Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Volunteers
4.2. Nutritional Assessment
4.3. Anthropometrical Determinations
4.4. Measurement of Immunological Parameters
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wieszczy, P.; Regula, J.; Kaminski, M.F. Adenoma Detection Rate and Risk of Colorectal Cancer. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 441–446. [Google Scholar] [CrossRef]
- Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and Dietary Environmental Factors in Colorectal Cancer Susceptibility. Mol. Asp. Med. 2019, 69, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Altenhofen, L.; Stock, C.; Hoffmeister, M. Natural History of Colorectal Adenomas: Birth Cohort Analysis among 3.6 Million Participants of Screening Colonoscopy. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1043–1051. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Orłowski, M.; Klepacki, Ł.; Zinkiewicz, K.; Kurpiewski, W.; Kaczerska, D.; Pesta, W.; Zieliński, E.; Siermontowski, P. Rectal aberrant crypt foci (ACF) as a predictor of benign and malignant neoplastic lesions in the large intestine. BMC Cancer 2020, 20, 133. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef] [PubMed]
- Crusz, S.M.; Balkwill, F.R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Bruce, W.R.; Giacca, A.; Medline, A. Possible Mechanisms Relating Diet and Risk of Colon Cancer. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1271–1279. [Google Scholar]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A Comprehensive Meta-Analysis on Dietary Flavonoid and Lignan Intake and Cancer Risk: Level of Evidence and Limitations. Mol. Nutr. Food Res. 2017, 61, 1600930. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-Mass Index and Risk of 22 Specific Cancers: A Population-Based Cohort Study of 5·24 Million UK Adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef]
- Uyar, G.O.; Sanlier, N. Association of Adipokines and Insulin, Which Have a Role in Obesity, with Colorectal Cancer. Eurasian J. Med. 2019, 51, 191–195. [Google Scholar] [CrossRef]
- Koda, M.; Sulkowska, M.; Kanczuga-Koda, L.; Surmacz, E.; Sulkowski, S. Overexpression of the Obesity Hormone Leptin in Human Colorectal Cancer. J. Clin. Pathol. 2007, 60, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.K.; Kim, W.J.; Lee, S.-A. Association between Obesity-Related Adipokines and Colorectal Cancer: A Case-Control Study and Meta-Analysis. World J. Gastroenterol. 2014, 20, 7941–7949. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, J.; Chen, H.; Duan, Z.; Xu, Q.; Wei, M.; Wang, L.; Zhong, M. Leptin Regulates Proliferation and Apoptosis of Colorectal Carcinoma through PI3K/Akt/MTOR Signalling Pathway. J. Biosci. 2012, 37, 91–101. [Google Scholar] [CrossRef]
- Surmacz, E.; Otvos, L. Molecular Targeting of Obesity Pathways in Cancer. Horm. Mol. Biol. Clin. Investig. 2015, 22, 53–62. [Google Scholar] [CrossRef]
- Kumor, A.; Daniel, P.; Pietruczuk, M.; Małecka-Panas, E. Serum Leptin, Adiponectin, and Resistin Concentration in Colorectal Adenoma and Carcinoma (CC) Patients. Int. J. Color. Dis. 2009, 24, 275–281. [Google Scholar] [CrossRef]
