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Abstract: Senescent cells secrete inflammatory proteins and small extracellular vesicles (sEVs),
collectively termed senescence-associated secretory phenotype (SASP), and promote age-related
diseases. Epigenetic alteration in senescent cells induces the expression of satellite II (SATII) RNA,
non-coding RNA transcribed from pericentromeric repetitive sequences in the genome, leading to
the expression of inflammatory SASP genes. SATII RNA is contained in sEVs and functions as an
SASP factor in recipient cells. However, the molecular mechanism of SATII RNA loading into sEVs is
unclear. In this study, we identified Y-box binding protein 1 (YBX1) as a carrier of SATII RNA via mass
spectrometry analysis after RNA pull-down. sEVs containing SATII RNA induced cellular senescence
and promoted the expression of inflammatory SASP genes in recipient cells. YBX1 knockdown
significantly reduced SATII RNA levels in sEVs and inhibited the propagation of SASP in recipient
cells. The analysis of the clinical dataset revealed that YBX1 expression is higher in cancer stroma
than in normal stroma of breast and ovarian cancer tissues. Furthermore, high YBX1 expression
was correlated with poor prognosis in breast and ovarian cancers. This study demonstrated that
SATII RNA loading into sEVs is regulated via YBX1 and that YBX1 is a promising target in novel
cancer therapy.
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1. Introduction

Cellular senescence is a state in which the cell cycle is irreversibly arrested, pre-
venting abnormal cell proliferation caused by the activation of oncogenes [1]. There-
fore, cellular senescence inhibits cancer development. Conversely, senescent cells secrete
senescence-associated secretory phenotype (SASP) factors, including inflammatory cy-
tokines, chemokines, matrix-degrading enzymes, growth factors, and extracellular vesi-
cles (EVs), which affect surrounding cells, leading to age-related diseases, including can-
cers [2–7]. Recent studies reported that cellular senescence is induced in normal cells,
cancer-associated fibroblasts (CAFs), and a part of cancer cells in the cancer microenviron-
ment [1,2,8–12].
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The expression of inflammatory SASP genes is induced by the activation of some
transcription factors such as nuclear factor-kappa B (NF-κB) and CCAAT/enhancer binding
protein beta (C/EBPβ). Furthermore, epigenomic alteration is also implicated in the
expression of SASP factors in senescent cells. We recently found that the DNA structure of
the satellite II (SATII), repetitive sequences in the pericentromeric region of chromosomes,
is changed during cellular senescence and non-coding RNA transcribed from the SATII
region bound to CCCTC-binding factor (CTCF) [13,14]. Therefore, SATII RNA inhibits the
function of CTCF and changes the chromatin interactions in some SASP gene loci, resulting
in the expression of inflammatory SASP genes.

Mammalian cells secrete EVs of various sizes that act as intercellular communication
tools [15,16]. EVs transmit proteins, lipids, nucleic acids, and metabolites to surrounding
cells and induce phenotype changes such as cancer development [17–19].

We demonstrated that the secretion of small EVs (sEVs) is dramatically activated in
senescent cells compared to normal cells [7,20–22]. Moreover, SATII RNA in sEVs from
senescent cells enhances chromosomal instability and the expression of inflammatory genes
in recipient cells [13,14]. Since SATII RNA expression is upregulated in most cancer and
senescent stromal cells in the cancer microenvironment, SATII RNA in sEVs may contribute
to the malignant phenotype of cancers.

A previous report demonstrated that major satellite RNA, the mouse orthologue of
pericentromeric SATII RNA, binds to Y-box binding protein (YBX1) and inhibits YBX1-
mediated DNA repair, thereby contributing to cancer progression [23]. YBX1 is a multifunc-
tional protein that binds DNA, RNA, and proteins and is involved in various intracellular
functions such as transcriptional regulation and cell proliferation [24]. It also transports var-
ious ncRNAs into sEVs [25–27]. However, it is not clear whether SATII RNA is transferred
into sEVs via YBX1 in senescent cells.

