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Abstract: Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct sub-
types. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen
accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study,
analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed
the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in
comparison to their non-cancerous counterparts. Explicitly, genomic profiling of these epigenetic
enzymes displayed increases in HDAC1, 2, 8, 10, 11, and Sirtuins (SIRTs) 6 and 7, and decreases in
HDAC4–7, –9, and SIRT1–4 levels, respectively, in TCGA breast tumors. Kaplan–Meier plot analyses
showed that these HDACs, with the exception of HDAC2 and SIRT2, were not correlated with the
overall survival of BC patients. Additionally, disruption of the epigenetic signaling in TCGA BC
subtypes, as assessed using both heatmaps and boxplots, was associated with the genomic expression
of factors that are instrumental for cholesterol trafficking/utilization for accelerating estrogen/E2
levels, in which steroidogenic acute regulatory protein (STAR) mediates the rate-limiting step in
steroid biosynthesis. TCGA breast samples showed diverse expression patterns of a variety of key
steroidogenic markers and hormone receptors, including LIPE, CYP27A1, STAR, STARD3, CYP11A1,
CYP19A1, ER, PGR, and ERBB2. Moreover, regulation of STAR-governed steroidogenic machinery
was found to be influenced by various transcription factors, i.e., CREB1, CREM, SF1, NR4A1, CEBPB,
SREBF1, SREBF2, SP1, FOS, JUN, NR0B1, and YY1. Along these lines, ingenuity pathway analysis
(IPA) recognized a number of new targets and downstream effectors influencing BCs. Of note,
genomic, epigenomic, transcriptional, and hormonal anomalies observed in human primary breast
tumors were qualitatively similar in pertinent BC cell lines. These findings identify the functional
correlation between dysregulated epigenetic enzymes and estrogen/E2 accumulation in human
breast tumors, providing the molecular insights into more targeted therapeutic approaches involving
the inhibition of HDACs for combating this life-threatening disease.
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1. Introduction

Breast cancer (BC) is the most prevalent malignant disorder in women, in which certain
BC subtypes are aggressive and resistant to drugs, and it is the second greatest cause of
cancer-related death among women worldwide [1]. Dysregulation of a variety of processes
and factors, including epigenetic alterations, plays a crucial role in the pathogenesis and
progression of BCs [2–4]. Histone deacetylases (HDACs) are a family of epigenetic enzymes
that remove the acetyl group on histone proteins as well as lysine residues on non-histone
proteins, resulting in chromatin remodeling, regulation of the transcriptional machinery,
and post-translational modifications (PTMs) of non-histone proteins, involving genomic
stability [5–7]. The mammalian HDAC family consists of 18 members that are grouped into
four classes in which Class I comprises HDAC1, 2, 3, and 8; Class II includes HDAC4, 5, 6,
7, 9, and 10; Class III possesses Sirtuin (SIRT) 1–7, and Class IV contains HDAC 11, which
are frequently dysregulated in BCs [6,8].

Breast pathogenesis is influenced by genomic and epigenomic alterations, resulting in
tumor initiation, progression, and heterogeneity by disrupting the equilibrium between
oncogenes and tumor suppressor genes. BCs are categorized into four molecular subtypes:
(i) luminal A, estrogen-receptor-positive (ER+), especially ERα, progesterone receptor
(PR+), and human epidermal growth factor receptor-negative (Her−, also called ERBB2);
(ii) luminal B, ER+, PR+, and Her+; (iii) Her2/ERBB2, ER−, PR−, and Her+; and (iv) basal-
like, ER−, PR− and Her− (also termed as triple negative, TNBCs), [9–13]. The majority
of BC subtypes (≥80% of all cases) are hormone-sensitive and express ERα, PR, and/or
Her/ERBB2, and the remaining ~15% are TNBCs and do not express those three receptors.
It is unambiguous that ER+/PR+ BC is primarily activated by estrogens, particularly E2,
that are synthesized from androgens using the aromatase enzyme. However, aromatase
(CYP19A1) has been shown to be indiscriminately expressed in both malignant and non-
malignant breast tissues [14–16]. In accordance, aromatase inhibitors (AIs) have been
frequently used for BC treatment in post-menopausal women; however, AIs generate
undesirable side effects, including the AI resistance that recurrently causes cancer death,
warranting an improved therapy for this devastating disease. Since epigenetic enzymes
(HDACs) are frequently dysregulated and/or mutated, attention has been placed upon
the development of HDAC inhibitors (HDACIs) for BC therapies [9,13,15,16]. HDACIs are
clinically efficacious and safe and display limited toxicity (in comparison to AIs) against
multiple oncogenic events, in which the inhibition of HDACs results in the acetylation
of numerous histone and non-histone substrates, including tumor suppressor proteins
and oncogenes [12,13,16–20]. Acetylation is pivotal in protein expression and function
and this post-translational modification (PTM) is particularly influenced by histone acetyl
transferases (HATs) and HDACs, which could modulate estrogen/E2 biosynthesis [13,16].

Steroid hormones, including E2, are made from cholesterol, and malfunction in
the steroidogenic pathway affects a variety of factors/processes that influence biochemi-
cal steps, ranging from cholesterol trafficking/availability to estrogen/E2 accumulation.
These include HSL/LIPE (hormone-sensitive lipase), CYP27A1 (cytochrome P450 oxi-
dase, 27-hydroxylase), STAR (steroidogenic acute regulatory protein, also called STARD1,
STAR-related lipid transfer domain 1), STARD3, CYP11A1 (cytochrome P450 family 11
subfamily A member 1), HSD3B1 (3β-hydroxysteroid dehydrogenase/δ(5)-δ(4)isomerase
type I), HSD17B1 (17β-hydroxysteroid dehydrogenase 1), CYP19A1 (aromatase), ESR1 (es-
trogen receptor 1, ERα), ESR2 (estrogen receptor 2, ERβ), PGR (progesterone receptor), and
Her2/ERBB2 (human epidermal growth factor receptor 2/the erythroblastosis oncogene-
B2). Among these factors, the STAR protein predominantly regulates steroid hormone
biosynthesis via mechanisms that enhance the transcription, translation, or activity of this
cholesterol transporter in a variety of tissues. Studies have shown that trans-regulation of
the STAR gene is finely tuned by various positive and negative factors, including CREB1
(cAMP responsive element binding protein 1), CREM (CAMP-responsive element mod-
ulator), SF1 (steroidogenic factor 1), NR4A1 (nuclear receptor 4A1, also called Nur77),
CEBPB (CCAAT/enhancer-binding protein-β), SREBF1 (sterol regulatory element-binding
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transcription factor 1, also called SREBP1), SREBF2 (sterol regulatory element-binding
transcription factor 2, SREBP2), SP1 (specialty protein 1), FOS (Fos proto-oncogene), JUN
(Jun proto-oncogene), NR0B1 (nuclear receptor subfamily 0 group B member 1), and YY1
(yin yang 1), and a balance between the inducer and repressor functions of these factors
presumably allows for a fine-tuning of the steroidogenic machinery [21–23].

