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Abstract: Microorganism-based methods have been widely applied for the treatment of phenol-
polluted environments. The previously isolated Acinetobacter lwoffii NL1 strain could completely
degrade 0.5 g/L phenol within 12 h, but not higher concentrations of phenol. In this study, we
developed an evolutionary strain NL115, through adaptive laboratory evolution, which possessed im-
proved degradation ability and was able to degrade 1.5 g/L phenol within 12 h. Compared with that
of the starting strain NL1, the concentration of degradable phenol by the developed strain increased
three-fold; its phenol tolerance was also enhanced. Furthermore, comparative genomics showed
that sense mutations mainly occurred in genes encoding alkyl hydroperoxide reductase, phenol
hydroxylase, 30S ribosomal protein, and mercury resistance operon. Comparative transcriptomics
between A. lwoffii NL115 and NL1 revealed the enrichment of direct degradation, stress resistance,
and vital activity processes among the metabolic responses of A. lwoffii adapted to phenol stress.
Among these, all the upregulated genes (log2fold-change > 5) encoded peroxidases. A phenotypic
comparison of A. lwoffii NL1 and NL115 found that the adapted strain NL115 exhibited strengthened
antioxidant capacity. Furthermore, the increased enzymatic activities of phenol hydroxylase and alkyl
hydroperoxide reductase in A. lwoffii NL115 validated their response to phenol. Overall, this study
provides insight into the mechanism of efficient phenol degradation through adaptive microbial
evolution and can help to drive improvements in phenol bioremediation.
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1. Introduction

Phenol, a model compound of aromatic phenols, has been categorized as a hazardous
pollutant associated with difficulties in natural degradation, and it is also easily converted
into other deleterious aromatic compounds [1]. The microbial biodegradation of phenol
has received increasing attention because of its environmental friendliness and relatively
low degradation costs [2]. Studies on microbial degradation and tolerance to high phenol
concentrations can also guide the biodegradation of other aromatic pollutants [3,4]. Micro-
bial phenol degradation can be determined by the microbial type and quantity, pollutant
concentration, and environmental conditions. Promising pure cultures that can degrade
high phenol concentrations include the yeasts Candida albicans PDY-07 (1.8 g/L, 68 h) [5]
and Candida tropicalis JH8 (1.8 g/L, 66 h) [6] and the bacteria Acinetobacter johnsonii D1
(1.35 g/L, 144 h) [7] and Bacillus brevis (1.5 g/L, 108 h) [8]. Further, the previously isolated
Acinetobacter lwoffii NL1, with the highest efficiency, could degrade up to 0.5 g/L phenol
within 12 h under the appropriate conditions (pH 7.0, 28 ◦C, and 2% inoculum) [9]. A. lwoffii
NL1 had one circular chromosome and three plasmids in its genome. A megaplasmid
(pNL1) contained genes encoding phenol hydroxylase (LSNL_2975-2980) and catechol
1,2-dioxygenase (LSNL_2981). Genome analysis indicated A. lwoffii NL1 had the potential
for degrading other aromatic compounds such as benzoate and salicylate. However, A.
lwoffii NL1 could not grow on a mineral medium containing more than 0.6 g/L of phenol
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as the sole carbon source, thus limiting its application in the bioremediation of wastewater
contaminated with higher concentrations of phenol.

To improve degradation capacity, biotechnological approaches, including mutagenesis,
adaptive evolution, genetic engineering, and the immobilization of microbial cells, have
been commonly employed. Among these methods, adaptive laboratory evolution (ALE) is
not dependent on the knowledge of complex metabolic mechanisms; therefore, the target
microorganism can easily adapt to artificial selection stress. Microbial ALE has been used
in biotechnological fields for the production of high-value products, biodegradation of
toxic pollutants, and enhancement of microbial environmental adaptation [10,11]. The
phenol degradation capacity of Rhodococcus opacus [12], Rhodococcus pyridinivorans [13],
Acinetobacter sp. [14], Chlorella sp. [15], and Is Chrysis galbana Parke [16] has been improved
using ALE. Moreover, adaptation to an evolutionary phenol environment is accompanied
by changes in fitness and degradation capacity. The mechanisms underlying phenotypic
changes occur across multiple layers of genetics and through transcriptional regulation
and metabolism, which has commonly been explained through genomic and post-genomic
analyses of the evolved mutants [17].

In this study, the previously isolated strain A. lwoffii NL1 was acclimated by con-
tinuously increasing the phenol concentration. Through approximately 80 cycles, strain
NL115 completely degraded 1.5 g/L phenol in 12 h. ALE thus enhanced the tolerance
and biodegradation of high-level phenol. To reveal the underlying alterations, we per-
formed comparative genomic and transcriptomic analyses of A. lwoffii NL1 and NL115.
This combined approach was effective in identifying differentially expressed genes (DEGs).
Some of these genes and respective proteins were further studied for their gene expression,
enzymatic activity, and biochemical phenotypes. This study uncovers a highly efficient
phenol-degrading strain and explores the underlying mechanism of adaptive evolution in
response to high-phenol stress and will be useful for metabolic engineering for microbial
phenol degradation and tolerance.

2. Results
2.1. ALE under High-Phenol Stress

A. lwoffii NL1 did not grow normally when the phenol concentration exceeded 0.6 g/L.
To improve phenol degradability, ALE was performed in a liquid MM medium with an
increasing concentration of phenol as the sole carbon source. Starting from 0.5 g/L as
the initial phenol concentration, the phenol was increased by 10 mg/L in each cycle of
evolution. If the time required for phenol degradation was shorter than that in the previous
cycle, the evolutionary gradient could be increased by 20–50 mg/L in the next cycle. As
shown in Figure 1, the final biomass in each cycle gradually increased with the number of
evolutionary cycles, suggesting that these adapted strains grew well using phenol as the
sole carbon source. After 80 serial transfers, the concentration of the degradable phenol
was increased to 1.5 g/L. The resulting bacterial solution was diluted and seeded onto
phenol-containing agar plates. A fast-growing single colony (marked as NL115) was tested
in liquid MM with 1.5 g/L phenol as the sole carbon source. This strain, NL115, completely
degraded 1.5 g/L phenol after 12 h, and the OD600 reached 1.652 at 12 h. The relationship
between cell growth and phenol degradation generally conformed to a synchronous model.

