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Abstract: Symbiotic nodulation between leguminous plants and rhizobia is a critical biological inter-
action. The type III secretion system (T3SS) employed by rhizobia manipulates the host’s nodulation
signaling, analogous to mechanisms used by certain bacterial pathogens for effector protein deliv-
ery into host cells. This investigation explores the interactive signaling among type III effectors
HH103ΩNopC, HH103ΩNopT, and HH103ΩNopL from SinoRhizobium fredii HH103. Experimental
results revealed that these effectors positively regulate nodule formation. Transcriptomic analysis
pinpointed GmPHT1-4 as the key gene facilitating this effector-mediated signaling. Overexpression of
GmPHT1-4 enhances nodulation, indicating a dual function in nodulation and phosphorus homeosta-
sis. This research elucidates the intricate regulatory network governing Rhizobium–soybean (Glycine
max (L.) Merr) interactions and the complex interplay between type III effectors.

Keywords: signal crosstalk; SinoRhizobium fredii HH103; HH103ΩNopT&NopC&NopL; GmPHT1-4

1. Introduction

Soybean (Glycine max) serves as a pivotal crop globally, providing a sustainable and
cost-effective plant-based protein alternative to meat [1]. The application of nitrogen during
R1 or the early flowering stage has been correlated with increased soybean yields [2].
However, the overuse of nitrogenous fertilizers has heightened environmental concerns,
necessitating a shift towards biological nitrogen fixation methods [3,4].

Symbiotic interactions between soybeans and specific bacteria result in the formation
of nodules, specialized organs for biological nitrogen fixation. The BradyRhizobium elkanii
USDA61 strain exhibits a functional T3SS, pivotal for host–legume symbiosis specificity [5].
Contrastingly, BradyRhizobium japonicum is noted for its saprophytic abilities and competi-
tive edge, while BradyRhizobium diazoefficiens is recognized for its superior nitrogen fixation
efficacy [6]. The symbiotic relationship is critical for enhancing nitrogen assimilation by
soybean roots, converting atmospheric nitrogen into a usable form, ammonia, thus aug-
menting soybean yield [7]. T3SS facilitates the secretion of virulence factors, also termed
type III effector factors, which are integral to both nodule development and modulation of
the plant host’s immune response [8]. Investigating the role of these effectors is essential to
optimize soybean yields independently of synthetic nitrogen inputs.

Rhizobia, which are Gram-negative bacteria, possess T3SS, a sophisticated structure
that is distinctive to pathogenic Gram-negative bacteria. This system allows the direct
translocation of effector proteins into the host cell cytoplasm, circumventing the extracellu-
lar milieu [9]. The suite of type III effector factors secreted by Rhizobium’s T3SS, including
NopA, NopB, NopC, NopT, NopD, NopP, NopZ, NopL, NopM, NopX, and NopJ, along
with transcriptional activator TtsI, have been identified and play a pivotal role in the
nodulation process [10–15].
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The expression of NopC is contingent upon the presence of flavonoids and the regula-
tory activity of transcriptional regulators NodD and TtsI. Notably, NopC does not have
analogous counterparts in bacterial pathogens and is devoid of conserved domains or
characteristics that might elucidate its symbiotic function. It has been hypothesized that
NopC may function as a chaperone, aiding in the assembly of secretion machinery or the
efflux of effectors into the host cell [16]. NopC secretion relies on T3SS and is introduced
directly into the root cells of the soybean via this system [17,18]. Typically, T3SS-associated
proteins are acidic, cytoplasmic, and retained within the bacterial cell, with some encoded
by operon genes linked to secretion apparatus components. Interestingly, inactivation of
NopC does not abolish the secretion of other Nops. Among the effectors studied, NopC
appears to be a principal factor in obstructing nodulation in both Rhizobium and Lotus
japonicus Gifu [19]. NopC mutants retain the ability to infect L. japonicus Gifu through
infection threads rather than intercellular invasion, indicating a role in shifting the mode of
infection [20].