- Gonullu, G.; Kahraman, H.; Bedir, A.; Bektas, A.; Yücel, I. Association between Adiponectin, Resistin, Insulin Resistance, and Colorectal Tumors. Int. J. Color. Dis. 2010, 25, 205–212. [Google Scholar] [CrossRef]
- Erdogan, S.; Yilmaz, F.M.; Yazici, O.; Yozgat, A.; Sezer, S.; Ozdemir, N.; Uysal, S.; Purnak, T.; Sendur, M.A.; Ozaslan, E. Inflammation and Chemerin in Colorectal Cancer. Tumour Biol. 2016, 37, 6337–6342. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.E.; Yamada, Y.; Hamano, T.; Furuta, K.; Matsuda, T.; Fujita, S.; Kato, K.; Hamaguchi, T.; Shimada, Y. Adipocytokines as New Promising Markers of Colorectal Tumors: Adiponectin for Colorectal Adenoma, and Resistin and Visfatin for Colorectal Cancer. Cancer Sci. 2010, 101, 1286–1291. [Google Scholar] [CrossRef]
- Joshi, R.K.; Lee, S.-A. Obesity Related Adipokines and Colorectal Cancer: A Review and Meta-Analysis. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 397–405. [Google Scholar] [CrossRef]
- Kotani, K.; Sakane, N.; Saiga, K.; Kato, M.; Ishida, K.; Kato, Y.; Kurozawa, Y. Serum Adiponectin Levels and Lifestyle Factors in Japanese Men. Heart Vessel. 2007, 22, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, D.H.; Lim, Y.J. Impact of Diet on Colorectal Cancer Progression and Prevention: From Nutrients to Neoplasms. Korean J. Gastroenterol. 2023, 82, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Akin, H.; Tözün, N. Diet, Microbiota, and Colorectal Cancer. J. Clin. Gastroenterol. 2014, 48, S67–S69. [Google Scholar] [CrossRef]
- Li, S.; Shin, H.J.; Ding, E.L.; van Dam, R.M. Adiponectin Levels and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA 2009, 302, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kishida, K.; Funahashi, T.; Shimomura, I. Adiponectin as a Routine Clinical Biomarker. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 119–130. [Google Scholar] [CrossRef]
- Takahashi, H.; Hosono, K.; Endo, H.; Nakajima, A. Colon Epithelial Proliferation and Carcinogenesis in Diet-Induced Obesity. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. S4), 41–47. [Google Scholar] [CrossRef]
- Lukanova, A.; Söderberg, S.; Kaaks, R.; Jellum, E.; Stattin, P. Serum Adiponectin Is Not Associated with Risk of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2006, 15, 401–402. [Google Scholar] [CrossRef]
- Erarslan, E.; Turkay, C.; Koktener, A.; Koca, C.; Uz, B.; Bavbek, N. Association of Visceral Fat Accumulation and Adiponectin Levels with Colorectal Neoplasia. Dig. Dis. Sci. 2009, 54, 862–868. [Google Scholar] [CrossRef]
- Izadi, V.; Azadbakht, L. Specific Dietary Patterns and Concentrations of Adiponectin. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2015, 20, 178–184. [Google Scholar]
- Silva, F.M.; de Almeida, J.C.; Feoli, A.M. Effect of Diet on Adiponectin Levels in Blood. Nutr. Rev. 2011, 69, 599–612. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Man, K.; Chu, E.S.H.; Yau, T.O.; Sung, J.C.Y.; Go, M.Y.Y.; Deng, J.; Lu, L.; Wong, V.W.S.; et al. CXCL10 Plays a Key Role as an Inflammatory Mediator and a Non-Invasive Biomarker of Non-Alcoholic Steatohepatitis. J. Hepatol. 2014, 61, 1365–1375. [Google Scholar] [CrossRef]