2.2. Phenotypic Comparison between A. lwoffii NL1 and NL115

A. lwoffii NL1 and NL115 were compared in 0.5 g/L phenol-containing liquid MM
medium. As shown in Figure 2, compared to the starting strain NL1, A. lwoffii NL115
showed obvious growth advantages. When inoculated into an environment containing
0.5 g/L phenol, A. lwoffii NL115 rapidly entered its logarithmic period, and this strain
required 6 h to reach its maximum biomass, whereas A. lwoffii NL1 required 12 h. In terms
of phenol degradation, the average efficiency of A. lwoffii NL115 was 0.083 g/(L·h), which
was almost twice that of A. lwoffii NL1. The good cell growth and phenol biodegradation of
A. lwoffii NL115 were thus inseparable from its adaptation to high-phenol stress.
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Figure 1. Adaptive evolution cycle of Acinetobacter lwoffii NL1. The duration of each cycle was de-
noted by + symbols, which reflected the time spent in each cycle. The final biomass (OD600) in each 
cycle of the adaptive evolution process was represented by green square symbols. The surplus 
phenol in each cycle was represented by the circle symbols. 

2.2. Phenotypic Comparison between A. lwoffii NL1 and NL115 
A. lwoffii NL1 and NL115 were compared in 0.5 g/L phenol-containing liquid MM 

medium. As shown in Figure 2, compared to the starting strain NL1, A. lwoffii NL115 
showed obvious growth advantages. When inoculated into an environment containing 0.5 
g/L phenol, A. lwoffii NL115 rapidly entered its logarithmic period, and this strain required 
6 h to reach its maximum biomass, whereas A. lwoffii NL1 required 12 h. In terms of phenol 
degradation, the average efficiency of A. lwoffii NL115 was 0.083 g/(L·h), which was almost 
twice that of A. lwoffii NL1. The good cell growth and phenol biodegradation of A. lwoffii 
NL115 were thus inseparable from its adaptation to high-phenol stress. 

 
Figure 2. Acinetobacter lwoffii NL1 and NL115 grown on 0.5 g/L phenol-containing liquid minimal 
mineral medium. The solid symbols represent cell growth, and the hollow symbols represent phenol 
degradation. The circle and square symbols represent A. lwoffii NL1 and NL115, respectively. 

The phenol tolerance of A. lwoffii NL115 was then evaluated on MM plates containing 
phenol at concentrations ranging from 0 to 1.6 g/L. As shown in Figure 3, visible colonies 

Figure 1. Adaptive evolution cycle of Acinetobacter lwoffii NL1. The duration of each cycle was
denoted by + symbols, which reflected the time spent in each cycle. The final biomass (OD600) in
each cycle of the adaptive evolution process was represented by green square symbols. The surplus
phenol in each cycle was represented by the circle symbols.
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Figure 2. Acinetobacter lwoffii NL1 and NL115 grown on 0.5 g/L phenol-containing liquid minimal
mineral medium. The solid symbols represent cell growth, and the hollow symbols represent phenol
degradation. The circle and square symbols represent A. lwoffii NL1 and NL115, respectively.

The phenol tolerance of A. lwoffii NL115 was then evaluated on MM plates containing
phenol at concentrations ranging from 0 to 1.6 g/L. As shown in Figure 3, visible colonies
were formed on 0.1–0.9 g/L phenol plates even at the maximum dilution of the bacterial
concentration. On 1.0–1.3 g/L phenol plates, few colonies were formed at the 10−5 bac-
terial concentration. Cell growth was inhibited on 1.3–1.6 g/L phenol plates even at the
10−1 bacterial concentration. The maximum concentration tolerated by strain NL115 on
MM plates was approximately 1.5 g/L, which was slightly higher than that tolerated by the
original strain NL1 [9]. Cell growth of A. lwoffii NL115 was also examined on MM plates
with sodium acetate serving as the carbon source. At varying concentrations, the C molar
masses of phenol and sodium acetate were identical. A. lwoffii NL115 was able to thrive on
NaAc as a carbon source at all test doses, but it was unable to form a colony on phenol at
concentrations greater than 1.3 g/L, according to a comparison of cell growth on phenol
and NaAc plates at 10−5 diluted concentrations. (Figure S1, Supplementary File).
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Figure 3. Pot assays of Acinetobacter lwoffii NL115 growth on plates with different phenol concentrations.

Fluorescence microscopy was used to qualitatively evaluate the survival of cells treated
with phenol after acridine orange (AO) and ethidium bromide (EB) staining. Live cells will
appear uniformly green, while early apoptotic cells will have condensed or fragmented
nuclei with a bright green color. Late apoptotic cells will show condensed and fragmented
orange chromatin [18]. Phenol treatment of A. lwoffii NL1 and NL115 will lead to partial cell
damage due to its toxicity effect. These suggest that, following AO/EB staining, the color of
the cells, as seen by fluorescence microscopy, may represent their vitality in some way. As
shown in Figure 4A, under 0.5 g/L phenol stress, green cells were more abundant than red
cells for A. lwoffii NL1, whereas many living cells, but no obvious cell death, were observed
for A. lwoffii NL115. Red cell count rose as phenol content increased from 0.5 to 1.0 g/L.
The relative ratio of green to red cells was higher for A. lwoffii NL115 than for A. lwoffii
NL1. In addition, the survival of cells treated with phenol after acridine orange staining



Int. J. Mol. Sci. 2023, 24, 16529 5 of 18

was quantified by measuring fluorescence intensity with a Microplate reader. Acridine
orange can cross normal cell membranes. After AO staining, the nuclei of normal cells
exhibit green or yellow–green fluorescence. Dead cells’ fluorescence decreases or even
disappears. As shown in Figure 4B, the fluorescence intensity of A. lwoffii NL1 and NL115
was nearly the same after 4 h of treatment with 0.5 g/L phenol. The fluorescence intensity
of A. lwoffii NL1 was 64% of the untreated group after 4 h of 1.0 g/L phenol treatment,
whereas the fluorescence intensity of A. lwoffii NL115 was 1.06 times of the untreated group.
The quantitative data indicated that A. lwoffii NL1 died, whereas A. lwoffii NL115 survived
1.0 g/L phenol stress. Both the qualitative investigation and quantitative comparison
confirmed the adapted strain NL115 had a higher tolerance.
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Figure 4. Effects of phenol on cell death. (A) Acridine orange/ethidium bromide (AO/EB) fluores-
cence staining of A. lwoffii NL1 and NL115 under phenol stress. Green indicates the use of green
filters; Red indicates the use of red filters. (B) AO fluorescence intensity in A. lwoffii NL1 and NL115
at various phenol concentrations.