TCGA RNA-Seq datasets offer a comprehensive understanding of the molecular basis
of BC subtypes using high-throughput genome sequencing and bioinformatics, and, ac-
cordingly, their prognosis and therapeutic interventions [9,11,24]. Moreover, to examine the
efficacy and sensitivity of experimental agents/drugs, pertinent BC cell lines are excellent
tools for in-depth understanding of the disease pathogenesis that mirror the molecular
heterogeneity and anomalies found in human primary breast tumors. By analyzing the
genomic and epigenomic profiles of both cancerous and non-cancerous breast tissues,
especially primary breast tumors and pertinent breast cell lines [9,25,26], our data address
knowledge gaps and provide novel insights into the aberrant interplay between epigenetic
modulation and steroidogenic/estrogenic signaling, permitting a better understanding of
breast pathogenesis, and pointing to improved therapeutic strategies for the management
of BCs.

2. Results
2.1. Analyses of TCGA Pan-Cancer Normalized RNA-Seq Datasets for the Expression of
Epigenetic Enzymes in Cancerous and Non-Cancerous Breast Tissues

Disruption of the homeostatic imbalance, involving epigenomic profiling, is a funda-
mental event in the pathophysiology of breast and other cancers [12,27,28]. As summarized
in Table 1, 18 epigenetic enzymes are grouped into the following four classes: Class I
(HDAC 1–3 and 8), Class IIa (HDAC 4, 5, 7 and 9), Class IIb (HDAC 6 and 10), Class III
(SIRT1–7), and Class IV (HDAC 11). Genomic analyses of TCGA normalized pan-cancer
BC datasets (https://gdc.cancer.gov/about-data/publications/pancanatlas, accessed on
1 May 2023) include 1095 breast tumors that possess both hormone-receptor-positive and
-negative specimens and 139 non-cancerous breast tissues, and revealed marked alterations
in most of these epigenetic enzymes in BCs in comparison to their non-cancerous coun-
terparts (Table 1). Specifically, RNA-Seq data analyses indicated that the expression of
16 enzymes (excluding HDAC3 and SIRT5) was either significantly increased (HDAC1, 2, 8,
10, 11, and SIRT6 and 7) or decreased (HDAC4–7, –9, and SIRT1–4) in BCs. We reported
that TCGA breast tumors are ~74% ER+, ~64% PR+, and ~51% Her2+, representing these
tumors largely belong to luminal subtypes [10].

Table 1. Analyses of TCGA pan-cancer normalized RNA-Seq datasets for expression of various
epigenetic enzyme genes in cancerous and non-cancerous breast tissues.

HDAC Members HDAC
Classes

Expression in
Normal

Breast Tissues

Expression in
Cancerous Breast

Tissues

Fold Changes
(95% Confident

Interval)
p-Values

HDAC1 0.697 0.969 1.390 (1.298, 1.488) <0.001, ***

HDAC2 0.913 1.169 1.281 (1.173, 1.399) <0.001, ***

HDAC3 0.972 1.016 1.046 (0.996, 1.098) 0.071

HDAC8

Class I

0.833 1.037 1.245 (1.176, 1.317) <0.001, ***

HDAC4 1.269 0.637 0.502 (0.457, 0.552) <0.001, ***

HDAC5 1.260 0.883 0.701 (0.645, 0.762) <0.001, ***

HDAC7 1.170 0.992 0.848 (0.789, 0.911) <0.001, ***

HDAC9

Class IIa

1.115 0.681 0.611 (0.506, 0.738) <0.001, ***

HDAC6 0.918 0.858 0.935 (0.883, 0.989) 0.022, *

HDAC10
Class IIb

0.476 0.683 1.434 (1.289, 1.596) <0.001, ***

https://gdc.cancer.gov/about-data/publications/pancanatlas


Int. J. Mol. Sci. 2023, 24, 16488 4 of 19

Table 1. Cont.

HDAC Members HDAC
Classes

Expression in
Normal

Breast Tissues

Expression in
Cancerous Breast

Tissues

Fold Changes
(95% Confident

Interval)
p-Values

SIRT1 1.899 1.294 0.682 (0.630, 0.737) <0.001, ***
SIRT2 0.967 0.731 0.755 (0.706, 0.808) <0.001, ***
SIRT3 1.162 1.055 0.908 (0.838, 0.984) 0.022, *
SIRT4 1.329 0.951 0.716 (0.650, 0.788) <0.001, ***
SIRT5 1.004 0.940 0.937 (0.875, 1.003) 0.063
SIRT6 0.389 0.717 1.846 (1.680, 2.028) <0.001, ***
SIRT7

Class III

0.484 0.912 1.885 (1.720, 2.066) <0.001, ***
HDAC11 Class IV 0.807 1.443 1.789 (1.570, 2.037) <0.001, ***

*, p < 0.05; ***, p < 0.001.