In this study, we identified YBX1 as the agent of SATII RNA uptake into sEVs. YBX1
knockdown decreased SATII RNA levels in sEVs secreted from senescent cells. Furthermore,
these sEVs had a lower ability to induce SASP in recipient cells. These results suggest that
YBX1 contributes to cancer malignancy by regulating SATII RNA loading into sEVs in the
cancer microenvironment.

2. Results
2.1. YBX1 Selectively Binds to SATII RNA

In previous our study, SATII RNA function that binds and inhibits CTCF was revealed
using SVts-8 [13]. We performed a mass spectrometry analysis of binding proteins after the
RNA pull-down of SATII RNA using lysates of SVts-8 cells to identify proteins involved
in the translocation of SATII RNA to sEVs (Figure 1A). Gene ontology (GO) term analysis
showed that RNA-binding proteins were significantly enriched (Figure 1B). Among the
top 20 enriched RNA-binding proteins, YBX1, heterogeneous nuclear ribonucleoprotein A
(HNRNPA), and heterogeneous nuclear ribonucleoprotein K (HNRNPK) were detected,
which have been associated with sEVs (Figure 1C). YBX1 specifically binds to major satellite
RNA, the mouse orthologue of pericentromeric non-coding RNA [23]. Based on this previ-
ous knowledge, we, therefore, further investigated YBX1. SATII RNA is transcribed from
repetitive sequences located in the pericentromere region, while SATα RNA is transcribed
from repetitive sequences located in the centromere of the genome. Therefore, we set SATα
RNA as the control. Western blot analysis after RNA pull-down demonstrated that SATII
RNA, but not SATα RNA, bound to YBX1 in both nuclear and cytoplasmic fractions of
lysates from SVts-8 cells (Figure 1D). These results suggest that YBX1 binds selectively to
SATII RNA.
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The SATII RNA-binding proteins were eluted and analyzed via mass spectrometry. (B) Gene ontol-

ogy (GO) term analysis of SATII RNA binding proteins. (C) List of the top 20 RNA-binding proteins 

identified using the GO term analysis of SATII RNA-binding proteins. (D) SVts-8 cells were sepa-

rated into nuclear and cytoplasmic fractions. Western blot analysis was performed after RNA pull-

down by SATα RNA or SATII RNA using each fraction. 
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Figure 1. SATII RNA selectively binds to YBX1. (A) Overview of sample preparation. RNA pull-
down was performed using the whole cell lysates of SVts-8 cells and biosynthesized SATII RNA. The
SATII RNA-binding proteins were eluted and analyzed via mass spectrometry. (B) Gene ontology
(GO) term analysis of SATII RNA binding proteins. (C) List of the top 20 RNA-binding proteins
identified using the GO term analysis of SATII RNA-binding proteins. (D) SVts-8 cells were separated
into nuclear and cytoplasmic fractions. Western blot analysis was performed after RNA pull-down
by SATα RNA or SATII RNA using each fraction.

2.2. YBX1 Incorporates SATII RNA into sEVs

To confirm whether YBX1 is involved in the translocation of SATII RNA into sEVs, we
prepared two types of senescent cells, X-ray irradiation-induced senescence (IR) in retinal
pigment epithelial-1 (RPE-1) cells and doxorubicin (DXR)-induced senescence in IMR-90
cells. Senescence induction was confirmed via senescence-associated β-galactosidase (SA-
β-gal) staining. SA-β-gal positive cells significantly increased with IR or DXR treatment
(Figures 2A and S1A). In addition, we observed a decrease in the levels of laminB1 gene
(LMNB1) mRNA and an increase in the RNA levels of CDKN1A and SATII RNA levels in
senescent cells, as previously reported (Figures 2B and S1B) [13]. Interestingly, YBX1 expres-
sion was upregulated in senescent cells (Figure 2B). We also detected the increased expres-
sion of SASP-related genes such as IL-1A (Interleukin-1 alpha), IL-1B (Interleukin-1 beta),
IL-6 (Interleukin-6), IL-8 (Interleukin-8), and INFB1 (Interferon-beta 1) (Figures 2B and S1B).
The percentage of cells showing co-localization of the DNA damage markers γH2AX and
pST/Q increased after induction of cellular senescence (Figures 2C and S1C).
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γH2AX (red), pST/Q (green), and 4′,6-diamidino-2-phenylindole (blue) in control and IR cells. The 
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knockdown (Figure 3D). These data indicate that YBX1 knockdown had no effect on the 