2.3. Comparative Genomics and Transcriptomics of A. lwoffii NL1 and NL115

The genome of the adapted strain NL115 was sequenced using the A. lwoffii NL1
reference genome sequence. Here, 1748 scaffolds and 2634 contigs were assembled with a
read depth of 212×. The coverage rate mapped to the reference genome was 99.95%. The
192 single-nucleotide polymorphisms in the gene-coding regions included 144 synonymous
and 48 non-synonymous mutations (Table S1). Sense mutations were found in genes related
to the mercury resistance operon (LNSL_3430, 3433–3435) on the plasmid pNL3, LNSL_1974
(alkyl hydroperoxide reductase F subunit) on chromosome, LSNL_2510 (30S ribosomal
protein S10) on chromosome, and LNSL_2977 (phenol hydroxylase L subunit) on the
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megaplasmid pNL1. Compared to the sequences of respective genes in A. lwoffii NL1, very
few indels were distributed in LNSL_3434 (transposase), LNSL_0851 (alpha-ketoglutarate
dehydrogenase E1 subunit), and LNSL_3492 sequences of NL115.

RNA sequencing of A. lwoffii NL1 and NL115 during mid-exponential growth was
performed in three different media. As shown in Figure 5, in the NaAc medium, 3303 and
3547 expressed genes were detected in A. lwoffii NL115 and NL1, respectively. On NaAc
medium with the addition of 0.5 g/L phenol, 3302 and 3303 genes were expressed in A.
lwoffii NL115 and NL1, respectively. In the NaAc medium with the addition of 1.5 g/L
phenol, 2877 expressed genes were detected in A. lwoffii NL115. To validate the accuracy of
the RNA sequencing, 15 DEGs in Table S2 were selected for qRT-PCR analysis, and their
expression levels are presented in Figure S2. Table S3 lists these qPCR primers, and the
melting curves of the qPCR products are shown in Figure S3. The correlation coefficient
(R2 = 0.8533) showed that the RNA-Seq data reflected the actual gene expression trends
(Figure S4).
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Figure 5. Venn diagrams for RNA-seq discovered genes in each of the five conditions.

15PHNA_ALE: A. lwoffii NL115 was cultivated on the medium containing 1.3 g/L
NaAc and 1.5 g/L phenol. PHNA_ALE and PHNA_WT: A. lwoffii NL115 and A. lwoffii NL1
were cultivated on the medium containing 1.3 g/L NaAc and 0.5 g/L phenol, respectively.
NA_ALE and NA_WT: A. lwoffii NL115 and A. lwoffii NL1 were cultivated on 1.3 g/L
NaAc medium.

The transcriptome profiles of A. lwoffii NL115 and NL1 in the 0.5 g/L phenol-containing
medium were compared to those in the NaAc medium. The DEGs shared by the two strains
included 61 upregulated and 435 downregulated genes (Table S4). Functional annotation
of the upregulated DEGs revealed that they were primarily related to phenol degradation.
In aerobic bacteria, phenol degradation is mostly dependent on ortho- or meta-cleavage.
A. lwoffii NL1 degraded phenol via the ortho-cleavage, and key genes encoding phenol
hydroxylase and catechol 1,2-dioxygenase were located on a megaplasmid (pNL1) [9]. In
addition to the known ortho-cleavage gene cluster on the megaplasmid pNL1 (locus tags
LSNL_2975–2981), the upregulated DEGs also included LSNL_1566–1571 on the circular
chromosome and LNSL_3112 on pNL1. LNSL_3112 was annotated as encoding the phenol
hydroxylase P0 protein, and LSNL_1566–1568 was annotated as being involved in the first
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three steps of the catechol ortho-cleavage pathway. The metabolic pathway of the upregu-
lated LSNL_1566-1573 is shown in Figure S5. Genes encoding certain phenol ortho-cleavage
pathway enzymes were found in multiple sites on A. lwoffii replicons and were strongly
expressed during phenol stress. Multiple copies of the gene are beneficial to microbial
biodegradation by transcriptome analysis, similar to the effects of gene copy numbers
on microbial biosynthesis [19]. Upregulation of the expression of benzoate hydroxylase
encoded by LSNL1569–1571 under phenol stress in A. lwoffii coincides with the reported
inhibition of phenol degradation [20]. The downregulated genes were more abundant
than the upregulated genes under phenol stress. Of the 435 downregulated genes, 255
were assigned to KEGG Orthology (KO) functional categories and matched to KEGG path-
ways (Table S4). These pathways, including the five additional KO categories, are shown
in Figure 6. The gene expression of ATP synthase and NADH-quinone oxidoreductase
in oxidative phosphorylation was significantly downregulated in the phenol-containing
medium. Expression levels of ATP-binding cassette (ABC) transporters for substrates,
such as urea, phosphate, sulfonate, and benzoate, were also suppressed. For example,
the downregulated LSNL_0083-0085 (KO: K11960-K11962) were annotated to encode urea
transporters, which might be impacted indirectly by phenol stress effects on ABC transport.
Meanwhile, the expression of genes involved in sulfite reduction from dimethyl sulfone
or alkanesulfonate in sulfur metabolism was downregulated under phenol stress. More-
over, expression levels of genes related to L-lactate dehydrogenase (LNSL_3334), alcohol
dehydrogenases (LNSL_2862 and LNSL_3386), and acetate formation (Phosphate acetyl-
transferase LNSL_0413, acetate kinase LNSL_0414, aldehyde dehydrogenase LNSL_3311)
were downregulated during pyruvate metabolism. Other downregulated metabolic path-
ways under phenol stress included phenylalanine metabolism, amino and nucleotide sugar
metabolism, and fatty acid metabolism. In addition to the metabolic subsystem, cellular
processes, such as quorum sensing, bacterial secretion, ribosomes, and the two-component
system, were affected by phenol stress.
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2.4. Mechanism of Adaptation to Phenol Stress in A. lwoffii NL115