- Tomita, K.; Freeman, B.L.; Bronk, S.F.; LeBrasseur, N.K.; White, T.A.; Hirsova, P.; Ibrahim, S.H. CXCL10-Mediates Macrophage, but Not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis. Sci. Rep. 2016, 6, 28786. [Google Scholar] [CrossRef]
- Heller, E.A.; Liu, E.; Tager, A.M.; Yuan, Q.; Lin, A.Y.; Ahluwalia, N.; Jones, K.; Koehn, S.L.; Lok, V.M.; Aikawa, E.; et al. Chemokine CXCL10 Promotes Atherogenesis by Modulating the Local Balance of Effector and Regulatory T Cells. Circulation 2006, 113, 2301–2312. [Google Scholar] [CrossRef]
- Ishiuchi-Sato, Y.; Hiraiwa, E.; Shinozaki, A.; Nedachi, T. The Effects of Glucose and Fatty Acids on CXCL10 Expression in Skeletal Muscle Cells. Biosci. Biotechnol. Biochem. 2020, 84, 2448–2457. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Gajewski, T.F. CXCL9 and CXCL10 Bring the Heat to Tumors. Sci. Immunol. 2022, 7, eabq6509. [Google Scholar] [CrossRef] [PubMed]
- Gudowska-Sawczuk, M.; Mroczko, B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int. J. Mol. Sci. 2022, 23, 3673. [Google Scholar] [CrossRef]
- Zekri, A.-R.N.; Bakr, Y.M.; Ezzat, M.M.; Zakaria, M.S.E.; Elbaz, T.M. Circulating Levels of Adipocytokines as Potential Biomarkers for Early Detection of Colorectal Carcinoma in Egyptian Patients. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 6923–6928. [Google Scholar] [CrossRef]
- Stofkova, A. Resistin and Visfatin: Regulators of Insulin Sensitivity, Inflammation and Immunity. Endocr. Regul. 2010, 44, 25–36. [Google Scholar] [CrossRef]
- Axelsson, J.; Bergsten, A.; Qureshi, A.R.; Heimbürger, O.; Bárány, P.; Lönnqvist, F.; Lindholm, B.; Nordfors, L.; Alvestrand, A.; Stenvinkel, P. Elevated Resistin Levels in Chronic Kidney Disease Are Associated with Decreased Glomerular Filtration Rate and Inflammation, but Not with Insulin Resistance. Kidney Int. 2006, 69, 596–604. [Google Scholar] [CrossRef]
- Kaser, S.; Kaser, A.; Sandhofer, A.; Ebenbichler, C.F.; Tilg, H.; Patsch, J.R. Resistin Messenger-RNA Expression Is Increased by Proinflammatory Cytokines in Vitro. Biochem. Biophys. Res. Commun. 2003, 309, 286–290. [Google Scholar] [CrossRef]
- Pham, T.-T.; Nimptsch, K.; Aleksandrova, K.; Jenab, M.; Reichmann, R.; Wu, K.; Tjønneland, A.; Kyrø, C.; Schulze, M.B.; Kaaks, R.; et al. Pre-Diagnostic Circulating Resistin Concentrations Are Not Associated with Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition Study. Cancers 2022, 14, 5499. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Yiannakouris, N.; Blüher, S.; Matalas, A.-L.; Klimis-Zacas, D.; Mantzoros, C.S. Body Fat Mass and Macronutrient Intake in Relation to Circulating Soluble Leptin Receptor, Free Leptin Index, Adiponectin, and Resistin Concentrations in Healthy Humans. J. Clin. Endocrinol. Metab. 2003, 88, 1730–1736. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Orłowski, M.; Siermontowski, P.; Mucha, D.; Zinkiewicz, K.; Kurpiewski, W.; Zieliński, E.; Kowalczyk, I.; Pedrycz, A. Occurrence of Colorectal Aberrant Crypt Foci Depending on Age and Dietary Patterns of Patients. BMC Cancer 2018, 18, 213. [Google Scholar] [CrossRef] [PubMed]