number, size, or shape of the particles. Finally, to verify the selectivity of SATII RNA 

Figure 2. Cellular senescence was induced via X-ray irradiation in RPE-1 cells. (A) RPE-1 cells
were irradiated at 40 Gy X-ray and incubated for 10 days to induce cellular senescence. Senescence-
associated β-galactosidase (SA-β-gal) staining of control and X-ray–induced senescent cells (IR). The
bar graphs indicate the percentage of SA-β-gal–positive cells. Results represent the mean ± standard
deviation (SD). Scale bar = 100 µm. (B) Relative RNA levels of LMNB1, CDKN1A, IL1A, IL1B, IL6,
IL8, INFB1, and SATII RNA in control and IR cells. Relative quantitation data represent the mean
± SD normalized to actin β. (C) Immunofluorescence staining of DNA damage response markers
γH2AX (red), pST/Q (green), and 4′,6-diamidino-2-phenylindole (blue) in control and IR cells. The
bar graphs indicate the percentage of nuclei containing more than two positive foci for both γH2AX
and pST/Q staining from at least 100 cells per condition for three independent experiments. Scale
bar = 10 µm. Results represent the mean ± SD. p-Values were calculated via unpaired two-tailed
Student’s t-test in all panels.

We performed YBX1 knockdown on these senescent cells and confirmed that the ex-
pression levels of YBX1 mRNA and protein amount were significantly reduced
(Figures 3A,B and S2A,B). Next, we verified the characteristic changes of sEVs via YBX1
knockdown. The number and particle size of sEVs derived from YBX1 knockdown or
control cells were measured using a nanoparticle analyzer, and no significant differences
were found (Figures 3C and S2C). Immunoelectron microscopy using an anti-CD63 anti-
body, one of the sEVs markers, revealed no differences in the particle shape of sEVs on
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YBX1 knockdown (Figure 3D). These data indicate that YBX1 knockdown had no effect on
the number, size, or shape of the particles. Finally, to verify the selectivity of SATII RNA
incorporation into sEVs by YBX1, the incorporation of SATII RNA or SATα RNA into sEVs
was examined via real-time quantitative polymerase chain reaction (PCR). The amount of
SATII RNA in sEVs decreased after the YBX1 knockdown, but the amount of SATα RNA in
sEVs did not show any significant changes (Figures 3E and S2D). These results suggest that
YBX1 regulates SATII RNA incorporation into sEVs regardless of the cell type or senescence
induction pathway.
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Figure 3. YBX1 knockdown reduced loads of SATII RNA in small extracellular vesicles (sEVs).
(A) Relative mRNA levels of YBX1 in siRNA control (siCtrl) and YBX1 knockdown RPE-1 cells were
measured by reverse transcription-quantitative polymerase chain reaction. Relative quantitation
data represent the mean ± standard deviation (SD) normalized to actin β. (B) Western blot analysis
of whole cell lysate of siCtrl and YBX1 knockdown RPE-1 cells. Tubulinα (Tubα) was used as the
loading control. (C) Nanoparticle tracking analysis for quantitative measurement of sEVs collected
from siCtrl or YBX1 knockdown cells. (D) Immunoelectron microscopy with anti-CD63 antibody
for measuring the particle size and shape of sEVs collected from YBX1 knockdown cells. Scale
bar = 100 nm. (E) Ratio of the amount of SATII RNA and SATα RNA contained in sEVs divided
by the amount contained in whole cells under treatment with YBX1 or control siRNA. Relative
quantitation data represent the mean± SD. p-Values were calculated via one-way analysis of variance
with Dunnett’s multiple comparisons test in panels (A,E).