To explore the mechanism of adaptation to high phenol concentrations during evolu-
tion, the DEGs between A. lwoffii NL115 and NL1 were analyzed. Compared to levels in the
starting strain NL1, 197 and 854 genes were upregulated and downregulated, respectively,
in A. lwoffii NL115 on NaAc medium, whereas 340 upregulated and 433 downregulated
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genes were identified when the bacteria were cultured on phenol-containing medium
(Figure 7A). Excluding the DEGs identified in the NaAc medium, 248 upregulated and
117 downregulated genes in A. lwoffii NL115 were determined to respond to phenol stress
(Table S5). Among them, 154 upregulated and 50 downregulated genes were assigned
to 145 and 49 KO function categories, respectively. Pathways that included more than
five KO categories were defined as upregulated or downregulated. The absence of down-
regulated pathways indicated that the downregulated genes were functionally dispersed.
The pathways upregulated in the evolutionary strains are shown in Figure 7B. Some
transporters involved in ABC and MFS transport were upregulated in A. lwoffii NL115,
and these proteins can transport nutrients (urea, sulfate, ammonia), metal ions (ferrous
iron, mercuric ion), oligopeptides (glutathione), organic acids (cis, cis-muconate, tartrate,
malonate), choline, and biopolymers. Benzoate degradation gene expression in A. lwoffii
NL115 was significantly higher than that in A. lwoffii NL1, which reflects the improved
positive degradation observed in the evolutionary process. The upregulation of oxidative
phosphorylation indicated more ATP and carbon flux in central carbon metabolism, which
is consistent with the faster growth rates of A. lwoffii NL115 under the same culture condi-
tions. Sulfur metabolism and acetyl-CoA conversion in alternative carbon metabolism were
generally elevated in A. lwoffii NL115, which might be related to CoA being conducive to
phenol stress resistance [21]. In addition, fatty acid metabolism, a two-component system
of nitrogen and short fatty acids, and chemotaxis were enriched in A. lwoffii NL115 cells.
Notably, the most highly upregulated genes (log2FC values > 5) in A. lwoffii NL115 included
LNSL_1974 (alkyl hydroperoxide reductase subunit F, 5), LNSL_ 0160 (alkyl hydroperoxide
reductase subunit C, 6.3), and LNSL_0066 (catalase, 5.9).
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sole carbon source (Figure 8). The activity of phenol hydroxylase at different growth 
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Figure 7. DEGs in Acinetobacter lwoffii NL115 in response to phenol stress. (A) Venn diagrams for
RNA-seq of the two strains on phenol-containing medium and NaAc medium. PHNA_ALE and
PHNA_WT: A. lwoffii NL115 and A. lwoffii NL1 were cultivated on the medium containing 1.3 g/L
NaAc and 0.5 g/L phenol, respectively. NA_ALE and NA_WT: A. lwoffii NL115 and A. lwoffii NL1
were cultivated on 1.3 g/L NaAc medium. (B) Pathways enriched in Acinetobacter lwoffii NL115
in response to phenol stress. The ordinate corresponds to the number of KO categories in each
metabolic pathway.

The aforementioned DEG analysis combined with genome resequencing showed that
phenol hydroxylase and peroxidase in the evolutionary strain are important during the
response to phenol. The crude enzyme activities of the phenol hydroxylases of A. lwoffii
NL115 and NL1 were compared in liquid MM medium containing 0.5 g/L phenol as the
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sole carbon source (Figure 8). The activity of phenol hydroxylase at different growth phases
varied with cell growth trends and reached its highest level at the logarithmic growth
phase. The enzyme activity of A. lwoffii NL115 was nearly two-fold that of A. lwoffii NL1 in
the logarithmic growth phase, which was in accordance with the log2FC (A. lwoffii NL115
relative to A. lwoffii NL1) in phenol hydroxylase (LNSL_2975–2980), which was 1.98–2.89.
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Figure 8. Phenol hydroxylase activity in Acinetobacter lwoffii NL1 and A. lwoffii NL115 during the
entire period.