Similarly, NopL is a rhizobia-specific protein without parallels in bacterial pathogens.
Research has demonstrated that NopL mitigates premature nodule senescence by disrupt-
ing host cell MAPK signaling pathways [21,22]. Nodules induced by the NGR234ΩNopL
mutant displayed an increased incidence of black necrotic spots, indicative of impaired
nodule formation, compared to NGR234 inoculation [23]. Quantitative analysis revealed
a greater frequency and accelerated progression of nodule necrosis post-inoculation with
the NGR234ΩNopL mutant, underscoring the detrimental impact of the NopL effector [24].
While NopL is not essential for Nop secretion, it is necessary for effective nodulation in
certain host species, suggesting that its role as an effector protein is host-genotype depen-
dent [25]. Additionally, NopL can be multiphosphorylated by MAP kinases, indicating
a potential regulatory interaction [22]. These findings affirm the significance of type III
effectors in nodulation control.

NopT, a member of the YopT/AvrPphB family, shares high homology with YopT of
Yersinia, LopT of Photorhabdus luminescens, and AvrPphB of Pseudomonas syringae [26,27].
This effector is active on isopentenylated GTPases [28]. It interacts with ATP-CSACP2 (ATP-
citrate synthase alpha chain protein 2), HIRP (hypersensitive-induced response protein),
and proteins of Robinia pseudoacacia to modulate the immune response during rhizobial
infection. Analogous to NopL, NopT’s transient expression in Nicotiana benthamiana results
in leaf necrosis and elicits a hypersensitive response (HR) [29]. Additionally, NopT induc-
tion of GmTNRP1, an LRR-RK family protein at the cell membrane, serves to downregulate
nitrogenase activity [30].

The signaling network among type III effector proteins is complex, exhibiting crosstalk,
and certain transporters are pivotal in signal mediation.

In Arabidopsis thaliana, the PHT1 family comprises nine phosphorus transporters.
AtPHT1-1 and AtPHT1-4 function as high-affinity phosphate transporters under varying
phosphorus levels, with their expression being upregulated under conditions of phosphorus
deficiency [31] and exhibiting high transcription in the roots [32]. In rice (Oryza sativa),
OsPht1, part of the Pht8 family, regulates phosphate homeostasis [33]. The PHR-PHT1
module is integral to Pi stability, and high expression levels of GmPHT1 in root nodules
contribute to increased Pi accumulation and nodule growth, in addition to enhancing
nitroxidase activity [34,35]. GmPHT1-4, a member of the PHT family with 14 homologous
genes, is highly expressed in the roots, similar to AtPHT1 in Arabidopsis, playing a critical
role in phosphate uptake under both low and high phosphate conditions [36].

The type III secretion system (T3SS) facilitates the transfer of a suite of effector proteins
with diverse functions directly into the host cell. Research indicates that double mutants of
type III effectors can elucidate synergistic relationships among them. It is posited that a host
gene may concurrently respond to multiple type III effectors and that the host signaling
network might be modulated by a specific hub gene during symbiosis establishment. To
identify soybean genes responsive to NopC, NopT, and NopL, RNA-seq analysis was
conducted to discern differentially expressed genes (DEGs) following inoculation with
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single and triple mutants of these effectors. Subsequently, we screened these candidate
genes to characterize their functions at the transcript level.

2. Results
2.1. HH103ΩNopT&NopC&NopL Construction of Mutant

Building upon the previously established signal crosstalk between NopT and NopP,
which suggested an interconnection between these nodulation outer proteins [37], subsequent
investigations have delineated a shared signaling network involving NopC, NopT, and NopL.
In this context, we generated the HH103ΩNopT&NopC&NopL mutant strain, hereafter referred
to as TCL, through triparental mating of NopT with the HH103ΩNopL&NopC strains. This
was achieved by employing Overlap PCR to construct a 3030 bp NopT-Cm fragment. First,
the desired fragment was obtained by PCR reaction (Figure S1), which was subsequently
integrated into recombinant suicide vector pJQ200SK. Confirmation of the correct assembly
was obtained by PCR, which yielded the expected band size of 3030 bp (Figure S2). Fur-
ther validation of the TCL mutant was conducted through both PCR and Southern blot
assays, using the primer sets NopT-S-F-X, NopT-A-R-X, Cm-F, and Cm-R. The primers
NopT-S-F-X and NopT-A-R-X facilitated detection of the NopT-Cm fragment, whereas the
Cm-F and Cm-R primers verified the presence of a 960 bp antibiotic resistance segment.
Additionally, the primer pair NopT-S-F-X and Cm-R enabled identification of both the
antibiotic resistance gene and the upstream NopT fragment, which collectively measured
2020 bp. This concordance was evidenced by positive identification of the TCL strain in
lane 6 during agarose gel electrophoresis (Figure 1). Comparative genomic analysis of TCL
and wild-type Rhizobium HH103, post-Xho I restriction endonuclease digestion, revealed
fragments measuring approximately 3000 bp and 2000 bp, respectively (Figure S3). These
findings conclusively demonstrated successful construction of the TCL mutant.