The magnitude of expression of these epigenetic enzymes was further visualized with
a two-dimensional approach using TCGA RNA-Seq data cohorts that were utilized in
Table 1. As illustrated by the heatmap, these enzymes demonstrated diverse expression
profiles in breast tumors pertaining to luminal subtypes (Figure 1). It can be seen that
robust expression was associated with HDAC1 and HDAC2 genes; in contrast, the lowest
expression was visualized with SIRT4 and HDAC9. Other HDAC and SIRT members dis-
played varied expression levels. These findings indicate that the majority of these enzymes
are either overexpressed or decreased in TCGA luminal BC subtypes, reinforcing the notion
that alterations and/mutations (not assessed in this study) of these epigenetic regulators
play crucial roles in the pathogenesis of BCs [12,28–30]. Dysregulation of various epigenetic
enzymes in BCs raises the question of whether they are associated with cancer mortality.
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ER, PGR (progesterone receptor), and Her2 categories are depicted on right side of the heatmap. 
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Non-Cancerous Breast Tissues and Their Correlation with Overall Survival 

Figure 1. Generation of heatmap illustrating color-based graphical representation for genomic
expression profiles of 18 different epigenetic enzymes (HDACs and SIRTs). TCGA pan-cancer
normalized RNA-Seq datasets for cancerous (1095 tumors) and cancerous (139 specimens) breast
tissues. ER, PGR (progesterone receptor), and Her2 categories are depicted on right side of the
heatmap. These cancerous and non-cancerous breast tissues include ER+, ER−, PGR+, PGR−, Her2+,
and Her2− subtypes. Bottom rectangular bar with ‘red’ and ‘blue’ colors at both ends represents the
lowest and highest expression levels, respectively.
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2.2. Genomic Expression Profiling of Epigenetic Enzymes in TCGA Cancerous and Non-Cancerous
Breast Tissues and Their Correlation with Overall Survival

To better understand the influence of aberrant regulation of epigenetic enzymes on
the overall survival of BC patients, Kaplan–Meier curves were generated using TCGA
RNA-Seq datasets involving higher (548 tumors) and lower (547 tumors) expression of
those genes. The results presented in Figure 2 demonstrated that dysregulated expression
of various epigenetic enzyme genes was not correlated, with the exception of HDAC2
(p = 0.03) and SIRT2 (p = 0.04), with the overall survival of patients afflicted with BCs.
Notably, HDAC2 (Class I) and SIRT2 (Class III) were found to be increased and decreased
in TCGA breast tumors, respectively. On the other hand, there was no significant rela-
tionship between overall survival rates and the dysregulation of other epigenetic enzyme
genes: Class I, HDAC1 (p = 0.397), HDAC3 (p = 0.183), and HDAC8 (p = 0.783); Class
IIa, HDAC4 (p = 0.891), HDAC5 (p = 0.935), HDAC7 (p = 0.802), and HDAC9 (p = 0.699);
Class IIb, HDAC6 (p = 0.718) and HDAC2 (p = 0.781); Class III, SIRT1 (p = 0.932), SIRT3
(p = 0.065), SIRT4 (p = 0.426), SIRT5 (p = 0.156), SIRT6 (p = 0.604), SIRT7 (p = 0.503); and
Class IV, HDAC11 (p = 0.175) (Figure 2). Clearly, while most of these epigenetic enzymes
were dysregulated in BCs, their genomic expression levels did not correlate with the overall
survival of BC patients. It is conceivable that an imbalance in epigenetic signaling presum-
ably modulates diverse factors and hormone receptors that influence cholesterol trafficking
and metabolism and promote estrogen/E2 accumulation, which is detrimental for the
progression of breast carcinogenesis.
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Figure 2. Kaplan–Meier (KM) plot analyses and determination of overall survival of BC patients
in conjunction with diverse epigenetic enzyme expression levels. TCGA BC RNA-Seq datasets
(1095 tumors) were used for generation of KM curves and their correlation with overall survival. KM
survival curves were made with low (548 tumors) and high (547 tumors) expression for 18 different
epigenetic enzyme (divided and shown in four different classes) genes, respectively. Black and red
lines represent lower and higher expression of these genes, respectively. Note that KM survival
curves were arranged according to the classes of these epigenetic enzyme genes. p-values for overall
survival of each gene have been presented below these curves.

2.3. Analyses of a Variety of Steroidogenic Factors and Hormone Receptors Using TCGA
Pan-Cancer Normalized BC RNA-Seq Datasets

In additional analyses, we studied the genomic expression levels of a total of 12 im-
portant factors including hormone receptor markers and steroidogenic enzymes, which
play crucial roles in cholesterol availability for steroidogenesis and the progression of
BCs [23,31,32]. To evaluate such relationships, TCGA breast tissues were categorized into
three groups, i.e., Normal, ER+/PR+, and TNBCs, and the targeted factors chosen were
based on their influence in regulating steroidogenesis, emphasizing estrogen and/or E2
biosynthesis [9–13]. As illustrated in boxplots (Figure 3), genomic analyses of the TCGA
pan-cancer normalized BC datasets displayed diverse expression levels of these key factors,
i.e., LIPE (A), CYP27A1 (B), STAR (C), STARD3 (D), CYP11A1 (E), HSD3B1 (F), HSD17B1
(G), CYP19A1 (H), ESR1 (I), ESR2 (J), PGR (K), and ERBB2 (L). Genomic expression of
these factors was found to be increased, decreased, or unaltered in TCGA BC subtypes
compared with their non-cancerous counterparts, suggesting they differently influence
estrogen-induced breast tumorigenesis.
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Figure 3. Boxplot analyses of a variety of steroidogenic factors and hormone receptors utilizing TCGA
pan-cancer normalized RNA-Seq datasets. TCGA samples were divided into three different categories
with varied samples numbers, i.e., Normal (dark orange; 39 samples), ER/PR+ (green, ER+/PR+;
615 samples), and TNBCs (blue; 123 samples). Steroidogenic factors and hormone receptors analyzed
were the following: LIPE (A), CYP27A1 (B), STAR (C), STARD3 (D), CYP11A1 (E), HSD3B1 (F),
HSD17B1 (G), CYP19A1 (H), ESR1 (I), ESR2 (J), PGR (K), and ERBB2 (L). Note diverse expression
levels of these steroidogenic factors and hormone receptors on Y-axes. *, p < 0.05; ***, p < 0.001; ns,
not significant.