The highly upregulated peroxidase activity in A. lwoffii NL115 could be associated
with its stronger antioxidant capacity under phenol stress. Microorganisms under stress
generate intracellular reactive oxygen species (ROS), and enzymatic and non-enzymatic
antioxidants help them resist oxidative damage [22]. To investigate the oxidative stress
caused by phenol, the ROS levels in A. lwoffii NL1 and NL115 were measured using the
fluorescent compound DCFH-DA. As shown in Figure 9, ROS levels in A. lwoffii NL115
were lower than those in A. lwoffii NL1 for the same phenol concentration and treatment
time. Moreover, the adapted strain NL115 exhibited strengthened antioxidant capacity.
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Comparative transcriptomics revealed that alkyl hydroperoxide reductase and catalase
levels were highly upregulated under phenol stress in A. lwoffii NL115. The crude enzyme
activities of alkyl hydroperoxide reductase on phenol MM medium were approximately
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2-fold higher than those on the two NaAc media (Figure 10A), whereas catalase activities
were approximately half those on the two NaAc media (Figure 10B). Another common
peroxidase superoxide dismutase showed similar activities in the two NaAc media and
decreased activity in the phenol MM medium (Figure 10C). Crude enzyme activities of
peroxidases thus showed differences in the three types of media, and alkyl hydroperoxide
reductase played a more important role in the response to phenol stress.
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Alkyl hydroperoxide reductase (Ahp) in A. lwoffii was annotated as being composed
of AhpC (LNSL_1974, subunit F) and AhpF (LNSL_0160, subunit C). AhpF is a common
flavoprotein that transfers electrons from the reduced coenzyme I/II to the catalytic subunit
AhpC. The reduced AhpC is then used to detoxify organic peroxides [23]. The crude
enzyme activities of Ahp in A. lwoffii NL115 were slightly higher than those in A. lwoffii
NL1, without a significant difference (Figure 10A); however, a sense mutation was found in
LNSL_1974 using comparative genomics. Therefore, the enzymatic activities of purified
Ahp from A. lwoffii NL115 and NL1 were compared. The DNA fragments of AhpC and AhpF
from A. lwoffii NL115 and NL1 were cloned into the plasmid pET-30a expression vector and
successfully purified (Figure 11A). The NADPH-dependent peroxidase assay was carried
out using tert-butyl hydroperoxide as an organic peroxide and purified AhpC and AhpF
proteins from the two strains. The catalytic capacity of alkyl hydroperoxide reductase
was determined to be AhpF-dependent using excess purified AhpC protein. As shown
in Figure 11B, Ahp enzyme activity increased with increasing concentrations (0 µm,1 µM,
and 5 µM) of purified AhpF. No enzymatic activity was observed in the absence of purified
AhpF, suggesting that AhpF was required for Ahp. When adding 1 and 5 µM of the purified
protein AhpF, Ahp enzyme activities from A. lwoffii NL115 were higher by 43.1% and 87.7%
compared to those from A. lwoffii NL1. The activity of purified NL115-1974 was higher than
that of purified NL1-1974, which enhanced alkyl hydroperoxide reductase activity in the
evolutionary strain for higher phenol stress resistance.
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fii NL115.(A)Purification of AhpC and AhpF proteins from BL21-LSNL1 and BL21LSNL115 via
sodium dodecyl sulfate-polyacrylamide gel electrophoresis. M: protein maker; lane 1–4: protein
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3. Discussion

Phenol is the simplest phenolic and most common contaminant in polluted wastewater
and sewage sludge. The study of microbial phenol degradation can serve as a reference
for bioremediation of more aromatic contaminants. A. lwoffii NL1, with a high phenol
degradation efficiency (41.67 mg/L per hour), was chosen as the starting strain in this
study. The A. lwoffii NL115 strain, obtained via stepwise evolution, completely degraded
1.5 g/L phenol for 12 h in a shake flask and could not grow at concentrations higher
than 1.5 g/L on agar plates (Figure S6). The degradation efficiency and degradation
concentration were also three-fold higher than those of the starting strain, NL1. The
degradation of phenol at a high concentration can rely solely on pure species such as
Burkholderia sp. (1.5 g/L, approximately 48 h) [24], R. opacus PD630 (1.5 g/L, 45 h) [12],
B. brevis (1.5 g/L, 108 h) [8], Acinetobacter strain V2 (1.4 g/L, approximately 24 h) [14],
C. albicans TL3 (1.41 g/L, 50 h) [25], and C. tropicalis PHB5 (2.4 g/L, ~48 h) [26]. The
degradation concentration of A. lwoffii NL115 was lower than that of C. tropicalis PHB5,
but its degradation efficiency (125 mg/L/h) was higher. A. lwoffii NL115 also exhibited
a high degradation capacity among these degradative bacteria and could be a promising
candidate for the bioremediation of high-concentration phenol-containing environments.

Under phenol stress, activation of the β-ketoadipate and ortho-cleavage pathways
was highly upregulated in A. lwoffii. Upregulation of the expression of genes involved in
phenol degradation and utilization has also been observed in many other phenol-degrading
microorganisms [12,27,28]. Metabolic processes related to cellular growth, such as oxidative
phosphorylation, pyruvate metabolism, and nutrient transport, were also downregulated
by phenol toxicity in bacterial cells.

Furthermore, a systematic comparison of gene expression between A. lwoffii NL1 and
NL115 revealed the three main metabolic responses underlying the adaptation of A. lwoffii
to phenol. As shown in Figure 12, (i) the direct degradation was improved. The ortho-
cleavage and β-ketoadipate pathway activation was upregulated after adaptive evolution.
Levels of transporters for benzoate and cis-muconate were also upregulated in NL115.
Upregulation of benzoate transporters may reduce competition for their common protocat-
echuate branch of the β-ketoadipate pathway in phenol and benzoate metabolism. Because
of intracellular intermediate efflux, upregulation of the cis, cis-muconate transporter may
favor the direction of degradation of the β-ketoadipate pathway. (ii) Stress resistance was
improved. The upregulated proteins in the NL115 cells were annotated in response to
various stressors. Excessive ROS causes oxidative damage to microbes [29], and gene
expression and enzymatic activities related to the reduction of hydrogen peroxide and
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hydroperoxide were enhanced in A. lwoffii NL115, which would have been induced to
eliminate ROS and facilitate resistance to oxidative stress. The upregulated genes encoding
alkanesulfonate monooxygenase, sulfate transport, sulfonate-binding proteins, and sulfite
reductases suggest enhanced sulfur metabolism in A. lwoffii NL115. Sulfur is an important
antioxidant under stress [30] that directly affects cysteine biosynthesis, providing a precur-
sor for CoA formation. The upregulated malonyl-CoA in fatty acid metabolism, in turn,
could affect the cell membrane composition of A. lwoffii NL115. Similarly, expression levels
of several genes involved in glycan biosynthesis were downregulated in A. lwoffii NL115,
and these are related to the cell wall composition. The cell wall and membrane might thus
participate in microbial stress responses [31,32]. (iii) Vital activities could be improved.
Levels of genes encoding the chemotaxis sensor kinase CheA and fimbrial proteins were
upregulated, indicating stronger cell motility in A. lwoffii NL115. Levels of genes encoding
several dehydrogenases were significantly upregulated or downregulated, indicating the
frequent regeneration of redox sites as energetic electron donors. The enhanced oxida-
tive phosphorylation revealed increased energy transfer and ATP generation in A. lwoffii
NL115, which was in accordance with the faster cell growth of A. lwoffii NL115 on the
same medium.
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Figure 12. Gene expression analysis of the response to phenol stress in Acinetobacter lwoffii NL115.
Upregulated genes and processes are shown in red, and downregulated genes and processes
are shown in green. LNSL_0048, LNSL_0492, LNSL_1677, and LNSL_2838 are involved in gly-
can biosynthesis. LNSL_1285 and LNSL_1967 encode ferredoxin. Among the drastically altered
dehydrogenase genes were LNSL_0303, LNSL_1039, LNSL_3464, LNSL_1202, and LNSL_1334.
LNSL_0791, LNSL_0792, LNSL_0842, LNSL_1776, LNSL_1777, and LNSL_1126 encode proteins
involved in stress response. In genetic information processes, LNSL_2688, LNSL_0366, LNSL_0217,
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and LNSL_2332 were used for replication and repair, LNSL_0245 was used for transcription,
LNSL_1357, LNSL_1421, LNSL_2170, LNSL_2668, and LNSL_1178 were used for translation,
LNSL_1064 and LNSL_1643 were prophage regulatory proteins. LNSL_0014, LNSL_0529, LNSL_1583,
and LNSL_2158 were involved in drug resistance. Table S5 contains the thorough annotations of
these genes.

