
Citation: Molodtsova, D.; Guryev,

D.V.; Osipov, A.N. Composition of

Conditioned Media from

Radioresistant and Chemoresistant

Cancer Cells Reveals miRNA and

Other Secretory Factors Implicated in

the Development of Resistance. Int. J.

Mol. Sci. 2023, 24, 16498. https://

doi.org/10.3390/ijms242216498

Academic Editor: Christos

Papadimitriou

Received: 13 October 2023

Revised: 12 November 2023

Accepted: 17 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Composition of Conditioned Media from Radioresistant and
Chemoresistant Cancer Cells Reveals miRNA and Other
Secretory Factors Implicated in the Development of Resistance
Daria Molodtsova 1,2 , Denis V. Guryev 2 and Andreyan N. Osipov 1,2,3,*

1 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences,
119991 Moscow, Russia; dmolodtsova@gmail.com

2 State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological
Agency (SRC—FMBC), 123098 Moscow, Russia; denis.guryev@gmail.com

3 Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
* Correspondence: aosipov@fmbcfmba.ru

Abstract: Resistance to chemo- or radiotherapy is the main obstacle to consistent treatment outcomes
in oncology patients. A deeper understanding of the mechanisms driving the development of
resistance is required. This review focuses on secretory factors derived from chemo- and radioresistant
cancer cells, cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), and cancer stem
cells (CSCs) that mediate the development of resistance in unexposed cells. The first line of evidence
considers the experiments with conditioned media (CM) from chemo- and radioresistant cells,
CAFs, MSCs, and CSCs that elevate resistance upon the ionizing radiation or anti-cancer drug
exposure of previously untreated cells. The composition of CM revealed factors such as circular
RNAs; interleukins; plasminogen activator inhibitor; and oncosome-shuttled lncRNAs, mRNAs,
and miRNAs that aid in cellular communication and transmit signals inducing the chemo- and
radioresistance of sensitive cancer cells. Data, demonstrating that radioresistant cancer cells become
resistant to anti-neoplastic drug exposure and vice versa, are also discussed. The mechanisms
driving the development of cross-resistance between chemotherapy and radiotherapy are highlighted.
The secretion of resistance-mediating factors to intercellular fluid and blood brings attention to its
diagnostic potential. Highly stable serum miRNA candidates were proposed by several studies as
prognostic markers of radioresistance; however, clinical studies are needed to validate their utility.
The ability to predict a treatment response with the help of the miRNA resistance status database will
help with the selection of an effective therapeutic strategy. The possibility of miRNA-based therapy
is currently being investigated with ongoing clinical studies, and such approaches can be used to
alleviate resistance in oncology patients.

Keywords: radioresistance; chemoresistance; cancer cell; conditioned media; secretory factors;
oncosomes; exosomes; miRNA

1. Introduction

Chemoradiation therapy (CRT) is a commonly indicated treatment in the case of
cancer. In combination with surgery or alone, it offers a relief of condition or even a cure
for some patients. In cases when cancer cannot be abolished with CRT, resistance is often
the case. Resistance can be a pre-existing tumor state due to a genetic profile or presence
of cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), or mesenchymal stem
cells (MSCs), or it can be acquired. Previous treatment with radiation or chemotherapy
(CT) can lead to the selection of surviving cells with a resistant phenotype and/or the
transformation of surviving cancer cells into resistant cells. This resistant phenotype
allows cancer cells to escape death after future treatment and maintain a viable tumor cell
population. Various mechanisms have been described that are associated with resistance,
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and many are shared between radioresistant and chemoresistant cells. Increased repair
capacity, abrogation of cell cycle arrest, apoptosis evasion, tumor heterogeneity, activation
of CSCs, mutation, and tumor microenvironment (TME) are common mechanisms leading
to both radio- and chemoresistance. When anti-cancer therapy is administered, tumor cells
exert a complex response that includes a state-specific secretory profile that orchestrates
communication between cells to help them adapt. A variety of molecules, including
cytokines, interleukins, mRNA, and ncRNA, such as miRNA and lncRNA, as well as others,
are released into the extracellular space and can cause changes in the cells that uptake them
and also reflect the cell-specific state. In this article, we describe how resistance-associated
cancer secretome exerts its biological functions and its applications in diagnostics. We also
highlight different therapeutic approaches to sensitize resistant cells and CSCs to achieve
consistent clinical outcomes.

