition from green to yellow, and white to
yellow, respectively, in the fruit’s progression from the YF stage to the FMF stage. Notably,
the L* value of the peel exhibited a prominent increase, whereas the L* value of the pulp
exhibited a significant decrease. These differences in L* values were statistically significant
as the fruit transitioned from YF to FMF, in both the peel and pulp.

Additionally, the values of a* and b* in both the peel and pulp exhibited similar trends,
consistently and significantly increasing as the ripening process advanced, as depicted in
Figure 1B(a–f).
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Figure 1. The changes in appearance (A) and (B) peel color B (a–c), pulp color B (d–f), Total soluble 

solid (Bg) (g), Vitamin C content (Bh) (h), Total acid content (Bi) (i), Total phenol content (Bj) (j), 

Total flavonoids content (Bk) (k), Lignin content (Bl) (l) of pineapple fruit at 18, 19, and 20 weeks 

after floral induction, respectively. Scale bar = 8 cm. Different letters indicate statistically significant 

differences (p ≤ 0.05). 
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Figure 1. The changes in appearance (A) and (B) peel color B (a–c), pulp color B (d–f), Total soluble
solid (Bg) (g), Vitamin C content (Bh) (h), Total acid content (Bi) (i), Total phenol content (Bj) (j), Total
flavonoids content (Bk) (k), Lignin content (Bl) (l) of pineapple fruit at 18, 19, and 20 weeks after floral
induction, respectively. Scale bar = 8 cm. Different letters indicate statistically significant differences
(p ≤ 0.05).
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2.2. Contents of SSC, TA, and Vc in Pulp

The TSS content exhibited a noteworthy increase from the YF to the MF stage, and
a significant difference was observed between these two stages. However, as the fruit
progressed from the MF to FMF stage, there was no substantial change in the TSS content
(Figure 1B(g)).

In contrast, both TA and Vc contents displayed a marked decrease in the MF compared
with the YF, and subsequently, their levels remained relatively stable as the fruit matured
further (Figure 1B(h,i)).

2.3. Contents of Total Phenolic, Total Flavonoids, and Lignin in Pulp

The contents of total phenol and flavonoids displayed a consistent trend, gradually
increasing as the fruit matured. Significant differences were observed between the YF and
MF stages, and between the MF and FMF stages. Consequently, their contents reached
higher levels in the FMF (Figure 1B(j,k)).

Conversely, the accumulation level of lignin exhibited a marked decrease in the YF
compared with the MF. Subsequently, there was a slight increase, with significant differences
detected between the MF and FMF (Figure 1B(l)).

2.4. Differentially Accumulated Metabolites (DAMs) Annotated

To gain deeper insights into the metabolites associated with yellow pigment forma-
tion, softening, and acidity decrease during the ripening process, we re-evaluated the
metabolomics data using YF, MF, and FMF as materials [15]. By conducting a comprehen-
sive comparison of the metabolites in the pulps of these three stages, a total of 167 DAMs
were identified and categorized into various groups. These included 31 lipids, 28 organic
acids, 27 phenylpropanoids, 21 flavonoids, 19 amino acids and derivatives, 10 nucleotides
and derivatives, 10 alkaloids, 5 saccharides and alcohols, 4 vitamins, 3 tannins, and 9 other
unclassified substances (Figure 2A).
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Figure 2. Preliminary analysis of 167 differentially accumulated metabolites (DAMs). (A) Pie chart
of identified types and quantities of metabolites. (B) The red and blue bars indicate the numbers
of upregulated and downregulated DAMs between YF and MF, YF and FMF, and MF and FMF,
respectively.

Furthermore, we quantified the numbers of upregulated and downregulated DAMs
when comparing YF with MF, YF with FMF, and MF with FMF. Subsequently, there were
61 upregulated and 52 downregulated DAMs between the YF and MF stages, 66 upregu-
lated and 51 downregulated DAMs between the YF and FMF stages, and 58 upregulated
and 26 downregulated DAMs between the MF and FMF stages (Figure 2B).