Omics analysis and biochemical phenotypes confirmed that phenol hydroxylase and
alkyl hydroperoxide reductase are important for the stronger degradation capacity of A.
lwoffii NL115. Considering the sense mutations in LSNL_2977 and LSNL_1974 identified
through comparative genomics, the 3D structures of the two enzymes were compared
between A. lwoffii NL115 and NL1 strains. LSNL_2977 encodes the phenol hydroxylase
protein component P2 as a reductase component that transfers electrons from NADH [33].
As shown in Figure S7, the mutation site in the loop region (position 35) between strands 2
and 3 changed from alanine to valine, with more side chain groups. The 2.67 RMSD value
suggested the similarity of phenol hydroxylase protein component P2 from A. lwoffii and
Pseudomonas sp. CF600 to the described structure (PDB:1HQI). Their secondary structural
comparison can be seen in Figure S8. LSNL_1974 encodes alkyl hydroperoxide reductase
subunit F, which transfers electrons from NAD(P)H to AhpC for ROS detoxification [34].
The mutation site (position 371, A to T, shown in Figure S9) is located in the NADH-binding
domain of the subunit AhpF [35]. When the predicted AhpF from A. lwoffii NL1 and NL115
were respectively compared to the known AhpF structures from Salmonella enterica (PDB:
1HYU) and Escherichia coli (PDB: 4O5Q), the RMSD values were 11.833 and 10.563 with
the 1HYU, and 20.832 and 23.895 with the 4O5Q. The large RMSD values indicate that the
predicted Ahp structures differed significantly from the characterized AhpF from S. enterica
and E. coli.

In this study, we used adaptive laboratory evolution to develop a new strain with
improved degradation ability. The resulting strain NL115 could break down 1.5 g/L phenol
in 12 h. Furthermore, A. lwoffii NL115 outperformed the starting strain NL1 in terms of
phenol degradation and tolerance. Comparative genomics and transcriptomics performed
to investigate the molecular adaptation in A. lwoffii NL115 revealed degradative metabolism,
stress resistance, and growth-associated processes in A. lwoffii adapted to phenol stress.
Furthermore, phenol hydroxylase and alkyl hydroperoxide reductase were identified as
important enzymatic activities that contributed to phenol response in A. lwoffii NL115.
Overall, A. lwoffii NL115 appears to be a potential choice for the practical remediation of
phenol-polluted settings, and the mechanism behind efficient phenol degradation could
guide advancements in phenol degradation by other bacteria.

4. Material and Methods
4.1. Strains and Media

The starting strain was the previously isolated phenol-degrading A. lwoffii NL1
(CCTCC NO: M2014329). The evolved strain A. lwoffii NL115 was obtained through ALE.
Escherichia coli DH5α and BL21 strains were purchased from Invitrogen.

Luria–Bertani (LB) medium was used to activate the cultures. Minimal mineral (MM)
media (NH4Cl, 1.0 g/L; NaH2PO4, 1.0 g/L; K2HPO4, 3.0 g/L; KCl, 0.15 g/L; MgSO4·7H2O,
0.3 g/L; CaCl2, 0.01 g/L; FeSO4·7H2O, 2.5 mg/L; pH 7.0) containing different concentra-
tions of phenol were used for ALE and phenol tolerance test (adding 1.5% agar). Liquid
MM medium containing 1.3 g/L Sodium acetate (NaAc) as a carbon source was used for
transcriptomic analysis with the addition of 0, 0.5, and 1.5 g/L phenol. Liquid MM medium
containing 0.5 g/L phenol as a carbon source was used to compare the phenol degradation
abilities and tolerance levels of A. lwoffii NL1 and NL115.

4.2. Adaptive Evolution Process (ALE)

ALE was performed in 50 mL of shake culture (10% v:v inoculum amount) at 28 ◦C
and 200 rpm. The initial phenol stress was 0.5 g/L, and the stress concentration of phenol
was increased by 10–50 mg/L in every cycle. A. lwoffii NL1 in LB test tubes after overnight



Int. J. Mol. Sci. 2023, 24, 16529 14 of 18

culture was diluted to achieve an optical density (OD)600 of 0.5 and then inoculated into
liquid MM medium with phenol as the sole carbon source. The OD600 of the biomass
was measured when the phenol was completely degraded. The bacterial fluid was again
adjusted to an OD600 of 0.5 and inoculated into fresh liquid MM medium with higher
concentrations of phenol.

The evolution process was repeated until bacterial cultures were obtained under
1.5 g/L phenol stress. Bacterial cultures were appropriately diluted and coated onto MM
plates (1.5% agar) containing 1.5 g/L phenol. The colony-forming isolates were further
purified via cultivation on the same plates for 3 days. The resulting single colony was
inoculated into liquid MM medium containing 1.5 g/L phenol and preserved as A. lwoffii
NL115 after the phenol was completely degraded.

4.3. Phenotypic Comparison of A. lwoffii NL1 and NL115

Colony-forming isolates of A. lwoffii NL1 and NL115 on the LB plates were inoculated
in LB test tubes. At their logarithmic growth phase, cells were collected and resuspended
in sterile phosphate buffer solution (PBS) to achieve an OD600 of 0.5. The diluted bacterial
suspension was used for phenotypic comparison of A. lwoffii NL1 and NL115.