2. Conditioned Media

To reveal the influence of TME on the development of resistance of cancer cells, ex-
periments with conditioned media (CM) were conducted. CM contains various paracrine
factors and oncosomes that convey molecular signals and aid in cellular communication.
Among the resistance-associated secretory molecules, circular RNAs (circRNA) and cy-
tokines have been identified. Cytokines bind to cellular receptors and initiate a signal
cascade, while circRNA can enter by endocytosis. circITGB6 was found to be associated
with cisplatin resistance in M2 macrophages, while circATP8B4 facilitates higher viability
after ionizing radiation (IR) treatment [1,2]. In addition to circRNA, interleukin-11 (IL-11),
secreted by cancer-associated fibroblasts, previously treated with cisplatin, also induced a
significantly higher viability of A549 cells following cisplatin exposure by activating the
IL-11R/STAT3 anti-apoptotic signaling pathway [3].

Other studies explored radioresistance induction and showed that CM from previously
irradiated cells also showed protective effects in the A549 cells upon additional X-ray
exposure, leading to lower apoptotic rates [4]. CM from three types of previously irradiated
lung cancer cells facilitated decreased cell death upon irradiation of sensitive cells via
increased plasminogen activator inhibitor-1 (PAI-1) that upregulated AKT and ERK1/2
pathways and inhibited caspase-3 activity [5].

In vivo TME contains senescent cells that are formed after anti-cancer therapy that
express the senescence-associated secretory phenotype (SASP). Senescent cells are more
resistant to exposure due to their dormant state, polyploidy, and apoptosis evasion via
senescent cell anti-apoptotic pathways, and they secrete various cytokines such as TGFβ1,
TGFβ3, IL1β, IL-6, IL-8, CXCL1, CXCL2, and CXCL5 in addition to miRNA containing onco-
somes that can promote tumor progression and confer subsequent therapy resistance [6,7].
Therapeutic approaches help to ablate senescent cells and were shown to improve treatment
outcomes, as discussed in Section 3.1.

2.1. Oncosomes

Recently, oncosomes have attracted attention after studies highlighted these tiny
vesicles as cargo for representative molecules from their donor cells and their role in
the horizontal transfer of these molecules, such as mRNA, lncRNA, miRNA, proteins,
lipids, and others. Oncosomes are exosomes released from cancer cells carrying cargo
that promotes carcinogenesis such as oncogenes and other molecules facilitating tumor
progression [8]. Research shows that chemoresistant cells offer protective effects to non-
resistant cancer cells via the transfer of oncosomes. Multiple experiments demonstrated
that incubation of sensitive cancer cells with oncosomes, isolated from the conditioned
media of resistant cells, led to better viability after CT drug treatment [9–12]. Upon blocking
oncosome release in combination with chemotherapy administration, a sensitizing effect
was observed with higher treatment efficiency in different types of cancer cells, and it
was also confirmed in vivo with a chorio-allantoic membrane (CAM) assay [10,13]. A
CAM assay involves the deposition and growth of a tumor or other patient cells on top of
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the extraembryonic membrane of the developing chick embryo. This approach is valued
as a model to recreate a tumor microenvironment due to the presence of immune cells,
angiogenesis, and the extracellular matrix. In addition to shuttling molecules, oncosomes
can directly facilitate chemoresistance, as was shown in case of breast cancer oncosomes
that can reduce trastuzumab bioavailability by binding it with the human epidermal growth
factor receptor-2 ligands that are present on their surface [9]. Oncosomes isolated from
chemoresistant osteosarcoma and prostate cancer cells carried the MDR-1/P-glycoprotein
itself and its mRNA and were associated with higher drug resistance of sensitive cells
due the upregulation of this drug efflux pump [14,15]. Oncosome-shuttled mRNA of O6-
alkylguanine DNA alkyltransferase and lncRNA that increases the expression of XRCC4
were shown to enhance DNA damage repair, thus mediating resistance to temozolomide in
some cancer cells [16,17].