2.5. DAMs Analysis

To further elucidate the characteristics of the 167 DAMs, we conducted a K-means
clustering analysis, which resulted in the creation of six clusters designated as C1–C6.
Notably, clusters C1, C2, and C4 generally exhibited downward trends, whereas clusters
C3, C5, and C6 showed an upward trend during fruit ripening (Figure 3A).

We further analyzed the distribution of metabolites from 11 categories within C1–C6.
Specifically, within the clusters showing an upward trend during fruit ripening (C3, C5,
and C6), 13 flavonoids, 20 organic acids, 16 phenylpropanoids, and 2 vitamins displayed
increasing levels as the fruit matured. Conversely, in the clusters exhibiting a downward
trend (C1, C2, and C4), the levels of 8 flavonoids, 8 organic acids, 11 phenylpropanoids,
and 2 vitamins decreased (Figure 3B).

Furthermore, we conducted a Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of 167 DAMs and performed clustering analysis to assess the changing
trends of enriched pathways in the YF, MF, and FMF stages. This analysis revealed that
pathways such as the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis,
flavone and flavonol biosynthesis, anthocyanin biosynthesis, and ascorbate and aldarate
metabolism were significantly enriched (Figure 3C).



Int. J. Mol. Sci. 2023, 24, 16384 6 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 24 
 

 

 

 

Figure 3. Cont.



Int. J. Mol. Sci. 2023, 24, 16384 7 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 24 
 

 

 

Figure 3. Cont.



Int. J. Mol. Sci. 2023, 24, 16384 8 of 23
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 24 
 

 

 

Figure 3. K-means clustering analysis of DAMs. (A) Six clusters of K-means (designated C1–C6). (B) 

The distribution of different substance categories in the 6 clusters. The table below the histogram 

shows the number of each type of metabolite in different clusters. (C) KEGG enrichment analysis 

for DAMs in the 6 clusters. (D) The top 10 pathways clustering analysis on the change trends of 

DAMs profiles in pineapple fruit from YF, MF, and FMF groups. 

We further analyzed the distribution of metabolites from 11 categories within C1–

C6. Specifically, within the clusters showing an upward trend during fruit ripening (C3, 

C5, and C6), 13 flavonoids, 20 organic acids, 16 phenylpropanoids, and 2 vitamins dis-

played increasing levels as the fruit matured. Conversely, in the clusters exhibiting a 

downward trend (C1, C2, and C4), the levels of 8 flavonoids, 8 organic acids, 11 phe-

nylpropanoids, and 2 vitamins decreased (Figure 3B). 

Furthermore, we conducted a Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis of 167 DAMs and performed clustering analysis to assess the 

changing trends of enriched pathways in the YF, MF, and FMF stages. This analysis re-

vealed that pathways such as the biosynthesis of secondary metabolites, phenylpro-

panoid biosynthesis, flavone and flavonol biosynthesis, anthocyanin biosynthesis, and 

ascorbate and aldarate metabolism were significantly enriched (Figure 3C). 

Figure 3. K-means clustering analysis of DAMs. (A) Six clusters of K-means (designated C1–C6).
(B) The distribution of different substance categories in the 6 clusters. The table below the histogram
shows the number of each type of metabolite in different clusters. (C) KEGG enrichment analysis for
DAMs in the 6 clusters. (D) The top 10 pathways clustering analysis on the change trends of DAMs
profiles in pineapple fruit from YF, MF, and FMF groups.

Taking a closer look at the DAMs involved in the biosynthesis of secondary metabo-
lites, we observed that organic acids such as L-ascorbate, cis-aconitic acid, rosmarinic acid,
sebacate, mandelic acid, suberic acid, and quinic acid O-di-glucuronic acid were degraded
during the ripening of the pineapple fruit. In the DAMs related to flavonoid biosynthesis,
metabolites such as kaempferol 3-O-glucoside, ayanin, apigenin 7-O-glucoside, and petuni-
din 3-O-glucoside, belonging to the flavone and flavonol categories, displayed increasing
trends as the fruit ripened. Conversely, within the DAMs of phenylpropanoid biosynthesis,
phenol compounds, such as cinnamic acid and caffeic acid, steadily accumulated as the fruit
matured. Additionally, three lignin monomers, sinapyl alcohol, ρ-coumaryl alcohol, and
coniferyl alcohol, were identified. Among these, ρ-coumaryl alcohol exhibited a dramatic
accumulation from the MF to FMF stages, coniferyl alcohol reached its highest level in the
FMF stage, and the sinapyl alcohol content continuously decreased during fruit ripening
(Figure 3D).
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2.6. Transcriptome Profiling
2.6.1. Transcriptomics Analysis