2.2. TCL Positively Regulates Nodules

To investigate the impact of various mutants on nodulation, DN50 soybean plants
were inoculated with wild-type strain HH103, individual mutants NopC, NopT, NopL, and
TtsI, and the triple mutant TCL. The nodule counts and their dry weights were subjected
to statistical evaluation. When compared to wild-type HH103, a notable decrease in
nodulation was observed in the mutants TtsI, TCL, NopC, NopT, and NopL. Notably,
among the single mutants, the NopC mutant exhibited the most pronounced reduction
in nodulation rate (Figure 2). The triple mutant TCL, along with the NopC, NopT, and
NopL mutants, did not demonstrate statistically significant reductions in nodule count,
suggesting that simultaneous mutations of NopC, NopT, and NopL did not exacerbate the
reduction in nodule number (Figure 2b, Table S1).

Further analysis of the nodule dry weights indicated that nodules from plants inoc-
ulated with the TCL mutant had greater mass, a trend that was also present, albeit to a
lesser extent, in nodules from plants inoculated with the NopC, NopT, and NopL mutants
(Figure 2c, Table S2). Therefore, it could be deduced that the type III effectors NopC, NopT,
and NopL play a positive regulatory role in nodule formation, and there exists a synergistic
signal interaction among these effectors.

2.3. Identification of DEGs Induced by NopC, NopT, NopL, and TCL

The entry of type III effectors into plant cells triggers a specific genetic response that
influences nodulation. To delineate the gene networks responsive to the type III effectors
NopC, NopL, and NopT, RNA-seq was employed. Differential expression analysis was
conducted at 0.5 h post-inoculation (hpi) and 6 hpi with mutant strains NopC, NopL, and
NopT. Comparative analysis utilized volcano plots to compare the DEGs at both time points
against a control setup involving a mock treatment with MgSO4 and wild-type Rhizobium
HH103 inoculation (Figure S4).
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Figure 1. Construction and validation of mutant HH103ΩNopC&NopT&NopL. (a–c) Strain screening. 
The fragments in TCL are amplified by different primers. M: Trans 2K Plus DNA marker. (a) primers 
NopT-S-F-X and NopT-A-R-X; (b) primers NopT-S-F-X and Cm-R; (c) primers Cm-F and Cm-R. (d) 
HH103, NopT structure diagram and HH103ΩNopC&NopT&NopL, NopT-Cm structure diagram. 
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Figure 1. Construction and validation of mutant HH103ΩNopC&NopT&NopL. (a–c) Strain screening.
The fragments in TCL are amplified by different primers. M: Trans 2K Plus DNA marker. (a) primers
NopT-S-F-X and NopT-A-R-X; (b) primers NopT-S-F-X and Cm-R; (c) primers Cm-F and Cm-R.
(d) HH103, NopT structure diagram and HH103ΩNopC&NopT&NopL, NopT-Cm structure diagram.

The analysis indicated that at 0.5 hpi, inoculation with NopC resulted in 2235 DEGs in
comparison to the HH103 control. This number increased to 2364 DEGs at 6 hpi. For NopL,
1762 DEGs were observed at 0.5 hpi, but this number significantly declined to 1190 DEGs
after 6 hpi. Inoculation with NopT elicited 1736 DEGs at 0.5 hpi, with a substantial reduction
to 870 DEGs at 6 hpi.