Research of oncosomes in irradiated cells showed that oncosome biogenesis and
secretion appears to increase following irradiation, mediated by DNA-damage-induced
p53 upregulation [18–24], and such an increase in oncosome secretion was also described
after chemotherapy drug exposure [25,26]. Incubation of squamous cell carcinoma cells
with oncosomes, isolated from previously irradiated cells, provided protective effects
by increasing sensitive cell survival and decreasing the number of DNA double strand
breaks (DSBs) after 6 h following radiation exposure [22]. Treatment of different lines of
glioblastoma and breast cancer cells with oncosomes derived from previously irradiated
cells also increased their survival after irradiation [23,24]. The role of oncosomes in the
development of chemo- and radioresistance is depicted in Figure 1.
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2.2. miRNA

There is growing evidence that resistance can develop via the delivery of oncosome-
shuttled miRNA [9,10,27–29]. MicroRNA is a non-coding RNA molecule that is involved in
the post-transcriptional regulation of gene expression by binding to mRNA and silencing
genes, as well as under some circumstances, such as starvation, activating genes [30–32].
Extracellular miRNA acts in cellular communication, as it passes the signal from one cell
to another via oncosome fusion with the recipient cell or by binding to Toll-like receptors
and activating an intracellular signal cascade [30,33]. miRNA is involved with many
important biological processes, including the development and disease, and some of them
are evolutionarily conserved between species [34,35].

Numerous studies conducted microarray analyses and RT-PCR of miRNA content
from oncosomes isolated from the conditioned media of chemoresistant, radioresistant, and
sensitive cancer cells that showed differentially expressed miRNAs as well as an exclusive
set of miRNAs in each group [10,28,36–38]. Further experiments with transfections of
selected deregulated oncosome-derived miRNA mimics and inhibitors confirmed their
involvement with the development of resistance [27,39]. The most commonly highlighted
mechanisms of how miRNA drive chemoresistance is apoptosis evasion by the downregu-
lation of Bcl2 by miR-34a and miR-30a [28,37], downregulation of caspase 3/7 by miR-4443
and miR-4488 [38], and PTEN and PDCD4 by mir21 and miR-30a [10].

Table 1 presents all secretory miRNAs that were associated with the development
of resistance to CT and radiotherapy (RT) of non-small cell lung cancer (NSCLC). Few
studies looked at the profiles of miRNAs shuttled in oncosomes from radioresistant cancer
cells, although numerous works analyzed their intracellular levels and showed that they
vary for different doses and cell types, with only a few of them being shared, confirming
miRNA radioresistant and sensitizing ability with transfection experiments using mimics
and inhibitor vectors, demonstrating therapeutic and diagnostic potential [40].

Table 1. Secretory miRNA (exosomal and circulatory) involved in the radio- and chemoresistance
of NSCLC.

Type of Resistance miRNA

Tyrosine kinase inhibitors

mir-BART14, mir-1469, mir-16-1, mir-196, mir-4791,
mir-4796, mir-548aq, mir-72, mir-H19, mir-138-2,
mir-153, mir-585, mir-4803, mir-744, mir-769 [41]

mir-184, mir-3913 [42]
mir-658, mir-564 [43]
mir-1468, mir-23 [44]

mir-136 [45]
mir-214 [46]
mir-210 [47]
mir-615 [48]

Cisplatin

mir-20a [49]
mir-193a [50]
mir-524 [51]
mir-4443 [52]
mir-1246 [53]
mir-425 [54]
mir-103a [55]

mir-1273a [56]
mir-100 [27]

IR
mir-196a [57]
mir-208a [39]

mir-29a, mir-150 [36]
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2.3. Stromal Cell Secretome Mediates Resistance