2.4. Genomic Expression of Positive and Negative Regulatory Transcription Factors Using TCGA
Cancerous and Non-Cancerous Breast RNA-Seq Datasets

The transcriptional machinery, involving STAR-mediated steroid biosynthesis, is
coordinated by both enhancer elements that ‘switch on’ and silencer elements that ‘switch
off’ gene expression [21–23,33,34]. To gain molecular insights into estrogen/E2-mediated
breast carcinogenesis, the TCGA BC RNA-Seq datasets were evaluated for key trans-
regulatory factors, including CREB1, CREM, SF1, NR4A1, CEBPB, GATA1, SREBF1, SREBF2,
SP1, FOS, JUN, NR0B1, and YY1. As summarized in Table 2, these transcription factors
were both upregulated and downregulated in TCGA luminal BC subtypes when compared
with normal breast tissue. Consequently, we reported aberrantly higher expression of
STAR, concomitant with E2 synthesis, in hormone-sensitive human primary breast tumors,
pertinent BC cell lines, and transgenic mouse model spontaneous breast tumors [13,16].
These findings suggest that an inequity in the transcriptional machinery results in STAR-
driven estrogen/E2 accumulation for triggering breast tumorigenesis.
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Table 2. Analyses of TCGA BC pan-cancer normalized RNA-Seq datasets for expression of a variety
of transcription factors.

Transcription
Factors

Expression in Normal
Breast Tissues

Expression in Cancerous
Breast Tissues

Fold Changes
(95% Confident Interval) p-Values

CREB1 5.237 4.050 0.773 (0.728, 0.821) <0.001, ***
CREM 0.902 0.903 1.001 (0.935, 1.072) 0.974

SF1 1.830 1.691 0.924 (0.892, 0.958) <0.001, ***
NR4A1 2.224 0.524 0.235 (0.192, 0.289) <0.001, ***
CEBPB 1.116 0.846 0.757 (0.661, 0.868) <0.001, ***
GATA1 0.956 0.906 0.948 (0.837, 1.074) 0.427
SREBF1 3.391 6.327 1.866 (1.616, 2.155) <0.001, ***
SREBF2 3.064 3.373 1.101 (1.004, 1.207) 0.050, *

SP1 2.047 1.620 0.791 (0.746, 0.838) <0.001, ***
FOS 5.959 0.745 0.125 (0.099, 0.158) <0.001, ***
JUN 4.286 1.431 0.334 (0.290, 0.385) <0.001, ***

NR0B1 0.834 0.305 0.366 (0.301, 0.445) <0.001, ***
YY1 2.032 2.295 1.129 (1.073, 1.189) <0.001, ***

*, p < 0.05; ***, p < 0.001.

2.5. Analyses of RNA-Seq Datasets for the Expression of Epigenetic Enzymes in a Variety of
Human Cancerous and Non-Cancerous Breast Cell Lines

The genomic profiles of various epigenetic enzymes were further assessed in a total of
43 cancerous and non-cancerous human breast cell lines, i.e., 24-luminal, 10-basal A, 7-basal
B, and 2-normal mammary epithelial cells [25]. The generation of heatmaps showed varied
expression patterns of these epigenetic enzymes in the TCGA BC RNA-Seq data cohorts
(Figure 4). The genomic expression of 17 of these enzymes (data not available for HDAC7),
demonstrated diverse patterns, being noticeably high with HDAC 1, 3, SIRT 1, and SIRT
7, and lower with HDAC 9 and SIRT 4, reinforcing the notion that epigenetic regulators
are commonly altered and/or mutated in BC cells [6,12,29,35]. Importantly, the majority
of these enzymes are dysregulated in the TCGA luminal BC subtypes, implicating that
homeostatic imbalance in epigenetic enzyme levels accelerates breast pathogenesis.
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cell lines. Breast cell lines analyzed are indicated on top on the heatmap (43 different lines). RNA-Seq
datasets for these cell lines were downloaded from Xena browser and analyzed based on ER (+ and
−), PGR (+ and −), and Her2+ (+ and −) subtypes, as indicated. Bottom rectangular bar with ‘blue’
and ‘red’ colors at both ends represents lowest and highest expression levels, respectively.

2.6. Genomic Expression of Key Steroidogenic Factors and Hormone Receptors in Cancerous and
Non-Cancerous Breast Cell Lines

Abnormalities in breast cancer cell lines, involving oncogenic signaling and genomic
heterogeneity, have been reported to correlate with primary breast tumors, suggesting
the importance of cell line models for studying molecular events in disease pathophysiol-
ogy [25,26]. The hypothesis that estrogen/E2-dependent BCs involve the malfunction of
key steroidogenic factors (LIPE, CYP27A STAR, STARD3, CYP11A1, CYP19A1, HSD3B1,
HSD17B1, and CYP19A1) and hormone receptors (ESR1, ESR2, PGR, and ERBB2), facilitat-
ing E2 accumulation, was assessed. As illustrated in the heatmap, the RNA-Seq datasets of
cancerous and non-cancerous 43 cell lines, involving hormone-dependent and -independent
BC categories, displayed varying expression levels of these factors impacting estrogen/E2
biosynthesis (Figure 5). Whereas a markedly higher expression was observed with STARD3
and ERBB2, the lowest expression was associated with CYP19A1 and ESR2 levels, in vari-
ous breast cell lines. Conversely, moderate to high expression levels were observed with
LIPE, STAR, ESR1, and HSD17B1. Genomic expression was the highest with STARD3 in
many cancerous breast tumors cells lines, indicating the involvement of this late endosomal
protein in cholesterol/E2-promoted breast tumorigenesis.
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of 43 cancerous and non-cancerous breast cell lines. Generation of heatmap illustrates color-based
graphical representation of key steroidogenic factors and hormone receptor genes in various breast
cell lines (mentioned on top on the heatmap). RNA-Seq datasets for these cell lines were downloaded
from Xena browser and analyzed for LIPE, CYP27A1, STAR, STARD3, CYP11A1, HSD3B1, HSD17B1,
CYP19A1), ESR1, ESR2, PGR and ERBB2 genes. These cancerous and non-cancerous breast cell lines
are ER (+ and−), PGR (+ and−), and Her2+ (+ and−) subtypes, as indicated. Bottom rectangular bar
with ‘blue’ and ‘red’ colors at both ends represents lowest and highest expression levels, respectively.
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2.7. Ingenuity Pathway Analysis Using BC Microarray and RNA-Seq Datasets