2.3. Small EVs Derived from Senescent Cells Promote Senescent Phenotypes in Normal Cells via
SATII RNA Transferred by YBX1

To determine the functions of sEVs containing SATII RNA translocated via YBX1 on
surrounding cells, we examined the effects of sEVs collected from YBX1 knockdown or
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control conditions (Figure 4A). First, we found that the number of SA-β-gal–positive cells
increased in the cells treated with sEVs collected from X-ray-induced senescent RPE-1 cells
compared with the cells treated with the phosphate-buffered solution (PBS) (Figure 4B).
Moreover, sEVs collected from YBX1 knockdown cells significantly decreased the number
of SA-β-gal-positive cells compared with sEVs collected from siCtrl cells (Figure 4B). Next,
sEVs collected from X-ray-induced senescent RPE-1 cells were added to proliferating RPE-
1 cells to assess the expression of SASP factors. We found that the expression of these
inflammatory SASP factors (IL1A, IL1B, IL6, IL8, and INFB1) increased in the cells treated
with sEVs collected from senescent cells but not in the cells treated with PBS (Figure 4C).
However, inflammatory gene expression was significantly decreased in the cells treated
with sEVs derived from YBX1 knockdown cells (Figure 4C). These results indicate that
YBX1 regulates the promotion of senescent phenotypes in normal recipient cells via SATII
RNA transportation into sEVs.
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control (siCtrl) or YBX1 knockdown conditions were added to proliferating RPE-1 cells.
(B) Senescence-associated β-galactosidase (SA-β-gal) staining of the cells upon the addition of
sEVs collected from siCtrl or YBX1 knockdown cells to proliferating RPE-1 cells. The bar graphs
indicate the percentage of SA-β-gal–positive cells. Results represent the mean ± standard deviation
(SD). Scale bars = 100 µm. (C) Relative RNA levels of SATII RNA, IL1A, IL1B, IL6, IL8, and INFB1
in recipient cells. Relative quantitation data are expressed as mean ± SD normalized to actin β.
p-Values were calculated via one-way analysis of variance with Dunnett’s multiple comparisons test
in panels (B,C).

2.4. YBX1 Expression Correlates with Poor Cancer Prognosis

SATII RNA is involved in malignant transformation in cancer [13,14]. Therefore, we
analyzed the expression of YBX1, which is responsible for the sEVs-mediated secretion
of SATII RNA to the extracellular matrix, using datasets on breast and ovarian cancers.
Interestingly, microarray data (GSE4823, GSE40595 [28,29]) showed that YBX1 expression
in breast and ovarian cancer stromal tissues was higher than that in normal stromal tissues
(Figure 5A). Furthermore, clinical data from The Cancer Genome Atlas (TCGA) database
showed that breast and ovarian cancer patients with high YBX1 expression showed poor
prognosis with shorter recurrence-free survival. These data strongly suggest the involve-
ment of YBX1 in cancer pathogenesis (Figure 5B).
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Figure 5. Expression levels of YBX1 in breast and ovarian cancer tissues. (A) YBX1 mRNA levels in
normal and tumor stromal tissues in breast and ovarian cancer specimens. The left boxplot shows
YBX1 mRNA expression in normal breast stroma (n = 13) and breast cancer stroma (n = 13). The right
boxplot shows YBX1 mRNA expression in normal ovarian stroma (n = 8) and ovarian cancer stroma
(n = 13). p-Values were calculated using Wilcoxon test. (B) Evaluation of differences in recurrence-free
survival associated with different YBX1 expression levels in breast and ovarian cancer specimens. The
clinical data GSE25066 (breast cancer samples) and GSE30161 (ovarian cancer samples) were analyzed
using Kaplan–Meier plotter (https://kmplot.com/analysis/, accessed on 5 September 2023).
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3. Discussion