To model an entire complexity of TME in vitro, it is important to consider other key
players of resistance induction, such as CAFs and MSCs. CAFs are stromal tumor cells that
become activated and recruited by CSCs to facilitate tumor progression. CAF exosomes
(CAE) supply cancer cells with nutrients to help them grow during starvation, as well
as regulatory factors to mediate response to stresses, such as hypoxia and anti-cancer
therapy [58]. A growing number of studies are showing the role of CAE secretome in
the chemoresistance of cancer cells, involving reduction of apoptosis, drug transporters,
autophagy, and increase in proliferation [49,59–63]. CAE also maintain a CSC popula-
tion within a tumor by wnt signaling, causing cancer cells to dedifferentiate and become
stem-like [60,64,65]. In addition, CAFs form a rigid extracellular matrix with the help of
collagen, integrin, and other proteins that shield the tumor and can constrict the blood
supply, creating hypoxia to reduce drug penetration into the tumor [66]. CAF-derived
chemokines and other factors protect cancer cells from radiation by increasing reactive
oxygen species levels, DNA damage repair, and autophagy [67,68]. CAFs are radioresistant,
and in response to IR, they become senescent and secrete factors that can increase the
proliferation of cancer cells and promote higher viability upon irradiation [69].

MSCs are multipotent stem cells that are found in bone marrow, adipose tissue, and
other organs and can travel to distant sites in the body and differentiate into osteoblasts,
adipocytes, chondrocytes, or fibroblasts [70]. MSCs can also migrate to tumor sites where
they communicate with the surrounding cancer cells or differentiate into CAFs. MSC
secretome can protect cancer cells from anti-neoplastic therapy via oncosome-shuttled
miRNA and lncRNA [71,72]. MSC communication with the tumor is very complex, and in
some cases, they exert anti-cancer properties and help fight the disease [73,74]. This opened
up a venue for the development of MSC exosome-based therapy to sensitize cancer cells
for treatment with CT or RT.

2.4. Crosstalk between Radio- and Chemoresistance

Anti-cancer therapy exerts systemic effects throughout the body, causing direct tissue
toxicity in the case of CT, while with RT, these effects are mediated via cellular signaling
known as the bystander effect. With IR exposure, cells respond with secretome changes
that become manifested in distant tissues. While the bystander effect refers to damages
in unexposed cells that are connected systemically, it is the same mechanism that can also
establish resistance to subsequent therapy.

CRT can be delivered concurrently or sequentially before (neoadjuvant) or after (adju-
vant) the primary treatment (surgery or RT). During sequential CRT, failure can be associ-
ated with cross-resistance. Radio- and chemoresistance are two distinct phenotypes, and
their interplay is very complex, in some cases offering protective effects with subsequent
CT or radiation exposure, while in other cases potentiating the damaging effects. There is
evidence that chemoresistant cancer cells also become resistant to ionizing radiation expo-
sure [75–80]. In ovarian cancer cells, cross-resistance is facilitated by increased glutathione
content, as glutathione inhibition with buthionine sulfoximine sensitized cisplatin-resistant
cells to IR comparable to the sensitive cells [76,81]. Better survival of cisplatin-resistant
glioma cells upon exposure to low-dose rate as opposed to high-dose rate suggests their
increased repair capacity [78]. However, cross-resistance is not always the case and there
is evidence of chemoresistant cells’ sensitivity to IR, in particular to high linear energy
transfer (LET) neutrons [82–84]. High LET radiotherapy involves heavy particles such
as fast neutrons and C-ions that are a preferrable treatment for some types of tumors
with high repair capacity, such as the prostate, salivary gland tumors, osteosarcoma, and
chondrosarcoma, as well as in the case of photon resistance [85]. Densely ionizing radiation
makes more penetrations per unit of matter, creating damaging tracks, and it has a higher
relative biological effectiveness, making a more lethal cellular impact.

In some cases, such as breast cancer, during the course of CRT, CT can be given
following RT [86,87]. Research shows that radioresistant cancer cells also become resistant
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to CT drug exposure and can facilitate cross-resistance via oncosome secretion. A recent
study found that radioresistant lung adenocarcinoma cells were less sensitive to pemetrexed
treatment after long-term fractionated radiotherapy, and the authors argued that this was
due to the significant downregulation of folate receptor alpha (FRα), which caused a
decreased drug uptake into the cell [88]. Radioresistant nasopharyngeal carcinoma cells also
show resistance to cisplatin, which is associated with an upregulation of a transmembrane
transporter SLC1A6 that was confirmed with a siRNA transfection [89]. Another study also
showed that radioresistant NSCLC cells had a significantly higher IC50 of cisplatin [90]. A
study showed that treatment of different types of breast cancer cells with exosomes derived
from radioresistant cells leads to higher viability after doxorubicin treatment [24]. On the
contrary, a study [91] showed a drastic increase in the sensitivity of radioresistant A549
cells to topoisomerase 1 inhibitor SN-38 that was associated with the downregulation of
the efflux transporter breast cancer resistance protein (BCRP) after long-term fractionated
irradiation that resulted in increased drug accumulation inside the cell. BCRP was originally
identified in breast cancer tissue but can be found in different cell types, and it is a major
transporter of anti-cancer drugs out of the cell.