To gain more insights into diverse pathways, networks, and biological functions,
ingenuity pathway analysis (IPA) was performed using high-throughput gene expression
profiles connecting epigenetic enzymes, cholesterol, and STAR (Figure 6). IPA data revealed
that HDACs/SIRTs, cholesterol, and STAR-coupled BC subtypes are coordinately targeted
by numerous mRNAs impacting the disease pathogenesis. Noteworthy, HDAC2 and
SIRT2 (connected with poor survival of BC patients), APOE (apolipoprotein E), ABCG8
(ATP-binding cassette subfamily G member 8), LDLR (low-density lipoprotein receptor),
HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), and PCSK9 (proprotein convertase
subtilisin/kexin type 9), in addition to STAR, were found to be significantly associated
with tumorigenesis in the breast tissue (Figure 6). Data are either unavailable or scanty
for a number of HDACs. Despite the limitations, IPA predicted/identified a number of
downstream effectors and new targets whose relevance to breast pathogenesis will be
assessed in our future investigations.
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diverse gene expression networks and downstream effectors and targets. The blue lines connect
biomarkers (in blue). We are interested in the symbols in oranges, which are affected by HDACs
(orange lines). The symbols in red are those associated with lipid metabolism and cardiovascular
health. All other markers (lines) are in black depicting inter-relationships among various signaling
and/or molecular networks. Different nodes used are illustrated below IPA. Note that a number of
HDACs are not illustrated in IPA due to the unavailability of relevant data.

3. Discussion

Epigenetic enzymes play pivotal roles in a wide variety of biological processes, includ-
ing transcription, protein expression and function, subcellular localization, cell proliferation
and differentiation, immune function, and metastasis [7,12,29,36]. In addition, these epi-
genetic regulators influence not only the acetylation of histones in nucleosomes but also
a variety of non-histone substrates, including many proteins that are involved in tumori-
genesis, angiogenesis, apoptosis, and cell invasion [12,37]. Dysregulation in the levels of
these epigenetic factors results in homeostatic disparity in the molecular networks that
govern diverse cellular and biological processes and modulates cancer etiology. More-
over, the imbalance in HATs and HDACs has been implicated in the abnormal expression
of tumor suppressor genes and proteins involved in various cancers, including BC [38].
As mentioned above, the majority of BCs are stimulated by the estrogen/E2 that is pro-
duced by the aromatization of androgens on the part of aromatase in the cholesterol
biosynthetic pathway. Studies have shown that cholesterol, especially its oxygenated
derivative, 27-hydroxyxholesterol (27-HC), by interacting with ER and liver X receptors,
provokes carcinogenesis in the breast tissue [12,39,40]. Our present findings extend these
observations and allow a better understanding of breast pathogenesis by demonstrating
genomic, epigenomic, and molecular analyses of TCGA normalized pan-cancer datasets
and pertinent breast cell lines, and consequently point to novel insights into therapeutics.
Moreover, development of an IPA identified new factors and targets associated with BCs
involving epigenetic and steroidogenic networks. Interestingly, aberrant regulation of
epigenetic signaling is progressively associated with anomalies in key steroidogenic factors
and hormone receptors that harmoniously provide estrogen/E2 buildup for developing
breast tumorigenesis.

An overwhelming amount of evidence indicates that the abnormality in gene ex-
pression is a crucial event in the progression of breast and other cancers. Nonetheless,
multiple signaling pathways, affecting genomic and epigenomic dysregulation, protein
synthesis, cell cycle progression, and apoptosis, modulate breast pathogenesis [11,41]. Phar-
macological inhibition of various HDACs, against BC and other cancers, has been shown
to display favorable outcomes, including cell cycle arrest and induced apoptosis, anti-
proliferation, apoptosis, differentiation, anti-angiogenesis, and the drug resistance of cancer
cells [12,18,28–30,42]. In accordance, technological advances have targeted therapeutic
strategies with a number of HDACIs [20,43,44]. However, to achieve a treatment regimen,
it is important to precisely identify HDAC and/or SIRT members that are overexpressed
in breast tumors. The comprehensive analyses of TCGA BC RNA-Seq datasets identified
elevated levels of seven epigenetic enzymes, namely the HDAC 1, 2, 8, 10, 11, SIRT 6, and
7 members. Consistent with this, the genomic levels of many epigenetic regulators, espe-
cially HDAC 1- 3, 5, 6, 11, SIRT 1, and 2, were markedly increased in 43 human malignant
and non-malignant breast cell lines, reflecting scenarios ostensibly similar to primary breast
tissues. Therefore, inhibition of these HDACs emerges as a potential therapeutic target for
combating BCs. In line with these findings, we have demonstrated that the inhibition of a
variety of HDAC and SIRT members, with SAHA (targets HDAC1 and 2), panobinostat
(targets I, II and IV HDAC classes), entinostat (targets HDAC1 and 3), inhibitor IV (targets
SIRT2), PCI-34051 (targets HDAC8), and romidepsin (targets HDAC1, 2, 4 and 6), at clinical
and preclinical doses, suppresses STAR expression and E2 synthesis, in hormone-sensitive
human MCF7 and mouse primary cultures of breast tumor epithelial cells [13,16,45]. It
has been reported that treatment of SAHA/vorinostat in MCF7 cells downregulates ERα
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via the ubiquitin-mediated pathway and results in the inhibition of cell proliferation and
induction of apoptosis [46,47]. Additionally, knockout of HDAC2 has been shown to inhibit
cell proliferation, colony formation, migration, and cell cycle progression in TNBC cells and
altered tumor growth in vivo [48]. Studies have reported that inhibition of Class I and Class
II HDACs, especially 1, 2, 4, and 6, using trichostatin A and sodium butyrate affects cell pro-
liferation on the part of mir-204 and ERα in MCF7 and MDA-MB-231 cells [49–51]. Recently,
a combination of HDACIs (entinostat + vorinostat + belinostat), anti-HSP90 inhibitor (tane-
spimycin), and anti-helminthic inhibitor (niclosamide) has been shown to synergistically
inhibit cell proliferation in TNBC and inflammatory BC cell lines [52]. In a clinical phase II
trial with 43 patients with ER+/PR breast tumors, a combination of SAHA/vorinostat and
tamoxifen (a selective ER modulator) demonstrated a ~50% reduction in tumors [53]. We
recently reviewed the efficacy and specificity of a number of HDACIs in various clinical
trials, either alone or in combination, for combating endocrine therapy resistance, along
with favorable outcomes [12]. Therefore, it is plausible that HDACIs, by affecting multiple
processes and signaling pathways, suppress/alter STAR-driven E2 accumulation, in both
hormone-dependent and hormone-independent BCs.