A comparison between the triple mutant TCL and HH103 at 0.5 hpi revealed 905 DEGs,
including 97 upregulated and 775 downregulated genes. At 6 hpi, the total DEGs dimin-
ished markedly to 338, with 45 genes being upregulated and 298 downregulated (Figure 3).
These findings highlighted a substantial number of DEGs affected by NopC, NopT, NopL,
and TCL, implying the existence of a redundant gene regulatory network among the three
Nop effectors.
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Figure 2. Effects of inoculation with wild-type Rhizobium HH103, single mutants NopC, NopL,
NopT, and TtsI, and triple mutant TCL on DN50 soybean nodules. (a) The phenotypes were
inoculated with wild-type HH103, NopC single mutant (HH103ΩNopC), NopT single mutant
(HH103ΩNopT), NopL single mutant (HH103ΩNopL), and NopC, NopT, and NopL triple mu-
tant (HH103ΩNopT&NopC&NopL), respectively. (b,c) After inoculation with wild-type HH103,
NopC single mutant (HH103ΩNopC), NopT single mutant (HH103ΩNopT), NopL single mutant
(HH103ΩNopL), and NopC, NopT, and NopL triple mutant (HH103ΩNopT&NopC&NopL), the num-
bers of nodules and dry weights of nodules were evaluated. Soybean was grown in B&D medium
(Morad nutrient solution) for 30 days. At least 10 plants with respective phenotypes were considered
for the evaluation. Bar, 1 cm. ANOVA was conducted to determine statistical significance (p < 0.05,
n = 10). A group with the same letter between two groups indicates no significant difference, and a
group without the same letter has a significant difference; conversely, distinct marker letters indicate
significant differences.
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2.4. Weighted Gene Correlation Network Analysis (WGCNA)

Weighted Gene Correlation Network Analysis (WGCNA) was applied to a selection
of 2290 genes exhibiting an average fragment count per million mapped reads (FPKM)
greater than 1 at 0.5 hpi and 860 genes at 6 hpi in plants inoculated with NopC, NopT,
NopL, and TCL. A heatmap representing the co-expression network was generated based
on the correlation coefficients of these genes (Figures 4 and 5), with modules reflecting
highly correlated gene clusters delineated in this heatmap (Figures 4a and 5a).

At 0.5 hpi, three primary gene clusters were identified, distinguished by color cod-
ing. The turquoise module showed the strongest correlation with TCL inoculation and
contained a majority of upregulated genes (Figure 4d). At 6 hpi, eight major gene clusters
were identified, with the red module displaying the highest correlation with TCL, again
containing predominantly upregulated genes (Figure 5d). Clusters with significant cor-
relations were further analyzed to construct Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment maps (Figures 6 and 7).
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Figure 4. WGCNA analysis of 0.5 hpi DEGs. (a) Correlation analysis: the darker the color, the higher
the correlation. (b) Component analysis of the modules corresponding to the genes in WGCNA.
(c) Data situation of the turquoise module. (d) Global expression heatmap of turquoise module genes.

For the module selected at 0.5 hpi, 1412 genes were associated with TCL and were
notably enriched in the plant–microbe interaction and phytohormone signaling pathways.
The module at 6 hpi comprised 67 genes associated with TCL, predominantly enriched
in the phytohormone signal transduction pathway. A distinct enrichment in isoflavone
biosynthesis was observed at 6 hpi compared to 0.5 hpi, indicative of Rhizobium-triggered
soybean nodulation initiation.
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Figure 5. WGCNA analysis of 6 hpi DEGs. (a) Correlation analysis: the darker the color, the higher
the correlation. (b) Component analysis of the modules corresponding to the genes in WGCNA.
(c) Data situation of the red module. (d) Global expression heatmap of red module genes.