The main mechanism of cross-resistance development during CRT is the different
modes of action of CT and RT that can lead to the formation of a more heterogenous
cell population with altered gene expression and mutations that can evade death upon
subsequent exposure [92]. In the case of CT with drug combinations, multiple-drug
resistance (MDR) can develop due to drugs acting on the same target, wherein the first line
of exposure can deregulate or cause the mutation of the target to become unresponsive [92].
MDR can also be facilitated via ABC transporter upregulation such as glycoprotein P, BCRP,
and multidrug resistance-associated proteins that efficiently export drugs out of the cell.
Repeated cisplatin exposure in mice leads to MDR associated with increased levels of DNA
damage repair efficiency and gene expression, and it is a likely mechanism for photon RT
and CT cross-resistance since DNA damage response pathways tend to be more active in
resistant cells [93,94]. Further research is needed to elucidate whether the mechanisms
driving cross-resistance are potentiated by CM or oncosomes.

2.5. Cancer Stem Cells

CSCs represent a subset of tumor cells that possess a tumor-initiating ability and can
differentiate into heterogenous non-stem tumor cells [95,96]. The frequency of CSCs varies
broadly between different tumor types, spanning from small populations of <1% in human
acute myeloid leukemia and liver cancer up to 82% in acute lymphoblastic leukemia [96].
CSCs display cancer-type-specific CD markers on their surface that can be used for their
isolation [97–99]. CSCs with different combinations of surface markers vary in their IR
sensitivity from highly sensitive to highly resistant and thus pose an additional obstacle
for cancer therapy [100]. For a successful clinical outcome, CSCs have to be completely
eradicated since the remaining cells can self-renew and differentiate to entirely recover
a heterogenous tumor. CSCs can be isolated using surface markers and a fluorescence-
activated cell sorting or magnetic-activated cell sorting approach or with a cell sphere
formation serum-free culture without attachment. Of note, only the first few passages
of isolated CSC remain enriched in a cell culture, since they quickly differentiate and
form a heterogenous cell population with a minor subset of CSCs. Researchers collected
exosomes from CSCs, showing that they are implicated in tumor progression and mediate
proliferation, hypoxia response, angiogenesis, metastasis, and therapy resistance [101].

Research is lacking about how CSC-derived oncosomes facilitate resistance, but one
study showed that oncosomes isolated from gemcitabine-resistant pancreatic CSCs me-
diate gemcitabine resistance after incubation with sensitive BxPC cells via mir-210 up-
regulation and mTOR activation [102]. Mir-210 upregulation was also implicated with
gemcitabine resistance in resistant non-stem pancreatic cancer cells [103]. Another study
also showed that mir-155 was upregulated in oncosomes from breast CSCs as well as
non-stem chemoresistant MDA-MB-231 cells and could induce doxorubicin and pacli-
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taxel resistance of sensitive cells via epithelial mesenchymal transition induction [104].
There is evidence that transfection of pancreatic cancer cells with mir-205 mimic sensitized
pancreatic gemcitabine-resistant CSCs and non-stem MIA PaCa cells to gemcitabine, and
this effect was confirmed with gemcitabine administration of tumor-bearing mice gener-
ated with gemcitabine-resistant MIA PaCa cells transfected with mir-205 overexpressing
lentivirus [105]. With the ability to selectively isolate and culture CSCs, more research is
needed to highlight the oncosome content profile involved with radio- and chemotherapy
resistance and whether it differs from non-stem-resistant cancer cells. So far, there appears
to be a striking similarity in CSC and non-stem-resistant cell secretome that could be due to
resistance-acquiring cells’ dedifferentiation to become stem-like. Thus, it is possible that
resistant cancer cells and CSCs can be targeted by the same therapeutic approaches.