The results of the present findings indicated that epigenetic dysregulation mirrored
aberrant expression of factors that impact cholesterol trafficking/metabolism and steroid/E2
biosynthesis in both human primary tumors and pertinent cell lines. However, discrep-
ancies in the gene expression profiles of certain factors, between primary tumors and cell
lines, could be due to various ages, stages/grades, pathological features, and treatments
of breast tumors for the former, and the age/stage-specific isolation of cells, passages,
and culture conditions for the latter [9,25,26]. Interestingly, whereas the genomic levels
of seven different epigenetic regulators were found to be markedly high in TCGA breast
tumors, none other than HDAC2 were correlated with poor survival of BC patients. These
findings suggest that aberrant expression of these epigenetic enzymes affects the steroido-
genic machinery, facilitating estrogen/E2 assembly for promoting breast tumorigenesis. In
pre-menopausal women, estrogens are essentially produced in the ovarian granulosa and
placental corpus luteal cells; however, in peri- and post-menopausal women, extra-ovarian
sites (adipose tissue, bone, skin, etc.), via paracrine and/or intracrine mechanisms, are
key estrogenic sources that are liable for the progression of breast tumors in women ages
50 or over [12,54]. Despite diverse sources, estrogen/E2 is made from cholesterol, in which
HSL/(LIPE), by catalyzing the hydrolysis of cholesterol esters, provides free cholesterol for
steroidogenesis [23,32]. Nonetheless, higher levels of both CYP27A1 and 27-HC are iden-
tified in human ER+ BCs, and have been reported to induce tumorigenesis [39,55,56]. Of
importance, intramitochondrial transportation of cholesterol by STAR and the production
of the first steroid, pregnenolone, by CYP11A1 are indispensable events for the appropriate
regulation of androgens and estrogens. It should be noted that STAR-governed choles-
terol mobilization is the rate-liming step in steroid, as well as estrogen/E2, biosynthesis,
and a fine-tuning in STAR’s transcriptional machinery has been shown to be mediated
by a variety of transcription factors [21,22,57]. These cis-regulating factors bind to the
sequence-specific DNA motifs present in the 5-flanking region of the STAR promoter, and
the regulation of STAR gene transcription is coordinately influenced by both enhancer
and silencer elements. Interestingly, however, these transcription factors were found to
be drastically altered in TCGA breast tumors compared with their normal counterparts,
which seemingly allows the modulation of STAR-driven E2 synthesis for promoting breast
tumorigenesis. In support of this, we have uncovered that STAR is an acetylated protein,
along with the identification of 15 lysine residues using LC-MS/MS, undergoing acety-
lation/deacetylation in ER+/PR+ BC cells, which enhances the expression and activity
of STAR in optimal E2 synthesis [13]. However, the involvement of STARD3, with ~37%
C-terminal homology to STAR having been shown to increase cholesterol biosynthesis in
HER2+ BCs [58], in estrogen/E2-responsive breast tumorigenesis cannot be excluded. It is
worth noting that STARD3 was initially cloned as a gene amplified in breast, gastric, and
esophageal cancers [57,58], and the co-expression of both STARD3 and ERBB2 has been
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demonstrated in gastric cancer [59,60]. In the present study, RNA-Seq analyses of various
steroidogenic factors revealed coordinate association of STARD3 and ERBB2 in a variety
of cancerous and non-cancerous cell lines. It has been demonstrated that the expression
of STARD3 is markedly higher in HER+ breast tumors in comparison with ER+/PR+ and
TNBCs [61]. Studies have shown that the overexpression of STARD3 is associated with
increased cholesterol biosynthesis in HER2+ breast cancer subtypes [58,62]. Considering
differential expression and prognostic relevance, STARD3 has recently been proposed as
a new biomarker in HER+ BCs [63]. Regardless of the factors involved, the E2 levels in
tumors and/or the circulation of BC patients can be 30 times at a higher stage specifically
than those seen in non-cancerous individuals [13,64].

The mechanism suppressing estrogen/E2 biosynthesis, in combating BCs, can be influ-
enced by a variety of events, including hormonal, genetic, and reproductive factors [12,65–67].
It is well known that estrogen signaling is either activated or eliminated depending on the
balance between ERα (ESR1) and ERβ (ESR2, considered a tumor suppressor) signaling, in
which the growth and survival of BCs are influenced by the upregulation of ERα [13,68]. We
observed that ER+/PR+ human breast tumors and/or pertinent cell lines revealed a higher
genomic expression of ERα compared with normal breast tissue or TNBCs. Considering
the overexpression of ER and the importance of aromatase in estrogen/E2 biosynthesis, AIs
have been frequently used for BC treatment, especially for the hormone-sensitive category,
in post-menopausal women. AI therapy involves the continued deprivation of estrogens,
along with disruption of ER signaling, and results in the development of unwanted side
effects, including osteoporosis, breast atrophy, depression, and reduced libido [69–71].
Despite considerable success with AIs, resistance to endocrine therapy is critical with
increased tumor progression, the acquisition of malignant phenotypes, and poor prog-
nosis, requiring an improved therapeutic approach to countering BCs. Our current data
revealed that genomic, epigenomic, and hormone receptor/steroidogenic parameters in
TCGA primary breast tumors were parallel with BC cell line models, permitting a better
understanding of the diverse signaling pathways altered in various BC subtypes, in which
the identification of new targets/factors using IPA plays an important role for the potential
targeted therapeutics. Under these circumstances, we have reported that STAR expression
is aberrantly high in ER+/PR+ human BC cell lines and mouse models of spontaneous
breast tumors, in comparison with their non-cancerous counterparts [12,13,16], suggesting
that STAR acts as a tumor promoter. Along these lines, our findings provide evidence
that suppression of STAR using a number of both FDA-approved and clinical-phase trial
HDACIs, resulted in a reduction in E2 synthesis, in human and mouse hormone-sensitive
BC cells [13,16,45], underscoring the potential of this cholesterol transporter as a novel
therapeutic target for the management of ER+/PR+ BC. Studies are currently underway
on the functional relevance of STAR acetylation–deacetylation events in the regulation
of estrogen/E2 biosynthesis toward an in-depth understanding of the molecular events
involved between epigenetic dysregulation and steroidogenic signaling in cancerous and
non-cancerous breast tissue.