Subsequent screening of genes from the WGCNA, in conjunction with DEGs identified
from Venn diagrams, led to the isolation of 16 TCL-associated genes at 0.5 hpi. These were
mainly enriched in the phytohormone signaling and plant–pathogen interaction pathways
(Figure 5b). At 6 hpi, one TCL-associated gene was identified within the phosphorus
transporter category, upregulated post-TCL inoculation. These 17 genes were proposed as
potential network hubs for crosstalk among NopC, NopT, and NopL.
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2.5. Screening for Signal Crosstalk Genes

Comprehensive annotation was conducted for 17 putative signal crosstalk genes
(Table 1). Among them, GmGPL1 (Glyma.04G011900), GmPRX52 (Glyma.06G145300), Gm-
DUF1677 (Glyma.10G247200), and GmPHT1-4 (Glyma.10G036800) demonstrated high ex-
pression levels in soybean rhizomes (Figure S5). Varied expression patterns were noted
for other genes across different soybean tissues according to Phytozome data. Prelimi-
nary annotations and supporting literature posited GmPHT1-4 as a pivotal gene in the
signaling network. Concordance between RT-qPCR results and transcriptomic data for
nodule-associated markers underpinned the transcriptome findings’ credibility (Figure 8).

Table 1. Candidate gene annotation table.

GeneID kME Functional Annotation Expression Position

Glyma.02G259300 0.989 PEROXIDASE 52 Root
Glyma.03G185400 0.982 PECTATE LYASE 12-RELATED Shoot
Glyma.06G174700 0.977 probable pectate lyase 5 Shoot

Glyma.07G203100 0.973 rac-like GTP-binding protein
RAC13 Stem

Glyma.04G011900 0.956
glucose-1-phosphate
adenylyltransferase large
subunit 1

Nodules, Leaf, Stem,
Shoot, Seed

Glyma.09G283900 0.949 protein of unknown function Seed

Glyma.12G035700 0.921 ARG7 auxin-responsive family
protein Leaf

Glyma.10G247200 0.912 protein of unknown function
(DUF1677) (DUF1677) Nodules

Glyma.15G100400 0.908 calcofluor white hypersensitive
protein precursor Nodules

Glyma.08G038400 0.888 transcription repressor OFP8-like Shoot

Glyma.07G217900 0.882 auxin efflux carrier component
3a Leaf

Glyma.08G321400 0.882 aspartyl protease family protein
At5g10770 Leaf

Glyma.12G116200 0.863 leucine-rich repeat extensin-like
protein 4 Root

Glyma.08G042600 0.839 plasmodesmata-located protein 6 Shoot
Glyma.06G145300 0.836 peroxidase 52-like Root, Nodules

Glyma.10G036800 0.836 inorganic phosphate transporter
1–4 Nodules

(The kME value represents the correlation with TCL, and the larger the value, the higher the correlation; expression
position indicates the part of the plant in which the gene is highly expressed, with data obtained from Phytozome).

2.6. Effect of OE-GmPHT1-4 on the Nodulation

The impact of GmPHT1-4 on rhizome development was investigated using GmPHT1-
4-overexpressing (OE) plants, developed through hairy root transformation (Figure S6).
Soybean hairy roots harboring pSOY1-35S:GmPHT1-4:GFP constructs were grown in ver-
miculite for three days before exposure to HH103, NopC, NopT, NopL, and TCL. RT-qPCR
analysis confirmed the overexpression of GmPHT1-4 (Figure 9c). The nodule counts in
OE-GmPHT1-4 plants increased upon inoculation with HH103, NopC, NopT, and NopL,
although the differences were not statistically significant (compared to the empty vector
control; Figure 9a). Notably, OE-GmPHT1-4 plants displayed a significant uptick in tumori-
genesis post-TCL inoculation. Further assessment of the nodule dry weights indicated
a substantial increase in OE-GmPHT1-4 plants, with nodules also presenting increased
size. Collectively, these findings suggested that GmPHT1-4 augments rhizome growth,
phosphorus homeostasis, and concurrently modulates nodule size.
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2.7. Analysis of Difference in GmPHT1-4 Expression after Inoculation with Various Rhizobia