To delve into the potential transcriptional modulatory mechanisms governing the
processes of turning yellow and the alteration in fruit quality during pineapple ripening, a
total of nine cDNA libraries were constructed from total RNAs for high-throughput RNA-
seq analysis. After the removal of low-quality reads and adaptor sequences, the resulting
total clean data ranged from 44,474,662 to 72,092,510 for each library, with a retention rate
of 98.37% to 98.83%. The Q20 percentage reached 98.29%, and the GC content was recorded
at 52.67%. Notably, for each library, approximately 62.00% to 75.17% of clean reads were
successfully mapped onto the reference genome (Supplemental Table S2).

Moreover, the principle component analysis (PCA) depicted in Figure 4A reveals
all biological replicates together, demonstrating high consistency between the replicates.
Importantly, substantial differences were observed between the YF and MF stages, YF and
FMF stages, and MF and FMF stages, underscoring the transcriptional variations associated
with fruit ripening.

To further assess the differences in transcriptome profiles between the three stages
(YF, MF, and FMF), we conducted a hierarchical clustering analysis (HCA), which resulted
in the formation of three distinct clusters (Figure 4B). These findings collectively affirm
the reliability of our bioinformatics analysis of our RNA-seq data obtained from different
stages of pineapple fruit ripening.
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2.6.2. DEGs Analysis

Applying a threshold of log2 |Fold Change| ≥1 and FDR < 0.05, the RNA-seq data
analysis identified and annotated a total of 2194 DEGs across the three samples. The
results, as presented in Figure 5A,B, illustrate the number of DEGs resulting from sequence
comparisons between YF and MF, YF and FMF, and MF and FMF, with 989, 1796, and
707 DEGs, respectively. Notably, the largest number of DEGs was observed in the transition
from YF to FMF, followed by YF to MF, and MF to FMF. This suggests that there is a greater
involvement of genes in metabolic regulatory responses during the transition from MF to
FMF than those of YF to MF, and MF to FMF.
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Subsequently, we conducted a K-means analysis of the DEGs, resulting in their cat-
egorization into 10 clusters designated as T1–T10. Among these clusters, T1, T4, T6, T7,
and T10 displayed upward trends in gene expression, while T2, T3, T5, T8, and T9 showed
downward trends (Figure 5C).

Furthermore, we performed a KEGG enrichment analysis for DEGs across the 10 clusters,
revealing a significant distribution of DEGs in pathways related to the biosynthesis of
the secondary metabolites, phenylpropanoid biosynthesis, flavone and flavonol biosyn-
thesis, and ascorbate and aldarate metabolism (Figure 5D). These findings highlight the
involvement of these pathways in the regulatory processes associated with pineapple
fruit ripening.
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Figure 5. Preliminary analysis of 2194 differentially expressed genes (DEGs). (A) The numbers
of upregulated and downregulated DEGs between YF and MF, YF and FMF, and MF and FMF,
respectively. (B) Venn diagrams illustrating the overlap of DEGs revealed via paired comparison
between YF and MF, YF and FMF, and MF and FMF, respectively. (C) Ten clusters of K-means
(designated T1–T10). (D) KEGG enrichment analysis for DEGs in the 10 clusters.
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2.7. WGCNA Analysis and Gene Network Visualization

To delve deeper into the genetic foundations governing the development of yellow
pigment, softening, and acidity changes throughout the fruit ripening process, we employed
WGCNA (version 1.69) to construct unsigned co-expression networks. By leveraging the
identified 2194 DEGs obtained from the comparative analysis between the three stages of
pineapple fruit maturity, we identified six distinct gene expression modules.