In this study, we found that YBX1 selectively regulates SATII RNA incorporation into
sEVs in senescent cells (Figure 6). We demonstrated that YBX1 selectively binds to SATII
RNA but not to SATα RNA in a sequence-dependent manner [30]. However, SATII RNA
does not have YBX1 binding sequences. Further investigation is warranted to understand
the binding mechanism of YBX1 to SATII RNA.
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Figure 6. Graphic abstract for this study. YBX1 incorporates SATII RNA into sEVs in senescent cells.
These sEVs promote cellular senescence of surrounding recipient cells in the cancer microenvironment.
This phenotype may lead to cancer progression such as tumor recurrence and metastasis. This figure
was created with BioRender.com.

Our data show that sEVs addition collected from YBX1 knockdown cells dampens
the upregulation of SASP gene expression such as IL-1α, IL-6, and IL-8. IL-1α enhances
cancer progression by upregulating the expression of the SASP factor [31,32]. IL-6 is an
SASP factor that causes EMT-like gene expression and drug resistance in surrounding cells,
leading to cancer progression [33–36]. IL-6 and IL-8 induce EMT and stem-like features in
surrounding cells [37,38]. Recent studies are underway in investigating the suppression of
age-related diseases by inhibiting the secretion of SASP factors (senomorphics) or inducing
selective cell death of senescent cells (senolytics) [39–42]. In addition, sEVs secreted from
senescent stromal and cancer cells contribute to cell-autonomous carcinogenesis and tumor
promotion in the cancer microenvironment [6,43,44]. sEVs containing SATII RNA cause
chromosomal instability and inflammatory gene expression in surrounding normal cells
and affect scaffold-independent growth [11]. Therefore, the inhibition of SATII RNA
contained in sEVs may suppress malignant cancer progression. SATII RNA in sEVs induces
the senescence of surrounding normal and cancer cells and promotes the secretion of
tumorigenic SASP proteins such as IL-6 [7,45]. The propagation mechanism of the senescent
phenotype via sEVs observed in this study may upregulate the negative effects of SASP on
cancer cells. Our data from the clinical data analysis demonstrate that YBX1 expression
is significantly higher in cancer stromal tissues (Figure 5A). Other investigations have
shown that YBX1 is highly expressed in various cancer types, including non-small cell
lung cancer and colorectal cancer [46–48]. Moreover, re-analysis of the database revealed
that high YBX1 expression is associated with poor prognosis in human breast and ovarian
cancers (Figure 5B), suggesting that YBX1 promotes cancer progression via sEVs containing
tumorigenic SATII RNA. Further analysis is needed to clarify the involvement of YBX1
in the pathogenesis of sEVs derived from senescent stromal cells. In summary, targeting
YBX1 may inhibit SATII RNA expression in sEVs secreted from senescent stromal cells and
provide a novel therapeutic strategy for cancer treatment.

4. Materials and Methods
4.1. Cell Culture

RPE-1 cells were obtained from clonetech (Tokyo, Japan) [13], and IMR-90 cells were
obtained from ATCC (Manassas, VA, USA). RPE-1 and IMR-90 cells were cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM; Nacalai Tesque, Kyoto, Japan) supplemented
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with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Sigma-Aldrich, St.
Louis, MO, USA) at 37 ◦C. SVts-8 cells were cultured in DMEM (Nacalai Tesque) supple-
mented with 10% FBS and 1% penicillin/streptomycin (Sigma-Aldrich) at 34 ◦C [49].

4.2. Cellular Senescence Induction

To induce cellular senescence via X-ray, RPE-1 cells were irradiated at 40 Gy using the
CP-160 X-ray system (Gulmay, England, UK). After irradiation, RPE-1 cells were plated
at a density of 4000 cells cm2 and were not passaged for 10 days after irradiation. IMR-90
cells were plated at a density of 4000 cells cm2 and treated with 200 ng/mL DXR to induce
cellular senescence the next day. These cells were not passaged for 11 days after treatment.