To elucidate the influence of various rhizobia on the expression of GmPHT1-4, RT-
qPCR assays were conducted at 6 h post-inoculation (hpi) with strains HH103, NopC,
NopL, NopT, TtsI, and TCL. The results indicated a pronounced elevation in GmPHT1-4
expression in plants inoculated with rhizobial mutants in contrast to the wild-type strain.
Notably, the amplified expression of GmPHT1-4 correlated with an increment in nodule
size, particularly post-TCL inoculation, where the expression surge of GmPHT1-4 was most
significant, and concomitantly, the nodules exhibited maximal enlargement. These findings
corroborated the pivotal role of GmPHT1-4 as a central gene within the integrated network
of NopC, NopT, and NopL, pivotal for triggering signal transduction pathways in soybean
nodulation.
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Figure 9. Nodulation phenotype of Rhizobium inoculated with soybean e-GmPHT1-4. (a) Control
group (EV group) and experimental group (OE-GmPHT1-4 group) were inoculated with wild-type
Rhizobium HH103, and nodule phenotypes of Rhizobium mutants NopC, NopT, NopL, and TCL.
(b) Nodule count statistics. (c) Dry weight of nodule statistics. Dry weight statistics were performed
for nodules of similar size on each soybean plant to calculate the average weight of each nodule.
(d) RT-qPCR analysis of OE-GmPHT1-4 plants. Bar, 1 cm. The numbers of nodules were compared by
one-way ANOVA test. A group with the same letter between two groups indicates no significant
difference, and a group without the same letter has a significant difference, n = 20. The expression of
GmPHT1-4 was analyzed by t test (** < 0.01).

3. Discussion

Type III effectors NopC, NopT, and NopL from Rhizobium are positively correlated
with nodulation in soybeans [21,37]. Diminished expression of these effectors is associated
with a significant decrease in nodule formation. Inoculation with the TCL mutant strain
of Rhizobium, which encompassed combined mutations in NopC, NopT, and NopL, led to
fewer nodules compared to wild-type Rhizobium HH103. Nonetheless, nodule numbers
in TCL-inoculated plants did not significantly deviate from those in plants inoculated
with single effector mutants, suggesting interactive effects among the type III effectors.
RNA-seq analysis was employed to further investigate the intercommunication between
NopC, NopT, and NopL. This analysis identified alterations in GmPHT1-4 expression post-
inoculation with varied rhizobia and following hairy root transformation, revealing the
gene’s significant regulatory role in nodule formation (Figures 9 and 10). This finding is
consistent with prior reports. In rice, OsPHT1-7 was shown to mediate the rapid accumu-
lation of phosphorus in anthers during development, indicating its role as a specialized
phosphorus transporter and function in anther development [38]. Analogously, in Arabidop-
sis thaliana, Pht1-1 and Pht1-4 are critical for phosphate uptake under both high and low
phosphate conditions [32]. Although investigations into the response of GmPHT1-4 under
low phosphorus conditions have not been undertaken, it is posited that a similar response
pattern would be observed in soybeans. The evident increase in GmPHT1-4 expression
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following inoculation with Rhizobium mutants confirms its role within the downstream
signaling pathways mediated by NopC, NopT, and NopL.
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The initiation of legume–Rhizobium symbiosis is contingent upon intricate signaling
cascades. Since 1999, forward and reverse genetic approaches have elucidated numerous
genes related to nodulation, influencing both nodule development and function [39]. Tran-
scriptomic analysis following inoculation with HH103 and its derivatives indicated elevated
expression of GmNIN2b, GmENOD40, GmNFR1, and GmNFR5, albeit to different degrees.
GmNFR1 and GmNFR5, which are nodulation factor (NF) recognition receptors, have pre-
viously been linked to tumor formation [40]. Positioned downstream in the nodulation
signaling pathway are GmNIN2b and GmENOD40 [41]. The present study demonstrates that
effector factors intersect with the NF signaling pathway, influencing its regulatory network.
This research assessed the interplay between core genes like GmPHT1-4 and nodulation
signals, particularly in scenarios demanding recognition and signaling crosstalk. Predomi-
nantly, hub genes were associated with phytohormone signaling pathways. GmPHT1-4 was
notably enriched within the KEGG pathway as part of the MFS transporter protein pathway
(K08176), indicating its involvement in phytohormone-mediated nodule organogenesis [40].
Furthermore, GmPHT1-4’s role in phosphorus homeostasis and rhizome size regulation
suggests its potential linkage to polar cell growth. Previous studies have identified the
Rho family of GTPases as pivotal regulators of eukaryotic polar cell growth, performing
similar functions to the Small G Protein (SGP) class of signal transduction proteins [42].
Among the genes scrutinized, GLP-1, a glucose-1-phosphate adenylyltransferase, was
implicated in starch biosynthesis through the generation of ADP-glucose from Glc-1-P
and ATP. GmPRX52 is classified within the peroxidase (POD) family, playing a role in
the oxidative breakdown of indole acetic acid (IAA), thus influencing plant growth and
morphogenesis [43]. Based on these findings, it is postulated that NopC, NopT, and NopL
may similarly be involved in mechanisms governing polar cell growth.