Notably, four of these modules, specifically, MEblue, MEyellow, MEturquoise, and
MEgreen, exhibited significant correlations with the changes observed in ripening-related
traits, including total flavonoids content, total phenolic content, lignin levels, Vc content,
and TA (Figure 6A,B). These correlations suggest these gene sets play a pivotal role in
governing the observed alterations in pineapple fruit ripening-related traits.
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2.8. RT-qPCR Validation of DEGs

To validate the accuracy of the RNA-seq data, we conducted an RT-qPCR analysis
of 14 structural genes involved in the biosynthesis of flavonoids and lignin. These genes
include cinnamoyl-CoA reductase (CCR, Aco015695, Aco026870, and Aco005397), cinnamyl
alcohol dehydrogenase (CAD and Aco001032), caffeic acid 3-O-Methyltranferase (COMT,
Aco000946, and Aco000839), 4-coumaroyl CoA ligase (4CL and Aco019975), laccase (LAC
and Aco015409), peroxidase (POD, Aco008456, and Aco002056), flavanone 3-hydroxylase
(F3H and Aco027900), anthocyanidin reductase (ANR and Aco010710), dihydroflavonol
4-reductase (DFR and Aco006769), and glutathione S-transferase (GST and Aco001260).

RNA samples extracted from pineapple pulp tissues at three different ripening stages
served as templates for the RT-qPCR analysis. Correlation analysis revealed that a signifi-
cant correlation coefficient of 0.878 between the RT-qPCR and RNA-seq data was obtained
(Figure 7). This strong correlation suggests that the RT-qPCR results aligned well with the
trends in gene expression levels detected with RNA-seq, providing additional confidence
in the accuracy of the RNA-seq data.
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3. Discussion

In recent decades, the maturation of pineapple fruit has garnered significant attention
because of its complex ripening characteristics, which vary by variety and have considerable
nutritional and commercial value [10,12–14]. Understanding the ripening characteristics of
the ‘Comte de Paris’ pineapple, the dominant cultivar in China, is crucial for regulating
fruit quality and fostering the development of the local pineapple industry.

In our study, the changing patterns of a* and b* values in both the peel and the pulp
closely mirrored the trends in total phenol and flavonoid contents, exhibiting that fruit
yellowing is positively related to phenol and flavonoid accumulations during ripening.
Conversely, the TA and lignin contents displayed similar trends, all significantly decreasing
from the YF stage to the MF stage (Figure 1). These observations are similar to findings
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in other fruits during ripening, such as jujube, strawberries, papaya, and peaches [16–19].
These findings suggest that the accumulation of flavonoids may contribute to pigment
transition, which may be linked to the reduction in the lignin content in cell walls, and
organic acid degradation may explain the decrease in acidity during ripening.