3. Diagnostic Biomarkers of Resistance

The detection of secretory factors holds potential as a diagnostic biomarker for tumor
cell resistance status to predict a therapy response. miRNAs are a promising tool in
biomarker development, as they are highly stable molecules in circulation [30]. Minimally
invasive diagnostic approaches have been made using plasma levels of some miRNAs.
miR-208a holds potential as a serum biomarker of NSCLC radioresistance, while other
detected differentially expressed miRNAs await further investigation [39]. miR-29a-3p and
miR-150-5p from blood were also found to be reflective of NSCLC radioresistance [36].
Eleven serum miRNAs were predictive of NSCLC patients’ resistance to RT [106]. Various
circulatory exosome-shuttled miRNAs were also predictive of chemotherapy resistance
status, as presented in a review [107]. Candidate secretory miRNAs involved with radio-
and chemoresistance of NSCLC as an example are presented in Table 1, and they can
be a starting point in the development of a minimally invasive diagnostic panel. Other
diagnostic approaches are based on liquid and tumor biopsies, which can include miRNA
from isolated oncosomes or other secretory factors, as well as intercellular miRNA analysis.
Candidate intercellular miRNAs predictive of chemo- or radioresistance status have been
proposed in numerous studies and are summarized in reviews [108,109].

The Human miRNA Disease Database [110] contains miRNA–disease associations,
including cancer and others, from 19,280 scientific articles as of today. Cancer-associated
miRNA biomarkers have been validated, and a “miRview-mets2” panel was created for the
clinical identification of metastatic cancer origins, in addition to other clinical miRNA-based
tests [32]. Creating a resistance status database would be helpful to current diagnostics in
the clinic to select a more efficient treatment regimen.

3.1. Therapeutic Approaches

Since the resistance-mediating effects of oncosomes were characterized, the inhibition
of their secretion, biogenesis, or uptake was attempted in combination with anticancer
therapy that led to tumor sensitization and higher antineoplastic efficiency in multiple
in vitro studies, as summarized in a review [107]. The administration of exosome inhibitors
heparin and simvastatin can help alleviate the detrimental effects of the oncosome injection
derived from resistant cells in mice [23,111]. Alkylation of TME also reduces oncosome
release, and intraperitoneal injections of proton pump inhibitors in combination with
chemotherapy in mice led to decreased plasma exosome levels; however, no differences in
tumor weight were noted due to selected time intervals [112].

Upon the discovery of secretory regulatory RNA factors conveying chemo- and ra-
dioresistance, approaches were made to up- or downregulate them in vivo. Injections
of exosomes containing mir-214 antagomir sensitized lung tumors in mice, pre-treated
with oncosomes from gefitinib-resistant PC9 cells [46]. As an example, antisense oligonu-
cleotide targeting allowed for the knockout of circITGB6 in vivo with intraperitoneal in-
jections, and in combination with cisplatin treatment, it led to significantly lower ovarian
circITGB6-transfected tumor size and increased survival in mice compared to cisplatin
alone [1]. Knockdown of IL-11 in mice with lung cancer also led to better effects of cisplatin
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treatment [3]. Inhibition of a paracrine factor PAI-1 in mice with lung cancer by oral ad-
ministration of tiplaxtitnin successfully sensitized tumors to radiation therapy and led to a
significantly decreased tumor volume [5].

The animal studies discussed above provide a valuable model for the in vivo investi-
gation of therapeutic opportunities and successful outcomes proceeding further to clinical
trials. Preliminary investigations were carried out on cell cultures, while 3D cultures were
also used to simulate tumor formation in vitro. Recent neo-organoid developments are a
very promising treatment based on cell integration into a 3D scaffold with the following
implantation into the body. Neo-organoid implantation with Matrigel-imbedded MSCs
overexpressing IL-12 led to significantly better results, as compared to non-genetically
modified MSCs with 67% of mice with breast cancer xenografts being completely tumor
free 55 days after treatment [113].