Phosphorylation within plant cells can disrupt the MAPK signaling pathway, lead-
ing to the suppression of defense mechanisms [44]. NopT is capable of cleaving PBS1,
thus altering nodule morphology by generating cleavage products with exposed termi-
nal ends [37]. Moreover, NopL has been identified to contain multiple phosphorylation
sites, with a prediction that both NopC and NopT also harbor such sites (Figure S7). It
is plausible to consider that the activation of phosphorylation is essential for modulating
nodulation by NopC, NopT, and NopL. Additionally, the inorganic phosphate transporter
gene GmPHT1-4 exhibits pronounced expression within nodules, signifying its contribution
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to nodule development. This suggests a mechanism whereby phosphorylation of NopC,
NopT, and NopL may hinder the initiation of plant defense responses, thereby facilitating
nodule formation in roots.

In summation, the present study corroborates the participation of GmPHT1-4 within
the signaling interplay among NopC, NopT, and NopL, specifically as a regulator of
phosphorus (Pi) homeostasis subsequent to nodule formation. This regulatory function
occurs downstream of GmNFR1/5 and GmNIN2b signaling (Figure 11). The findings extend
our comprehension of transporter signaling pertinent to the establishment of symbiosis
between soybean and Rhizobium.
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4. Materials and Methods
4.1. Acquisition of Triple Mutant HH103ΩNopT&NopC&NopL

A monoclonal strain of Rhizobium HH103ΩNopL&NopC was isolated on an agar plate
and incubated at 28 ◦C until an OD600 of 0.6 was achieved. Concurrently, Escherichia coli,
harboring the plasmids pJQ200SK-NopT-Spec and pRK2013, was cultured in liquid medium
at 37 ◦C to an OD600 of approximately 0.6. The bacterial culture was then centrifuged in a
1.5 mL microcentrifuge tube at 8000 r/min for 5 min, after which the pellet was resuspended
in 500 µL of antibiotic-free TY liquid medium. The bacterial suspension was prepared at a
ratio of 2:1:1 for Rhizobium, helper, and recombinant suicide vector bacteria, respectively,
followed by centrifugation at 8000 r/min for 5 min. After discarding the supernatant,
the bacterial pellet was resuspended in 15 µL of TY liquid medium. Subsequently, 15 µL
droplets of the bacterial mixture were plated on antibiotic-free TY solid medium and
incubated at 28 ◦C for 36 h. Resulting large plaques were transferred to TY solid medium
containing the corresponding antibiotic, a process that was repeated 2 to 3 times. Finally,
monoclonal colonies were cultivated on TY solid medium with appropriate antibiotics and
5% sucrose to ensure the growth of monoclonal colonies, with the process repeated 2 to
3 times.

4.2. PCR Verification of Bacterial Solution

Mutant strain HH103ΩNopT&NopC&NopL served as the PCR template. The primers
NopT-S-F-X, NopT-A-R-X, Cm-F, and Cm-R were employed for PCR to confirm the suc-
cessful construction of the mutant strains, as indicated by the resultant band sizes post-
electrophoresis.

4.3. Southern Blot

Probes for Southern blot analysis were designed with HH103ΩNopT&NopC&NopL as
the template (Table S3). The selected probe covered the junction between the NopT and Cm
gene sequences, with an approximate length of 200 base pairs. The probe was hybridized
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to the DNA immobilized on a nylon membrane, with band detection achieved through
radioautography.