To gain deeper insights into the metabolites associated with fruit ripening, we in-
vestigated variations in metabolites during pineapple fruit ripening. The pineapple fruit
contains a variety of flavonoids that are closely linked to its color characteristics. The
presence of pigments, especially flavonols and flavones, is believed to contribute to the
white-yellow pigmentation of pineapple fruit [20,21]. In our study, we observed a sig-
nificant increase in flavonols, such as ayanin and kaempferol 3-O-glucoside (astragalin),
during fruit ripening, along with flavones, such as chrysoeriol 5-O-hexoside, chrysoeriol O-
hexosyl-O-hexosyl-O-glucuronic acid, acacetin O-acetyl hexoside, apigenin 7-O-glucoside
(cosmosiin), tricin O-malonylhexoside, tricin O-sinapoylhexoside, and nobiletin. Addi-
tionally, other flavanones, including naringenin and hesperidin, as well as anthocyanin
such as petunidin 3-O-glucoside, all exhibited continuous accumulation as fruit ripening
progressed (Figures 3 and 8). These trends were consistent with the observed changes in
fruit color and total flavonoid content. Similar results were observed for flavonoids, and an-
thocyanin presented an upward tendency in Lycium chinense fruit during development [22],
while it has been reported that total flavonoid contents declined in Prunus humilis as fruit
ripening progressed [23]. These findings suggest that flavonoid metabolism is an intri-
cate process, and different fruits possess specific networks in governing the biosynthesis
of flavonoids during ripening. Thus, further research is needed to identify the specific
components that contribute the most to yellow pigmentation.
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blocks represent YF, MF, and FMF, respectively. SPS, sucrose phosphate synthase; APX, ascorbates
peroxidase; ACO, aconitase; PPO, polyphenol oxidase; 4CL, p-coumarate: CoA ligase; CAD, cinnamyl
alcohol dehydrogenase; CCR, cinnamoyl CoA reductase; COMT, caffeic acid O-methyl transferase;
HCT, hydroxycinnamoyltransferase; POD, peroxidase; LAC, laccase; CHI, chalcone isomerase; F3H,
flavanone 3-hydroxylase; DFR, dihydroflavonol-4-reductase; ANR, anthocyanidin reductase; LDOX,
leucoantho-cyanidin dioxygenase; GST, glutathione transferases.
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Fruit texture is closely correlated with lignin content in the secondary cell wall [24,25]. In
this study, we identified three lignin monomers in DAMs: sinapyl alcohol, p-coumaryl
alcohol, and coniferyl alcohol. Sinapyl alcohol exhibited a similar trend to lignin content,
whereas p-coumaryl alcohol and coniferyl alcohol displayed the opposite trend. Con-
currently, phenolic compounds, such as cinnamic acid and caffeic acid, derived from
phenylpropanoid biosynthesis, generally increased as fruit ripening progressed, consistent
with the change in the total phenolic content (Figure 3). These findings suggest that these
compounds play crucial roles in lignin and phenol biosynthesis.

A dramatic drop in the organic acids content from YF to MF was observed in our study.
Although the exact composition of the organic acids was not determined, previous research
has indicated that citric acid is the predominant organic acid in mature pineapple fruit [26–28].
In our study, we identified cis-aconitic acid, which is an intermediate in the conversion of
citric acid to isocitric acid in the tricarboxylic acid cycle, as it significantly changes with fruit
ripening. Ascorbic acid, which participates in the oxidative processes during fruit ripening,
also decreased as fruit ripening advanced [29]. Additionally, mandelic acid, rosmarinic
acid, suberic acid, sebacate, and quinic acid O-di-glucuronic acid significantly decreased,
suggesting that the reduction in TA may be attributed to the decreased contents of these
organic acids during pineapple fruit ripening.

Through our metabolomics and transcriptomics analyses, key genes involved in the
modulations of metabolites, comprising total flavonoids, total phenolic content, lignin, and
organic acids, were characterized.

The biosynthesis of flavonoids has been well documented from a molecular genetic
perspective [30,31]. Chalcone isomerase (CHI) catalyzes the conversion of colorless chal-
cones to flavanone (naringenin). In monocots, naringenin is further metabolized into
flavones by flavone synthase (FNS), where F3H and flavonol synthase (FLS) are required
for the synthesis of dihydroflavonols and flavonols [32]. In some plant tissues such as
fruits, DFR competitively reduces dihydroflavonols to leucoanthocyanidins, which are
then converted to proanthocyanidins by ANR [26]. GST is responsible for transferring
anthocyanins, flavonols, and flavones into the vacuole or cell wall for storage [33,34]. In
our study, nine oxidoreductase genes including FLS (Aco027900), FNS (Aco019006), F3H
(Aco001560 and Aco006882), DFR (Aco006769), ANR (Aco010710), and GST (Aco001260,
Aco013918, Aco005105, and Aco013915), were identified via WGCNA (Figure 6). This
observation is similar to that reported by Luo et al. (2021), who showed that the PsFLSs
and PsF3Hs genes exhibited upregulated expressions in tree peonies during the develop-
mental process [35]. Combining these results, we infer that these structural genes exhibited
significantly and continuously increasing expression during fruit ripening, correlating with
the accumulation of flavones and flavonols, which contribute to pigment formation.