4.3. RNA Interference

RNA interference was performed via transfection of siRNA oligos with Lipofec-
tamine™ RNAiMAX transfection reagent (13778075; Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol. The sequences of siRNA oligos are as
follows: siCtrl, GCGCUUGUAGGAUUCG; siYBX1 #1, GAGAGACUGGAGUUGA; siYBX1
#2, GCGGAGGCAGCAAAUGUUA.

4.4. Reverse Transcription Quantitative PCR

Total RNA was extracted from cultured cells using the mirVana miRNA Isolation Kit
(AM1561; Thermo Fisher Scientific) and treated with TURBO DNase (AM2238; Thermo
Fisher Scientific) to remove genome DNA. Extracted RNA was subjected to reverse tran-
scription using the PrimeScript RT reagent kit (RR037A; TaKaRa Bio Inc., Tokyo, Japan).
Reverse transcription quantitative PCR (RT- qPCR) was performed on the StepOnePlus
PCR system (Applied Biosystems, Bedford, MA, USA) using SYBR Premix Ex Taq (RR820A,
TaKaRa Bio Inc.). The PCR primer sequences used were as follows; human actin β,
5′-AGAGCTACGAGCTGCCTGAC-3′ (forward) and 5′-AGCACTGTGTTGGCGTACAG-
3′ (reverse); human LMNB1, 5′-GGGAAGTTTATTCGCTTGAAGA-3′ (forward) and 5′-
ATCTCCCAGCCTCCCATT-3′ (reverse); human CDKN1A, 5′-TCAGGGTCGAAAACGGCG-
3′ (forward) and 5′-AAGATCAGCCGGCGTTTGGA-3′ (reverse); human SATII RNA, 5′-
AATCATGGAATGGTCTCGAT-3′ (forward) and 5′-ATAATTCCATTCGATTCCA-3′ (re-
verse); human IL-1α, 5′-AACCAGTGCTGCTGAAGGA-3′ (forward) and 5′-TTCTTAGTGC
CGTGAGTTTCC-3′ (reverse); human IL-1β, 5′-CTGTCCTGCGTGTTGAAAGA-3′ (forward)
and 5′-TTGGGTAATTTTTGGGATCTACA-3′ (reverse); human IL-6, 5′-CCAGGAGCCCAG
CTATGAAC-3′ (forward) and 5′-CCCAGGGAGAAGGCAACTG-3′ (reverse); human IL-8,
5′-AAGGAAAACTGGGTGCAGAG-3′ (forward) and 5′-ATTGCATCTGGCAACCCTAC-3′

(reverse); human INFB1, 5′-ACGCCGCATTGACCATCTAT-3′ (forward) and 5′-GTCTCATT
CCAGCCAGTGCT-3′ (reverse); human YBX1, 5′-GGAGTTTGATGTTGTTGAAGGA-3′

(forward) and 5′-AACTGGAACACCACCAGGAC-3′ (reverse); human SATα RNA, 5′-
AAGGTCAATGGCAGAAAAGAA-3′ (forward) and 5′-CAACGAAGGCCACAAGATGTC-
3′ (reverse).

4.5. RNA Pull-Down Assay

RNA pull-down assays were performed using the RiboTrap Kit (#RN1011/RN1012;
MBL, Tokyo, Japan) according to the manufacturer’s instructions. Briefly, 5-bromo-UTP
was randomly incorporated into hSATα and hSATII RNA during transcription using a
vector containing full-length RNA as the template. Next, anti-BrdU antibodies conjugated
with Dynabeads Protein G (#10004D; Thermo Fisher Scientific) were bound to the RNA
synthesized in vitro and incubated with SVts-8 cell lysates or RPE-1 cell lysates overnight
at 4 ◦C. Finally, samples were washed, eluted, and subjected to Western blot analysis.