To compare the trends in cell growth and phenol degradation, the washed bacterial
suspension was cultivated in 50 mL of liquid MM medium (10% v/v inoculum) containing
0.5 g/L phenol. Liquid cultures, at 28 ◦C and 200 rpm, were taken every 1–2 h to determine
the OD600 of the biomass and supernatants of the cultures were treated for measuring the
OD510 of phenol using the 4-aminoantipyrine colorimetric method [36].

The growth of A. lwoffii NL115 on phenol-containing plates was investigated. The
washed bacterial suspensions were diluted based on a gradient of six concentrations, specif-
ically 10−1, 10−2, 10−3, 10−4, 10−5, and 10−6, and spotted onto MM agar plates containing
phenol at concentrations ranging from 0 to 1.6 g/L. The growth phenotype of A. lwoffii
NL115 on the phenol plate was observed after 2–3 days. The growth of A. lwoffii NL115 on
MM agar plates using sodium acetate as the carbon source was investigated. Following a
gradient of five concentrations—10−1, 10−2, 10−3, 10−4, and 10−5—the washed bacterial
suspensions were diluted and spotted onto MM agar plates with different concentrations
of sodium acetate. The C molar masses of sodium acetate and phenol were the same at
every concentration. After two to three days, the growth phenotype of A. lwoffii NL115 on
the MM agar plates was seen.

Following acridine orange (AO) and ethidium bromide (EB) staining, the survival of
cells treated with phenol was qualitatively assessed using fluorescence microscopy. The
washed bacterial suspensions of A. lwoffii NL1 and NL115 were treated for 2 h at 28 ◦C
with shaking at 50 rpm in the presence of 0.5 g/L and 1.0 g/L phenol. The cells were
washed with PBS to remove the residual phenol and fluorescently stained with AO/EB for
10 min. Cell survival was observed based on fluorescence microscopy with the green and
red fluorescence channels [37].

The survival of cells treated with phenol after acridine orange (AO) staining was
evaluated using a microplate reader to measure fluorescence intensity. A. lwoffii NL1 and
NL115 washed bacterial samples were treated for 4 h at 28 ◦C and 50 rpm in the presence
or absence of 0.5 g/L and 1.0 g/L phenol. After washing the cells with PBS to remove
the leftover phenol, they were fluorescently stained with AO for 10 min at 37 ◦C. The
dye solution was extracted from the cells as much as possible by centrifugation (3 min at
800 rpm). The cells were resuspended in PBS, and the fluorescence intensity of AO was
measured at excitation and emission wavelengths of 488 and 530 nm, respectively.

Intracellular reactive oxygen species (ROS) were measured on a microplate reader us-
ing 2′,7′-dichlorofluorescein diacetate (DCFH-DA). The bacterial suspensions (OD600 = 0.5)
of A. lwoffii NL1 and NL115 were incubated on liquid MM medium with different con-
centrations of phenol (0.5, 0.8, and 1.0 g/L) as the sole carbon source. Cultures were
collected at different cultivation times (12, 16, and 18 h) and diluted to an OD600 of 0.1 with
sterile PBS buffer. The bacterial suspensions were resuspended using 10 µM DCFH-DA
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and incubated at 37 ◦C in the dark for 30 min. The cells were then washed three times
with sterile PBS buffer. The fluorescence intensity of ROS was measured at excitation and
emission wavelengths of 488 and 525 nm, respectively.

4.4. Activity of Crude Enzymes

Cells of A. lwoffii NL1 and NL115 at certain growth phases were collected, washed,
and resuspended in 0.1 M K3PO4 buffer. Cells were lysed to near clarity for 15 min (4 s ON,
8 s OFF) in an ultrasonic cell crusher. The supernatants were used as crude enzymes, and
the total protein concentration was determined using the Bradford method [38]. Phenol
hydroxylase activity [39] was measured as the change in absorbance (A) at 340 nm in a
reaction mixture containing 0.2 mM FAD, 0.1 mM NADPH, 1 mM phenol, 0.1 M K3PO4
buffer (pH 7.5), and crude enzymes. Catalase activity [40] was determined based on the
change in absorbance (A) at 240 nm in a reaction mixture containing 20 mM H2O2, 50 mM
K3PO4 buffer (pH 7.0), and the crude enzymes. Alkyl hydroperoxide reductase activity [41]
was determined based on the change in the absorbance of xylenol orange at 560 nm. The
Fox reagent contained 125 µM xylenol orange, 250 µM ammonium iron (II) sulfate, 100 µM
sorbitol, and 25 mM H2SO4 and was added to the reaction mixtures of crude enzymes and
10 mM H2O2.

4.5. Genome Resequencing and Analysis

High-quality genomic DNA of A. lwoffii NL115 was analyzed using a Qubit fluo-
rometer. Raw reads generated on the DNBSEQ platform (BGI, Shenzhen, China) were
assembled into contigs and scaffolds using SOAPdenovo software v1.05 [42]. For compar-
ative genomic analysis, the initial single nucleotide polymorphisms were detected using
MUMmer software [43] and filtered using the BLAT program version 34 [44]. The initial
insertion–deletion mutations (indels) were checked using the LASTZ program [45] and
filtrated using the BLAT program version 34 [44].