Phenylpropanoid metabolism is closely associated with lignin biosynthesis. In this
pathway, 4-coumaroyl CoA ligase (4CL) catalyzes the formation of activated thioesters
of hydroxycinnamic acids, which enter different branch pathways of phenylpropanoid
metabolism [36]. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT)
is a key metabolic entry point for the synthesis of essential lignin monomers, coniferyl and
sinapyl alcohols, particularly in monocotyledonous plant [37]. COMT methylates caffeic
acid to ferulic acid, whereas CCR and CAD convert CoA ester to alcohol during monolignol
biosynthesis. These monolignols are exported to the cell wall and polymerized into lignin
by POD or depolymerized by LAC [38,39]. In our study, four hydroxycinnamoyl transferase
(HCT) genes were downregulated during fruit ripening, consistent with the accumulation
of p-coumaryl alcohol and the reduction in lignin monomers, coniferyl, and sinapyl alcohols.
The expressions of the screened COMT (Aco017593 and Aco018902), CCR (Aco015695), and
CAD (Aco001032) genes generally showed a decreasing trend, in line with the accumulation
of intermediate phenolic metabolites such as caffeic acid and caffeoyl aldehyde. Addition-
ally, the identified POD genes (Aco008465, Aco021646, Aco015271, Aco002056, Aco004613,
Aco029136, Aco003045, Aco026779, Aco001617, Aco013666, Aco021355, Aco004784, and
Aco021127) and the LAC gene (Aco015409) were downregulated during fruit ripening
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(Figure 8), indicating their potential role in the depolymerization of lignin in the cell wall
as fruit ripening progressed.

Ascorbic acid is known to be oxidized to dehydroascorbic acid during fruit ripening,
a process catalyzed by ascorbic acid oxidase (APX) [10,29,40]. In our study, genes related
to APX (Aco007028) and polyphenol oxidase (PPO and Aco014848) exhibited consistently
increasing expression as fruit ripening progressed, suggesting their involvement in the
oxidation of ascorbic acid. Cis-aconitic acid, an organic acid, is catalyzed by aconitase
(ACO), which converts citric acid to isocitric acid [41]. In our study, the expression of ACO
(Aco009034) gradually decreased (Figure 8), suggesting its potential role in the reduced
accumulation of cis-aconitic acid during pineapple fruit ripening.

Based on these findings, we propose a schematic overview to elucidate the metabolites
and corresponding genes involved in pineapple fruit ripening (Figure 8). Among this
network, the transcript abundance of a series of putative candidate genes associated with
the metabolism of flavonoids, lignin, and organic acids, such as FLS, FNS, F3H, DFR, ANR,
GST, COMT, CCR, CAD, PPO, and ACO, was induced as pineapple fruits matured, and
this effect likely contributed to the increasing phenols and flavonoids contents, decreasing
lignin and total acid, thus causing fruit yellowing, coupled with quality alterations.

4. Materials and Methods
4.1. Plant Materials and Sampling

Pineapple (Ananas comosus cv. ‘Comte de Paris’) fruits, carefully selected for their
absence of defects and mechanical damage, were procured from a commercial orchard
in Xuwen county (20◦34′ N; 110◦17′ E), Zhanjiang city, Guangdong province, China, in
September 2018. These fruits were swiftly transported to the laboratory within a two-hour
timeframe. A total of 120 fruits were used in this experiment, meticulously chosen to repre-
sent three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature
fruit (FMF), which were harvested after floral induction at 18, 19, and 20 weeks, respectively,
from the same commercial plantation, with 40 fruits allocated to each stage. The definition
of the maturity stage followed the criteria established in our previous study [15]. To ensure
robustness, three replicate samples were meticulously prepared for each biological sample,
with 12 fruits sampled from each replicate to assess the physiological parameters. Fruit
pulp weighing 20.0 g was collected following the methodology outlined in our previous
work [42] and stored at −80 ◦C for subsequent assessments.

4.2. Evaluation of the Color Changes in Fruit

The color-related parameters, including L* (representing lightness), a* (indicating
the transition from green to red), and b* (indicating the shift from blue to yellow) were
measured using a high-precision colorimeter (HP-C210, Shanghai, China). To assess L*,
a*, and b*, at least nine fruits at each ripening stage were halved longitudinally along
the equator of the peel and pulp. At this juncture, three distinct points were selected for
each parameter, and readings for L*, a*, and b* were recorded. For each pineapple, three
readings were captured for each color-related parameter, ensuring robust and reliable
measurements.