4.6. Mass Spectrometry

RNA pull-down samples were reduced via incubation with 1× Laemmli sample buffer
containing 10 mM TCEP for 10 min at 100 ◦C. Alkylation with 50 mM iodoacetamide for
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45 min at room temperature was followed by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE). Electrophoresis was stopped at a distance of 2 mm from the
top of the separation gel. The gel was stained with Coomassie Brilliant Blue, and the protein
bands were cut out. The protein bands were then de-stained and cut prior to in-gel digestion
in Trypsin/Lys-C Mix (Promega, Tokyo, Japan) for 12 h at 37 ◦C. Peptides were extracted
from the gel fragments and analyzed with the Orbitrap Fusion Lumos Mass Spectrometer
(Thermo Scientific) and UltiMate 3000 RSLC nano-flow HPLC (Thermo Scientific). Tandem
mass spectrometry spectra were matched against the SwissProt Homo sapiens protein
sequence database using Proteome Discoverer 2.2 (Thermo Scientific). Peptide identification
filters were set to a false discovery rate < 1%. GO analysis was performed using David
(https://david.ncifcrf.gov/home.jsp; accessed on 6 October 2023).

4.7. Western Blot Analysis

For Western blot, cells were incubated in lysis buffer (10 mM Tris-HCl [pH 7.5], 140 mM
NaCl, 1 mM EDTA, 1% TritonX-100, 0.1% SDS, and 10 mM β-glycerophosphate) containing
1% protease inhibitor cocktail (25955-11; Nacalai Tesque). Protein concentrations were
determined using the Pierce™ BCA Protein Assay Kit (#23225; Thermo Fisher Scientific),
separated by SDS-PAGE, and transferred to polyvinylidene fluoride membranes (Merck
Millipore, Burlington, MA, USA). After blocking with 5% milk (Megmilk Snow Brand Co.,
Ltd., Sapporo, Japan), membranes were probed with primary antibodies targeting YB1
(4202, 1:1000; Cell Signaling Technology, Danvers, MA, USA) and α-tubulin (T9026, 1:2000;
Sigma-Aldrich). Membranes were incubated with mouse (NA931-1ML; GE Healthcare,
Chicago, IL, USA) or rabbit secondary antibodies (NA934-1ML; GE Healthcare) and incu-
bated with SuperSignal West Femto Maximum Sensitivity Substrate (34096; Thermo Fisher
Scientific) and detected using FUSION SOLO S (Vilber Lourmat, Collegien, France).

4.8. Isolation of sEVs from Cells

For sEVs purification, FBS was ultracentrifuged at 100,000× g for 16 h to remove
microvesicles. Conditioned medium (CM) was prepared by adding 5% FBS to DMEM.
sEVs were obtained from the supernatant with slight modifications to the previously
described procedure [45]. Briefly, after incubating cells in CM for 48 h, the supernatant was
collected and centrifuged at 300× g for 5 min to remove cells, followed by centrifugation
at 2000× g for 10 min to remove cell residue. The supernatant was further centrifuged
at 7600 rpm using the Optima L-90K Ultracentrifuge (Beckman Coulter, Brea, CA, USA)
for 30 min and filtered through a 0.22-µm pore filter (Sartorius Stedim Biotech, Göttingen,
Germany) to remove contaminating apoptotic bodies, expelled vesicles, and cell residues.
The resulting supernatant was further centrifuged at 26,500 rpm using the Optima L-90K
Ultracentrifuge for 3 h and at 45,000 rpm twice using the Optima MAX-TL Ultracentrifuge
(Beckman Coulter) for 70 min. The number and size of particles were determined via
nanoparticle tracking analysis using the NanoSight LM10 system (Malvern Panalytical Ltd.,
Malvern, Germany) or ZetaView (Particle Metrix GmbH Inc., Bavaria, Germany).