4.6. RNA Sequencing and Analysis

A. lwoffii NL1 and NL115 were cultured in three different media for RNA-Seq during
mid-exponential growth. The two strains were collected at 4 h on 1.3 g/L NaAc as the
carbon source and designated as NA_WT and NA_ALE. The two strains at 5 h on 1.3 g/L
NaAc, after adding 0.5 g/L phenol as a carbon source, were collected and designated
as PHNA_WT and PHNA_ALE, respectively. A. lwoffii NL115 at 9 h on 1.3 g/L NaAc,
with the addition of 1.5 g/L phenol as the carbon source, was collected and designated as
15PHNA_ALE. Three biological samples of each treatment were submitted to a sequencing
company (Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China) to com-
plete the RNA-seq. Total RNA was isolated from the five samples using chloroform, ethanol,
and a Bacteria Total RNA Isolation Kit (Sangon Biotech, Shanghai, China). Total RNA was
checked for purity and integrity prior to cDNA library construction. The qualified libraries
were sequenced as 150–200 bp paired-end reads on the Illumina HiseqTM 4000 platform.
Clean reads were mapped to the A. lwoffii NL1 genome using Bowtie software [46]. The
transcripts per kilobase of the exon model per million mapped reads (TMP) were calculated
to represent gene expression using RSEM software [47]. DEGs (fold-change (FC) > 2 and
p-adjusted < 0.05) between groups were identified using the DESeq R package [48]. The KO
functional categories were used to integrate DEGs into the KEGG pathway. All the related
KO categories were mapped to the KEGG pathway using the Web server KEGG Mapper
(www.kegg.jp/kegg/mapper/, 14 September 2023). The pathways containing more than
five KO categories were thought to be functionally enriched.

4.7. Transcriptional Analysis Using Quantitative Real-Time PCR (qRT-PCR)

Qualified RNA was used to synthesize cDNA using the HiScript® III RT SuperMix.
The cDNA templates were subjected to PCR using primer pairs (qRT-PCR primers are listed
in Table S3) and were then used to quantify gene expression on a CFX Connect Real-Time
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PCR Detection System (Bio-Rad, Hercules, CA, USA). The 20 µL mixture for qRT-PCR
contained 10 µL of ChamQ Universal SYBR qPCR Master Mix (2×), 0.4 µL of each forward
and reverse primer, 2 µL of cDNA templates (50 ng/µL), and 7.2 µL of double-distilled
H2O. The relative expression levels were determined using the 2−∆∆Ct method [49] with
16S rRNA genes as the reference. The experiments were performed with three biological
replications. The log2 transformed fold changes acquired by RNA-seq and qRT-PCR were
plotted as a scatter plot to assess the consistency of the two methods’ results.

4.8. Enzymatic Activity of Purified Alkyl Hydroperoxide Reductase

Alkyl hydroperoxide reductases from A. lwoffii NL1 and NL115 were expressed using
the vector pET30a in E. coli BL21 and purified using a nickel-affinity chromatography column.
Genomic DNA of A. lwoffii NL1 and NL115 was extracted as a template to amplify the F
and C subunits of ahp genes using the AhpF-F/R (5′ATCGGATCCGAATTCATGTTAGATC-
AAAATACTTCAGCCC3′ and 5′ GTGGTGGTGCTCGAGTTATTGCCCAGAACGGATGA3′.
Restriction enzyme sites were underlined.) and AhpC-F/R (5′ ATCGGATCCGAATTCATG-
AGTTTAATCAATACTGAAATC3′ and 5′ GTGGTGGTGCTCGAGTTAGATTTTACCCACC-
AGGTC3′. Restriction enzyme sites were underlined.) primer pairs, respectively. The four
target fragments were identified via agarose gel electrophoresis (1%) and recovered using
the MiniBEST Agarose Gel DNA Extraction Kit (TaKaRa, Maebashi, Japan). Ligation of
the four fragments with the vector pET-30a (EcoRI and XhoI digestion) yielded pET-30a-
LSNL_1974, pET-30a-LSNL115_1974, pET-30a-LSNL_0160, and pET-30a-LSNL115_0160. The
recombinant plasmids were transformed into E. coli BL21 cells via heat shock. Positive
transformants were cultivated to logarithmic growth phase in 100 mL of LB liquid medium
at 37 ◦C, and 0.7 mM isopropylthio-β-D-galactoside was added to the cultures for protein
expression (at 160 rpm, 28 ◦C for 4 h). After sonication lysis, as described in the above ex-
traction of crude enzymes, the supernatants of the harvested cell suspension were collected
via centrifugation (12,000× g, 4 ◦C for 30 min) for protein purification. The supernatants
were fully and slowly bound to the HisPur™ (Dhule, India) Ni-NTA resins at 4 ◦C for 2 h.
The resins were repeatedly washed with 20 mM imidazole to remove nonspecifically bound
proteins. His-tagged fusion proteins were eluted using 250 mM imidazole and analyzed via
sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified Ahp proteins from A.
lwoffii NL1 (LSNL_1974 and LSNL_0160) and NL115 (LSNL115_1974 and LSNL115_0160)
were concentrated using dialysis and ultrafiltration.

Hydroperoxidase activity of the purified AhpC protein was measured as the decrease
in absorbance at 340 nm [50]. Ahp proteins (15 µM purified AhpC and 0–5 µM purified
AhpF) from A. lwoffii NL1 and NL115 were mixed with 250 µM NADPH in HEPES buffer
(pH7.5) at 30 ◦C for 3 min. Enzymatic reactions were initiated by adding a hydroper-
oxide substrate (1.5 mM tert-butyl hydroperoxide), and the absorbance at 340 nm was
immediately read every 20 s.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms242216529/s1 Table S1. Summary of sense mutations of
genes in A. lwoffii NL115; Table S2. Genes used for qRT-PCR; Table S3. Primers used for qRT-PCR
analysis; Table S4. Summary of the differentially expressed genes shared by A. lwoffii NL1 and NL115
in the presence of phenol; Table S5. Summary of the differentially expressed genes in A. lwoffii NL115
compared to A. lwoffii NL1 in phenol presence; Figure S1. Pot assays of Acinetobacter lwoffii NL115
growth on sodium acetate plates with different concentrations; Figure S2. A boxplot for the CT values
of candidate genes from RT-qPCR analysis; Figure S3. The melting curves of the qRT-PCR products;
Figure S4. Accuracy of RNA-seq results verified through qRT-PCR; Figure S5. Metabolic pathway
of the upregulated gene cluster LSNL_1566-1573; Figure S6. Acinetobacter lwoffii NL1 and NL115
grown in minimal mineral medium using more than 1.5 g/L phenol as the sole carbon source; Figure
S7.Predicted 3D structures of phenol hydroxylase protein component P2; Figure S8. Predicted 3D
structures of phenol hydroxylase protein component P2 aligned to the characterized PDB structure
(1HQI); Figure S9. Predicted 3D structure of AhpF.
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