4.3. Measurements of Contents of Soluble Solids, Titratable Acid, and Vitamin C in Pulp

The total soluble solids content (TSS) was analyzed using a handheld PAL-1(B625333)
device (ATAGO, Tokyo, Japan), and the values were expressed in degrees Brix.

For the titratable acid (TA) determination, we followed the acid–base titration method
outlined by Li et al. [43]. Briefly, 3 g of frozen pulp powder was dissolved in 30 mL of
distilled water and then heated to 80 ◦C for 30 min. After centrifugation at 4000× g for
15 min, 10 mL of the supernatant was titrated with 0.1 mol L−1 of NaOH, and the titration
volume was recorded. The resulting data were expressed as the percentage of citric acid.

To determine the vitamin C (Vc) content, we employed a titration method utilizing
2,6-dichlorophenol indophenols following the procedure described by Hou et al. [44]. In
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short, 3 g of frozen pulp tissue was ground in 25 mL of 2% oxalic acid solution on ice,
followed by centrifugation at 4000× g at 4 ◦C for 15 min. The supernatant was then titrated
with 2,6-dichlorophenol indophenol, and the results were expressed as grams per kilogram
(g kg−1) of fresh weight (FW).

4.4. Extractions and Assays of Contents of Total Phenolic, Total Flavonoids, and Lignin in Pulp

The total phenolic content was determined using the Folin–Ciocalteu method, as
outlined by Zhou et al. [45], with slight modification. In brief, 0.5 g of frozen pulp tissue
was homogenized in 80% (v/v) methanol for 2 h and subsequently centrifuged at 10,000× g
for 15 min. The supernatant solution was collected for the analysis of total phenolic and
flavonoid contents. A mixture consisting of 0.5 mL of the supernatant, 2 mL of Folin–
Ciocalteu reagent, and 2 mL of 7.5% (w/v) Na2CO3 was incubated at 50 ◦C for 5 min. The
absorbance was measured at 760 nm, and the results were expressed as grams of gallic acid
equivalent per kilogram (g of gallic acid equivalent kg−1) of FW.

The total flavonoid content was determined using the aluminum nitrate method, as
described by Zhou et al. [45]. In summary, 3 mL of supernatant, 0.5 mL of 5% (w/v) NaNO2,
and 0.5 mL of 10% (w/v) AlNO3 were mixed. After 5 min, 1 mL of 1 mol L−1 NaOH was
added. The absorbance was measured at 510 nm, and the results were calculated based on
a standard curve and defined as g rutin kg−1 FW.

To determine lignin content, a modified version of the procedure described by Morri-
son [46] was employed. Approximately 5 g of pulp tissue powder was mixed with 95%
pre-cooled ethanol and then centrifuged at 12,000× g for 30 min at 4 ◦C, and this process
was repeated four times. Sediment was collected and dried overnight at 70 ◦C. Subse-
quently, 0.1 g of residue was dissolved in 1 mL of 25% (v/v) acetyl bromine–acetic acid,
and the solution was incubated at 70 ◦C for 30 min. After cooling on ice, the reaction was
terminated with 1 mL of 2 mol L−1 NaOH, followed by the addition of 2 mL of glacial acetic
acid and 0.1 mL of 7.5 mol L−1 hydroxylamine hydrochloride (7.5 mL). After centrifugation
at 12,000× g and 4 ◦C for 10 min, the absorbance was measured at 280 nm. The lignin
content was then calculated against the standard curve and expressed as g.kg−1 of FW.

4.5. RNA Extraction, Illumine Sequencing, and Transcriptomics Data Analysis

Total RNA was meticulously extracted from three biological replicates of pulp tissues
representing three distinct ripening stages, following the manufacturer’s instructions, using
a Quick RNA isolation kit (Huayueyang, Beijing, China). RNA quality was comprehen-
sively assessed using a 2100 Bioanalyzer RNA Nanochip (Agilent, Santa Clara, CA, USA).
To confirm RNA integrity, electrophoresis was performed on formaldehyde-containing
1.5% (w/v) agarose gels.