Such approaches pave the way to abrogate the subset of resistance-acquiring cancer
tumor cells via the acquisition of secreted factors. However, the question remains open
as to how kill the resistant and CSCs that are also present as a subset of a heterogenous
tumor in this model. Today, the major directions in CSC-targeted therapy research include
immunotherapy, inhibition of key signaling pathways, inhibition of DNA repair, and awak-
ening quiescent CSCs [114,115]. Studies of differentially expressed intracellular miRNAs
between resistant and sensitive cancer cells point out the miRNA control of cancer cells’
response to IR or CT, and its direct manipulation can be used to sensitize the tumor prior
to therapy. Table 2 presents a summary of the candidate deregulated miRNA of resistant
NSCLC cells as an example of possible therapeutic targets.

Table 2. Most commonly differentially expressed miRNA of radio- and chemoresistant NSCLC cells.
IR—ionizing radiation; EGFR-TKI—epidermal growth factor receptor tyrosine kinase inhibitors;
5FU—5-fluorouracil.

miRNA Number of References Type of Resistance

mir-21 13

IR [116,117]
Cisplatin [118–120]

EGFR-TKI [121–124]
5FU [125]

Cisplatin and paclitaxel [126]
Cisplatin and docetaxel [127]

Cisplatin, docetaxel, and IR [128]

mir-145 10

IR [129]
Cisplatin [130,131]

EGFR-TKI [132–134]
Docetaxel [135]

Pemetrexed [136]
Paclitaxel [137]

Cisplatin and pemetrexed [138]

mir-200c 6

ALK-TKI [139,140]
EGFR-TKI [141,142]

Paclitaxel [143]
Vincristine, cisplatin, and MDR [144]

mir-17 6
Cisplatin [145,146]
Paclitaxel [147,148]
EGFR-TKI [149,150]

mir-34a 5 Cisplatin [151–153]
Gefitinib [154,155]

mir-326 5
Cisplatin [156–158]

Matrine [159]
Gefitinib [160]
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Table 2. Cont.

miRNA Number of References Type of Resistance

mir-200a 5 Cisplatin [161,162]
TKI [163–165]

mir-200b 5 Docetaxel [166–170]

miRNA therapeutic approaches for the treatment of cancer are gaining attention, with
some of them in clinical trials already [171–173]. Several biopharmaceutical companies
are developing and implementing miRNA-based therapeutics and are trying to overcome
the challenges associated with tumor tissue specificity, off-target activity due to miRNA
pleiotropic nature, and toxicity with novel drug delivery systems and combinations with
other medications [174,175]. Targeting resistance-conferring miRNA for tumor sensitization
in combination with RT or CT also has a potential to overcome resistance and provide more
satisfactory therapeutic results (Figure 2). One of the ways to implement it was attempted
with intra-tumoral injections of exosomes derived from MSCs transfected with selected
miRNAs to sensitize cancer cells to CT, as summarized in a review [73].
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compounds that cause senescent cell death [176–178]. Senomorphic agents block SASP
effects without causing senescent cell death [179]. Senotherapeutics are used as an adjuvant
therapy to ablate senescent cells formed after CT or RT and lead to a better response in
some patients; however, the treatment outcomes are not consistent [180].

4. Conclusions

The present work provided a review of action of various factors secreted from chemo-
and radioresistant cancer cells, CSCs, MSCs, and CAFs that induce resistance in unexposed
cancer cells. This is one of the mechanisms associated with disease recurrence, and this
knowledge is important in paving the way to abolish the development of resistance upon
previous RT or CT. While there is a big step forward in elucidating the secreted factors in
the CM of chemoresistant cancer cells that facilitate the development of resistance, more
research is needed to uncover such factors and their mechanisms of action for radioresistant
cancer cells. A deeper understanding is also required for cross-resistance development
via secreted factors as it has implications in CRT planning. Overcoming resistance will
lead to more consistent treatment outcomes. Future clinical studies are needed to validate
secretory miRNAs as biomarkers to diagnose the chemo- and radioresistance status of
oncology patients. The high heterogeneity of tumors, even of the same types, between
patients calls for the approaches of personalized medicine. However, the development
of a strong diagnostic base from existing cases will aid in the selection of a therapeutic
strategy for a particular patient and contribute to the search for a comprehensive approach
in overcoming resistance.
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