- Son, I.S.; Lee, J.S.; Lee, J.Y.; Kwon, C.S. Antioxidant and Anti-Inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-Induced Colonic Aberrant Crypt Foci in F344 Rats. Prev. Nutr. Food Sci. 2014, 19, 82–88. [Google Scholar] [CrossRef]
- Rogovskii, V. Modulation of Inflammation-Induced Tolerance in Cancer. Front. Immunol. 2020, 11, 1180. [Google Scholar] [CrossRef]
- Chantana, W.; Hu, R.; Buddhasiri, S.; Thiennimitr, P.; Tantipaiboonwong, P.; Chewonarin, T. The Extract of Perilla frutescens Seed Residue Attenuated the Progression of Aberrant Crypt Foci in Rat Colon by Reducing Inflammatory Processes and Altered Gut Microbiota. Foods 2023, 12, 988. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Saavedra, S.; Zapico, A.; del Rey, C.G.; Gonzalez, C.; Suárez, A.; Díaz, Y.; de los Reyes-Gavilán, C.G.; González, S. Dietary Xenobiotics Derived from Food Processing: Association with Fecal Mutagenicity and Gut Mucosal Damage. Nutrients 2022, 14, 3482. [Google Scholar] [CrossRef] [PubMed]
- Willrich, M.A.; Murray, D.L.; Snyder, M.R. Tumor Necrosis Factor Inhibitors: Clinical Utility in Autoimmune Diseases. Transl. Res. 2015, 165, 270–282. [Google Scholar] [CrossRef]
- Karmiris, K.; Koutroubakis, I.E.; Xidakis, C.; Polychronaki, M.; Voudouri, T.; Kouroumalis, E.A. Circulating Levels of Leptin, Adiponectin, Resistin, and Ghrelin in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2006, 12, 100–105. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, S.; Ahmad, M.K.; Singh, R.; Pradhan, A.; Chandra, S.; Kumar, S. TNF-α/IL-10 Ratio: An Independent Predictor for Coronary Artery Disease in North Indian Population. Diabetes Metab. Syndr. 2018, 12, 221–225. [Google Scholar] [CrossRef]
- Cherukuri, A.; Rothstein, D.M.; Clark, B.; Carter, C.R.; Davison, A.; Hernandez-Fuentes, M.; Hewitt, E.; Salama, A.D.; Baker, R.J. Immunologic Human Renal Allograft Injury Associates with an Altered IL-10/TNF-α Expression Ratio in Regulatory B Cells. J. Am. Soc. Nephrol. 2014, 25, 1575. [Google Scholar] [CrossRef]
- Aninagyei, E.; Adu, P.; Egyir-Yawson, A.; Acheampong, D.O. Elevated IL-12, TNF-α, and TNF-α/IL-10 Ratios in Stored Plasmodium falciparum-Infected Whole Blood: Implications for Safe Haemotransfusion. J. Immunol. Res. 2020, 2020, 9394585. [Google Scholar] [CrossRef] [PubMed]
- Buamden, S. Relación entre la disponibilidad alimentaria y la mortalidad por cáncer colorrectal en América [Association between food availability and mortality due to colorectal cancer in the Americas]. Salud Colect. 2018, 14, 579–595. [Google Scholar] [CrossRef] [PubMed]
- McNabb, S.; Harrison, T.A.; Albanes, D.; Berndt, S.I.; Brenner, H.; Caan, B.J.; Campbell, P.T.; Cao, Y.; Chang-Claude, J.; Chan, A.; et al. Meta-Analysis of 16 Studies of the Association of Alcohol with Colorectal Cancer. Int. J. Cancer 2020, 146, 861–873. [Google Scholar] [CrossRef]
- Rossi, M.; Jahanzaib Anwar, M.; Usman, A.; Keshavarzian, A.; Bishehsari, F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers 2018, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Marley, A.R.; Nan, H. Epidemiology of Colorectal Cancer. Int. J. Mol. Epidemiol. Genet. 2016, 7, 105–114. [Google Scholar]