For the library preparation, all procedures were performed in strict accordance with
the manufacturer’s guidelines provided with the Truseq2 RNA sample prep Kit acquired
from Illumina, Inc. San Diego, CA, USA. Raw data were acquired using the Illumina
HiSeq TM2000 platform and subsequently aligned to the pineapple reference genome using
HISAT2.

To identify differentially expressed genes (DEGs) in the samples, transcript abundance
was estimated using the fragments per kilobase of exon per million mapped reads method.
Statistically significant DEGs were identified based on the criteria of false discovery rate
(FDR) ≤ 0.05, |log2ratio| ≥ 1. A K-means cluster analysis was carried out using the R
package, and an enrichment analysis of the DEGs was performed using a hypergeometric
distribution test. Gene expression patterns were visualized and presented using TBtools.

4.6. Weighted Gene Co-Expression Network Analysis and Gene Network Visualization

A total of 2194 DEGs were employed to construct unsigned co-expression networks
using the weighted gene co-expression network analysis (WGCNA) tool, version 1.69 [47].
The following parameters were applied: a power of 14, a maximum module size of 5000, a
minimum module size of 30, and a merge height of 0.25. For each module, the eigengene
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value was calculated and subsequently used to assess correlations with ripening properties
including L*, a*, b*, total phenolic content, total flavonoid content, lignin content, TSS, Vc
content, and TA. The co-expression diagram was visually represented using Cytoscape,
version 3.8.1.

4.7. Quantitative Real-Time PCR (RT-qPCR) Verification

Total RNA isolation and cDNA synthesis were performed following a previously
described method [42]. A total of fourteen DEGs, which were screened for RT-qPCR, with
three biological replicates to verify expression levels, were involved in the biosynthesis
of flavonoids and lignin. Acactin (HQ148720) was used as an endogenous reference gene,
and gene-specific primer sequences are shown in Supplemental Table S1. The relative
expressions of these candidate genes were determined using the 2−∆∆CT method following
the approach outlined by Livak and Schmittgen [48].

4.8. Statistics

Statistics analysis was performed using one-way analysis of variance (ANOVA) with
SPSS (version 16.0, Chicago, IL, USA). The data were presented as the means ± standard
error derived from three independent replicates. Statistically significant differences were
assessed using the least significant difference test, with the significance set at p < 0.05.

5. Conclusions

The data presented in this study revealed significant changes in pineapple ripening.
The metabolomic analyses demonstrated that an increased accumulation of flavonoids
(ayanin, kaempferol 3-O-glucoside, chrysoeriol 5-O-hexoside, chrysoeriol O-hexosyl-O-
hexosyl-O-glucuronic acid, acacetin O-acetyl hexoside, apigenin 7-O-glucoside, tricin O-
malonylhexoside, tricin O-sinapoylhexoside, nobiletin, naringenin, and hesperidin), a
reduction in lignin (sinapyl alcohol), and the degradation of organic acids (cis-aconitic acid,
mandelic acid, rosmarinic acid, suberic acid, sebacate, and quinic acid O-di-glucuronic
acid) might be attributed to yellow pigment, softening, and a decrease in acidity as the
fruit ripened. Based on the integration of metabolomic and transcriptomic data, a se-
ries of putative candidate genes associated with the metabolisms of flavonoids, lignin,
and organic acids including FLS (Aco027900), FNS (Aco019006), F3H (Aco001560 and
Aco006882), DFR(Aco006769), ANR(Aco010710), GST (Aco001260, Aco013918, Aco005105,
and Aco013915), COMT (Aco017593 and Aco018902), CCR (Aco015695), CAD (Aco001032),
POD genes (Aco008465, Aco021646, Aco015271, Aco002056, Aco004613, Aco029136, Aco003045,
Aco026779, Aco001617, Aco013666, Aco021355, Aco004784, and Aco021127), LAC (Aco015409),
APX (Aco007028), PPO (Aco014848), and ACO (Aco009034) are inferred to play crucial
roles in regulating the changes in fruit color and quality during pineapple ripening. The
insights gained from this study will contribute to a better understanding of the molecular
mechanisms underlying these ripening processes.
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