4. Materials and Methods
4.1. Analyses of TCGA Pan-Cancer Normalized RNA-Seq BC Datasets for the Expression of
Various Epigenetic Enzymes

The RNA-Seq datasets were downloaded from The Cancer Genome Atlas (TCGA;
https://tcga-data.nci.nih.gov, accessed on 1 June 2023) database (GDC (cancer.gov)) [9].
TCGA, a landmark cancer genomics program, in coordination with the NCI’s Center for
Cancer Genomics and the National Human Genome Research Institute, offers a com-
prehensive understanding of the molecular basis of various cancers and their diagnosis,
prevention, and treatment, using genome sequencing and bioinformatics [9,24]. Specif-
ically, TCGA pan-cancer normalized, batch-corrected, and platform-corrected RNA-Seq
datasets including 139 normal breast tissues and 1095 primary breast tumors were down-
loaded (accessed on 12 May 2023) from the UCSC Xena (xenabrowser.net) browser [24].

https://tcga-data.nci.nih.gov
xenabrowser.net
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RNA-Seq datasets from over 11,000 patient samples across 33 cancer types were aligned
with the human genome, and the aligned data were sorted and indexed in BAM format
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002, accessed on 1 May 2023).
After being assessed for data quality, low-quality samples were removed from further
analyses. The raw read counts were then normalized to correct for library size and gene
length differences between samples. The TCGA RNA-Seq datasets were then normal-
ized using the upper quartile method, because it is less sensitive to outliers and batch
effects. In addition, the ComBat software (SVA package, Version 3.48.0) was used to
correct for batch effects on parametric and non-parametric empirical Bayes frameworks
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002). The clinical characteristics
of all these cancerous and non-cancerous breast tissues were evaluated and downloaded
from the UCSC Xena platform [24].

The eBayes function in the limma package was used to estimate the posterior proba-
bilities of differential expression genes between primary tumors and normal tissues [72].
Specifically, the gene-specific variances and mean–variance relationships were estimated
using the empirical Bayes method (voom: Precision weights unlock linear model analysis
tools for RNA-Seq read counts-PubMed (nih.gov)). The posterior probabilities of differen-
tial expression were calculated by shrinking the estimated gene-specific variances toward a
common value. In addition, the fold change was computed for solid breast tumors relative
to its non-cancerous counterparts, and a p-value corrected for false discovery rate [73,74].

4.2. Generation of Kaplan–Meier Curves and Overall Survival Analyses

Kaplan–Meier (KM) survival analyses were used to compute the estimates of overall
survival using primary breast tumor samples [10,12]. The log-rank test was used to perform
comparisons of overall survival distributions between samples with higher and lower gene
expressions, where median expression was used as the cutoff value. Overall survival was
defined as the time elapsed from study enrollment to death, with those living censored at
the time of last follow-up. Utilizing TCGA breast cancer RNA-Seq datasets, KM curves
were generated with high and low (50:50) expression for all 18 epigenetic enzyme genes.

4.3. Analyses of RNA-Seq Datasets for the Expression of Various Steroidogenic Marker Genes,
Hormone Receptors, and Transcription Factors in Cancerous and Non-Cancerous Breast Tissues

RNA-Seq datasets pertaining to both TCGA cancerous and non-cancerous human
breast tissues (1095 primary tumors and 139 normal specimens) and pertinent 43 breast cell
lines for the expression profiles of a variety of steroidogenic markers, hormone receptors,
and transcription factors involved in steroidogenesis were downloaded (accessed on 12 May
2023) from the UCSC Xena browser [9,11,24]. The RNA-Seq datasets for both cancerous
and non-cancerous breast cell lines included a total of 43 different types, i.e., 24-luminal,
10-basal A, 7-basal B, and 2-normal. All of these breast cell lines were based on ATCC
revealing the specific characteristics and specifications of different subtypes were based on
a previous study [25]. Genomic datasets for both TCGA BC and pertinent breast cell lines
were categorized into ER (ER+ and ER−), PGR (PGR+ and PGR−, and Her2 (Her2+ and
Her2−), as specified.

4.4. Generation of Heatmaps Using Transcriptome and RNA-Seq Data Pertaining to Various
Breast Cell Lines and TCGA Tumors

Heatmaps were generated for visualizing the relative expression of a variety of
genes (epigenetic enzymes, hormone receptors, and transcription factors) using the Com-
plex Heatmap software (Version, 2.16.0) in R (The R Project for Statistical Computing
(r-project.org, Version 4.2.2). The interconnections of a variety of genes involved in in-
fluencing the steroidogenic machinery were screened via data mining of the TCGA BC
RNA-Seq transcriptome and relevant clinical datasets [9,24,25]. Similarly, the RNA-Seq
data were obtained from various human cancerous and non-cancerous breast cell lines
from the UCSC Xena browser [24,25]. A correlation heatmap was generated and analyzed
for the enrichment of various genomic factors. The relative expression of core genes in both
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various breast cell lines and human primary tumors visually displays differences in the
expression profiles between cancerous and non-cancerous breast tissues.