4.4. Soybean Nodulation Experiment

The experimental subjects included two soybean (G. max L.) cultivars: Suinong 14
(SN14) and Dongnong 50 (DN50). DN50 is favored over SN14 for its higher efficacy in
genetic transformation experiments. The bacterial strains utilized were SinoRhizobium
fredii and its derivatives: the single mutants HH103ΩNopC, HH103ΩNopT, HH103ΩNopL,
HH103ΩTtsI, and the triple mutant HH103ΩNopT&NopC&NopL. Soybean cultivation
conditions were maintained at 25 ◦C with a photoperiod of 16 h of light followed by
8 h of darkness. DN50 seeds, post-sterilization with chlorine, were sown in a double pot
system. The plants were grown until the emergence of the first trifoliate leaf, at which point
they were inoculated with the Rhizobium strains (Figure S8). Bacterial suspensions with
an OD600 of 0.6 were prepared in 10 mM MgSO4. Each Rhizobium strain was inoculated
onto 20 DN50 soybean plants at a volume of 1.5 mL per plant. Thirty days post-inoculation,
10 soybean plants exhibiting uniform growth were selected for the evaluation of nodulation
phenotype.

B&D: MgSO4 0.5 mol·L−1, Na2 MoO4 0.2 mmol·L−1, MnSO4 2 mmol·L−1, H3BO3
4 mmol·L−1, CaCl2 2 mol·L−1, CoSO4 0.2 mmol·L−1, K2SO4 0.5 mol·L−1, CuSO4 4 mmol·L−1,
KH2PO4 1 mol·L−1, ZnSO4 1 mmol·L−1, and C6 H5FeO7 20 mmol·L−1.

4.5. Phenotypic Statistics and Data Analysis

Quantitative nodule counts were subjected to statistical analysis utilizing SPSS 22.0
for both t-tests and ANOVA. Histograms and box plots were generated using GraphPad
Prism 8.0.1.

4.6. mRNA-Seq (mRNA Sequencing) Analysis

For transcriptomic analysis, the soybean cultivar SN14 was selected. Roots inocu-
lated with MgSO4 (as controls), HH103, and the mutants HH103ΩNopT, HH103ΩNopC,
HH103ΩNopL, and HH103ΩNopT&NopC&NopL were harvested at 0.5 h and 6 h post-
inoculation. Root segments 1 cm in length were excised from near the hypocotyl for each
of the three biological replicates, which weighed about 0.1 g. Transcriptomic data analysis
was performed using DEseq2-edgeR, adopting an FDR of less than 0.01 and an FC greater
than 1.5 as the thresholds. Heatmaps, KEGG pathway enrichment, GO annotations, and
WGCNA were executed using TBtools-II v2.003.

4.7. RNA Extraction and RT-qPCR Analysis

Root samples were collected at 0.5 h and 6 h following rhizobial inoculation for RNA
extraction using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA, USA) according
to the supplier’s instructions. Complementary DNA (cDNA) was synthesized employing
HiScript II Reverse Transcriptase, and RT-qPCR was conducted on a Roche LightCycler
480 System using TB Green (Takara Biomedical Technology, Japan). Each sample was
represented by three biological and technical replicates, respectively. Ct values were used
to calculate relative gene expression via the log2 (−∆∆Ct) method.

4.8. Hairy Root Transformation and Positive Soybean Root Detection

The full-length cDNA of GmPHT1-4 was amplified from SN14-derived cDNA using
RT-qPCR with GmPHT1-4-F/R primers (refer to Table S1). The resultant construct, pSoy1-
35S: GmPHT1-4: GFP, facilitated the generation of transgenic soybean hairy roots through
Agrobacterium rhizogene-mediated transformation, following the protocol outlined by
Kereszt et al. [45]. Selection of transgenic roots employed a LUYOR portable fluorescent
protein excitation light source and subsequent verification by RT-qPCR. Transgenic plants
were inoculated with HH103, its single mutants, and the triple mutant at an OD600 of 0.6,
with 1.5 mL per plant. Nodulation counts and dry weight measurements were recorded
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30 days post-inoculation (refer to Figure S6). These nodulation assessments were conducted
across three independent experiments.
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