4.9. Electron Microscopy

sEVs isolated from RPE-1 cells were absorbed to formvar carbon-coated nickel grids,
followed by immune-labeled with an anti-CD63 antibody (556019, BD Biosciences, San
Diego, NJ, USA) and incubated 5 nM of a gold-labeled secondary antibody (British BioCell
International Ltd., Cardiff, UK). The samples were fixed with 2% glutaraldehyde in 0.1 M
phosphate buffer and used 2% phosphotungstic acid solution (pH 7.0) for negative staining.
The grids were incubated on 2% glutaraldehyde in 0.1 M phosphate buffer and dried. They
were stained with 2% uranyl acetate for 15 min and lead stain solution (Sigma-Aldrich).
The samples were observed using a transmission electron microscope (JEM-1400Plus, JEOL
Ltd., Tokyo, Japan) at 80 kV. Digital images were obtained with a CCD camera (VELETA,
Olympus Soft imaging solutions GmbH, Olympus, Tokyo, Japan) [21].
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4.10. Application of Exosome-like EVs

For the addition of EVs to cells, the collected EVs were mixed with EV-depleted
conditioned medium at a density of 2 × 109 particles/mL, and the host cell medium was
replaced with EV-containing medium daily for 1 week. RNA from EV-treated cells was
collected as described.

4.11. SA-β-Gal Assay

Cells were fixed in fixation buffer (2% paraformaldehyde and 0.2% glutaraldehyde in
PBS) and incubated in staining solution (5 mM potassium ferricyanide, 5 mM potassium
ferrocyanide, 2 mM MgCl2, 150 mM NaCl, and 1 mg/mL X-Gal) in citrate/sodium phos-
phate buffer (pH 6) overnight at 37 ◦C. After staining, cells were washed twice with PBS,
and the percentage of stained cells was determined.

4.12. Immunofluorescence Microscopy

Cells were fixed in 4% paraformaldehyde/PBS (163-20145; Fujifilm Wako Chemicals,
Tokyo, Japan) and permeabilized with 0.2% Triton X-100/Tris-buffered saline for 5 min
at room temperature. For blocking, cells were incubated with 1% bovine serum albumin
(A3059; Sigma-Aldrich) and 10% goat serum (G9023; Sigma-Aldrich) in Tris-buffered saline
at 4 ◦C for 1 h. Cells were then incubated with primary antibodies targeting γ-H2AX (05-
636, 1:1000; Millipore, Darmstadt, Germany) and phosphor (Ser/Thr) ATM/ATR substrate
(2851, 1:500; Cell Signaling Technology), followed by incubation with secondary antibody
coupled to Alexa Fluor 488 or Alexa Fluor 594 (Thermo Fisher Scientific) and 4′,6-diamidino-
2-phenylindole (342-07431; Dojindo, Tokyo, Japan) to stain nuclei. DNA damage-positive
cells were quantified using a fluorescence microscope (Carl Zeiss, Oberkochen, Germany).

4.13. Data Acquisition

Breast and ovarian cancer cohorts, including GSE4823 and GSE40595, were down-
loaded from the Gene Expression Omnibus (GEO) databases [28,29]. Correlation of
recurrence-free survival prognosis and YBX1 expression level in patients with breast cancer
(GSE25066) or ovarian cancer (GSE30161) was analyzed using the Kaplan–Meier plotter
(https://kmplot.com; Accessed on 5 September 2023). High- and low-expression patient
groups were stratified according to optimal gene expression cutoff values.

4.14. Statistical Analysis and Reproducibility

Statistical analysis was performed using one-way analysis of variance coupled with
an unresponsive two-tailed Student’s t-test or Dunnett’s multiple comparison test. Sta-
tistical analyses were performed using PRISM software version 7.04 (MDF Co., Ltd.,
Tokyo, Japan). p-Values < 0.05 were considered statistically significant. Error bars indicate
mean ± standard deviation. Results were obtained at least three times unless otherwise
indicated.

5. Conclusions

This study reveals that YBX1 regulates the selective incorporation of SATII RNA into
sEVs in senescent cells. These sEVs promote the senescent phenotype in surrounding
recipient cells in the cancer microenvironment. Thus, YBX1 may be a useful therapeutic
target in cancer therapy to regulate tumorigenic SASP factors.
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