High-throughput BC microarray and RNA-Seq datasets were utilized to develop
an IPA to better understand diverse signaling pathways, downstream effectors, and net-
works impacting breast pathogenesis. IPA was generated using the QIAGEN Inc. system
(Venlo, The Netherlands), (https://www.qiagenbio-informatics.com/products/ingenuity-
pathwayanalysis, accessed between 1 June 2023).

4.5. Boxplot Analyses of Key Steroidogenic Markers in Normal and Cancerous Breast Tissues
Using TCGA Transcriptome and RNA-Seq Datasets

The Illumina HTSeq FPKM data, as well as the phenotype and cancer subtype data,
were download from the UCSC Xena platform [9,24]. Next, all the samples were catego-
rized into solid tissue Normal, ER/PR+, TNBC, and others, based on their ER, PGR, and
Her2 status. Boxplots were generated with the Normal (139 samples), ER+/PR+ (615 sam-
ples), and TNBC (123 samples) samples involving various factors connected to cholesterol
trafficking, metabolism, and steroidogenesis, in addition to hormone receptors, which
included LIPE, CYP27A1, STAR, STARD3, CYP11A1, HSD3B1, CYP19A1, HSD3B1, ESR1,
ESR2, PGR, and ERBB2.

4.6. Statistical Analysis

Descriptive statistics were used to describe the distributions of various data. Com-
parisons among groups were performed either using a two-sample t-test or one-way
analysis of variance (ANOVA). Statistical analyses, where applicable, were performed
using ANOVA. A p-value less than 0.05 was considered statistically significant. All analyses
were performed using the R computing software (version 4.3.1; R Foundation for Statistical
Computing, Vienna, Austria).

5. Limitations

We consider the following limitations of this work due to the heterogeneity in the
TCGA BC stages/grades, demographics, ages, and pathological topographies; thus, the
data should be cautiously interpreted. Breast samples were grouped into different cate-
gories based on detectable and allied features as available in the RNA-Seq datasets reflecting
the targeted parameters, and we excluded those samples without clarity. As a consequence,
breast specimens are varied in numbers for cancerous and non-cancerous groups, and
the results obtained have been conscientiously discussed and/or analyzed. Moreover,
the certainty displayed cannot be inferred as we evaluated genomic, epigenomic, and
transcriptional profiles using a variety of bioinformatics tools, including heatmap and
boxplot analyses. While analyzed algorithms are presented in the same order in both
primary breast tumors and BC cell lines, readers’ conclusions could vary and may warrant
additional investigations. These findings, however, provide novel insights into the dys-
regulation of epigenetic enzymes and their correlation with the steroidogenic machinery,
especially estrogen/E2 biosynthesis, ratifying breast pathogenesis. Aberrant regulation of
epigenomic and steroidogenic signaling was mirrored considerably in both human primary
breast tumors and relevant BC cell lines, underscoring that the notion of uncertainty is
limited. Studies with a larger number of samples, along with demographic information,
and different technological settings would be beneficial for precise conclusions.

6. Conclusions

Analyses of dysregulated genomic, epigenomic, hormone receptors, and transcrip-
tional factors, impacting breast tumorigenesis, differ in a subtype-specific manner, reflecting
their survival, maintenance, and therapeutics. Accordingly, our IPA identified a number
of new targets and processes/factors impacting BCs. Hormone-sensitive BCs express
ERα and are predominantly activated by estrogen/E2, along with elevated genotoxic
and oncogenic signaling, in which a myriad of processes and signaling plays permissible

https://www.qiagenbio-informatics.com/products/ingenuity-pathwayanalysis
https://www.qiagenbio-informatics.com/products/ingenuity-pathwayanalysis


Int. J. Mol. Sci. 2023, 24, 16488 16 of 19

roles. Analyses of TCGA RNA-Seq datasets, involving cancerous and non-cancerous breast
tissues, revealed disruption in the levels of the majority of epigenetic enzymes in lumi-
nal BC subtypes compared with their normal counterparts. Epigenetic enzymes regulate
a variety of cellular processes, including chromatin remodeling and genomic stability
through the dynamic process of the acetylation and deacetylation of core histones [12,29,35].
Interestingly, however, aberrant expression of most of these epigenetic regulators was
not correlated with the overall survival of BC patients, suggesting they influence other
factors/processes for stimulating the disease pathogenesis. Noteworthily, malfunction
in the steroidogenic machinery, involving androgen and estrogen biosynthesis, has been
implicated in the pathogenesis of hormone-dependent BCs [10,12,45,75]. Genomic profiling
of TCGA BC datasets provides evidence that epigenetic dysregulation is closely linked
with abnormalities of the factors and hormone receptors that critically influence various
steps in the steroidogenic pathways, ranging from cholesterol trafficking/metabolism to
estrogen/E2 accumulation, and these events that are culpable for breast carcinogenesis
and eventual fatal consequences. The genomic and epigenomic heterogeneity observed
in the human primary breast tumors was parallel with a variety of pertinent breast cell
lines. As such, aberrations in molecular features, associated with primary breast tumors
and relevant cell lines, facilitate a better understanding of the mechanisms involved in
breast tumorigenesis and help develop the targeted therapies for countering one or more
BC subtypes. Studies have shown that HDACIs have multiple targets on cancer cells,
including BCs, and display favorable outcomes in numerous aspects, ranging from cell
cycle arrest to the downregulation of estrogen/E2 levels [12,16–19,76]. Accordingly, we
reported that a variety of FDA-approved HDACIs, at therapeutically relevant doses, by
altering STAR acetylation patterns, suppress E2 accumulation in both ER+/PR+ MCF7 cells
and mouse primary cultures of enriched breast tumor epithelial cells [13,16]. By analyzing
RNA-Seq datasets, pertaining to both human primary breast tumors and pertinent cell
lines [9,25,26], these data identify the molecular mechanisms connected with dysregulated
epigenetic and steroidogenic machinery influencing breast pathogenesis, which are funda-
mental for a detailed understanding of diagnostic, preventive, and therapeutic strategies
for BCs. Moreover, these analyses elucidate therapeutic perspectives with the inhibition of
HDACs, emphasizing the relevance of more targeted HDACIs for the management of this
devastating disease.
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