- Duthie, S.J. Folate and Cancer: How DNA Damage, Repair and Methylation Impact on Colon Carcinogenesis. J. Inherit. Metab. Dis. 2011, 34, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Mahmod, A.I.; Haif, S.K.; Kamal, A.; Al-ataby, I.A.; Talib, W.H. Chemoprevention Effect of the Mediterranean Diet on Colorectal Cancer: Current Studies and Future Prospects. Front. Nutr. 2022, 9, 924192. [Google Scholar] [CrossRef]
- Sureda, A.; Bibiloni, M.D.M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J.A. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef] [PubMed]
- Yammine, A.; Namsi, A.; Vervandier-Fasseur, D.; Mackrill, J.J.; Lizard, G.; Latruffe, N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021, 26, 3483. [Google Scholar] [CrossRef]
- Wang, S.; Dong, W.; Liu, L.; Xu, M.; Wang, Y.; Liu, T.; Zhang, Y.; Wang, B.; Cao, H. Interplay between Bile Acids and the Gut Microbiota Promotes Intestinal Carcinogenesis. Mol. Carcinog. 2019, 58, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Viennois, E.; Chassaing, B. Consumption of Select Dietary Emulsifiers Exacerbates the Development of Spontaneous Intestinal Adenoma. Int. J. Mol. Sci. 2021, 22, 2602. [Google Scholar] [CrossRef] [PubMed]
- Caponio, G.R.; Lippolis, T.; Tutino, V.; Gigante, I.; De Nunzio, V.; Milella, R.A.; Gasparro, M.; Notarnicola, M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants 2022, 11, 1274. [Google Scholar] [CrossRef]
- Farran, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos del Centro de Enseñanza Superior en Nutrición y Dietética (CESNID); McGraw-Hill: New York, NY, USA, 2004; ISBN 84-486-0590-X. [Google Scholar]
- United States Department of Agriculture (USDA). Food Composition Databases. Available online: https://fdc.nal.usda.gov/ (accessed on 16 October 2023).
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Marlett, J.; Cheung, T. Database and Quick Methods of Assessing Typical Dietary Fiber Intakes Using Data for 228 Commonly Consumed Foods. J. Am. Diet. Assoc. 1997, 1151, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Navarro, T.; Díaz, I.; Gutiérrez-Díaz, I.; Rodríguez-Carrio, J.; Suárez, A.; de los Reyes-Gavilán, C.G.; Gueimonde, M.; Salazar, N.; González, S. Exploring the Interactions between Serum Free Fatty Acids and Fecal Microbiota in Obesity through a Machine Learning Algorithm. Food Res. Int. 2019, 121, 533–541. [Google Scholar] [CrossRef]
- Foz, M.; Barbany, M.; Remesar, X.; Carrillo, M.; Aranceta, J.; García-Luna, P.; Alemany, M.; Vázquez, C.; Palou, A.; Picó, C.; et al. Consenso SEEDO’2000 para la Evaluación del Sobrepeso y la Obesidad y el Establecimiento de Criterios de Intervención Terapéutica. Med. Clin. 2000, 115, 587–597. [Google Scholar] [CrossRef]
Variable | Control (n = 37) | Polyps (n = 49) | CRC (n = 7) | |
---|---|---|---|---|
Gender | Male | 17 (45.9%) | 30 (61.2%) | 7 (100.0%) |
Female | 20 (54.1%) | 19 (38.8%) | 0 (0.0%) | |
Age (years) | 59 ± 9 | 61 ± 6 | 64 ± 5 | |
BMI (kg/m2) | 26.17 ± 3.49 | 28.20 ± 4.41 | 26.25 ± 2.90 | |
Energy intake (kcal/day) | 2084.80 ± 759.64 | 2226.89 ± 848.08 | 2335.22 ± 540.20 | |
Sport practice | Yes | 9 (24.3%) | 10 (20.4%) | 4 (57.1%) |
No | 28 (75.7%) | 39 (79.6%) | 3 (42.9%) | |
Sport activity (h/week) | 1.04 ± 2.30 | 0.59 ± 1.43 | 4.29 ± 4.57 * | |
Walking activity (min/day) | 57.77 ± 27.28 | 55.75 ± 29.52 | 83.57 ± 8.02 * | |
BMR (kcal/day) | 1485.59 ± 230.60 | 1542.60 ± 253.91 | 1575.37 ± 126.01 | |
Sleeping (h/day) | 6.99 ± 0.92 | 6.82 ± 1.36 | 6.86 ± 0.90 | |
Smoking habit | Current | 6 (16.2%) | 13 (26.5%) | 1 (14.3%) |
Never | 17 (45.9%) | 21 (42.9%) | 2 (28.6%) | |
Former | 14 (37.8%) | 15 (30.6%) | 4 (57.1%) |
Parameter | ACF Presence | |
---|---|---|
No | Yes | |
Antioxidant capacity (nM) | 0.28 ± 0.05 (23) | 0.33 ± 0.08 (6) |
Total cholesterol (mg/dL) | 230.20 ± 68.53 (22) | 294.58 ± 71.28 (6) |
Cytokines and chemokines | ||
IL-17 (pg/mL) | 17.92 ± 28.90 (25) | 16.43 ± 11.91 (6) |
IL-6 (pg/mL) | 26.85 ± 15.57 (25) | 30.27 ± 20.32 (6) |
IL-10 (pg/mL) | 87.89 ± 21.61 (25) | 89.35 ± 16.32 (6) |
IL-12 (pg/mL) | 43.06 ± 9.88 (25) | 50.69 ± 18.99 (6) |
IL-4 (pg/mL) | 6.37 ± 5.86 (25) | 12.55 ± 19.05 (6) |
IFN-γ (pg/mL) | 8.94 ± 7.56 (25) | 7.13 ± 1.83 (6) |
TGF-β (pg/mL) | 109.35 ± 39.63 (25) | 132.22 ± 42.51 (6) |
IL-2 (pg/mL) | 6.42 ± 2.55 (25) | 15.54 ± 15.55 (6) |
CXCL10 (pg/mL) | 55.35 ± 31.44 (25) | 51.93 ± 18.67 (6) |
IL-1β (pg/mL) | 37.22 ± 19.82 (25) | 51.22 ± 44.89 (6) |
TNF-α (pg/mL) | 58.68 ± 27.47 (25) | 131.24 ± 96.91 * (6) |
CCL2 (pg/mL) | 60.11 ± 47.50 (25) | 171.69 ± 171.02 (6) |
Adipokines | ||
Adiponectin (ng/mL) | 163,146.13 ± 63,210.04 (24) | 129,418.76 ± 57,864.85 (6) |
Adipsin (ng/mL) | 2153.22 ± 408.36 (24) | 2284.82 ± 301.35 (6) |
Leptin (pg/mL) | 19.24 ± 7.70 (25) | 21.27 ± 6.37 (6) |
Resistin (ng/mL) | 26.86 ± 20.71 (25) | 23.72 ± 15.20 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, C.; Ruiz-Saavedra, S.; Gómez-Martín, M.; Zapico, A.; López-Suarez, P.; Suárez, A.; Suárez González, A.; del Rey, C.G.; Díaz, E.; Alonso, A.; et al. Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet. Int. J. Mol. Sci. 2023, 24, 16451. https://doi.org/10.3390/ijms242216451
González C, Ruiz-Saavedra S, Gómez-Martín M, Zapico A, López-Suarez P, Suárez A, Suárez González A, del Rey CG, Díaz E, Alonso A, et al. Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet. International Journal of Molecular Sciences. 2023; 24(22):16451. https://doi.org/10.3390/ijms242216451
Chicago/Turabian StyleGonzález, Celestino, Sergio Ruiz-Saavedra, María Gómez-Martín, Aida Zapico, Patricia López-Suarez, Ana Suárez, Adolfo Suárez González, Carmen González del Rey, Elena Díaz, Ana Alonso, and et al. 2023. "Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet" International Journal of Molecular Sciences 24, no. 22: 16451. https://doi.org/10.3390/ijms242216451
APA StyleGonzález, C., Ruiz-Saavedra, S., Gómez-Martín, M., Zapico, A., López-Suarez, P., Suárez, A., Suárez González, A., del Rey, C. G., Díaz, E., Alonso, A., de los Reyes-Gavilán, C. G., & González, S. (2023). Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet. International Journal of Molecular Sciences, 24(22), 16451. https://doi.org/10.3390/ijms242216451