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Abstract: Detecting copy number variations (CNVs) and alterations (CNAs) in the BRCA1 and
BRCA2 genes is essential for testing patients for targeted therapy applicability. However, the available
bioinformatics tools were initially designed for identifying CNVs/CNAs in whole-genome or -exome
(WES) NGS data or targeted NGS data without adaptation to the BRCA1/2 genes. Most of these tools
were tested on sample cohorts of limited size, with their use restricted to specific library preparation
kits or sequencing platforms. We developed BRACNAC, a new tool for detecting CNVs and CNAs
in the BRCA1 and BRCA2 genes in NGS data of different origin. The underlying mechanism of this
tool involves various coverage normalization steps complemented by CNV probability evaluation.
We estimated the sensitivity and specificity of our tool to be 100% and 94%, respectively, with an
area under the curve (AUC) of 94%. The estimation was performed using the NGS data obtained
from 213 ovarian and prostate cancer samples tested with in-house and commercially available
library preparation kits and additionally using multiplex ligation-dependent probe amplification
(MLPA) (12 CNV-positive samples). Using freely available WES and targeted NGS data from other
research groups, we demonstrated that BRACNAC could also be used for these two types of data,
with an AUC of up to 99.9%. In addition, we determined the limitations of the tool in terms of the
minimum number of samples per NGS run (≥20 samples) and the minimum expected percentage of
CNV-negative samples (≥80%). We expect that our findings will improve the efficacy of BRCA1/2
diagnostics. BRACNAC is freely available at the GitHub server.

Keywords: BRCA1; BRCA2; CNV; large rearrangements; copy number variations; NGS; targeted
sequencing; bioinformatics tool

1. Introduction

The clinical significance of BRCA1 and BRCA2 pathogenic germline variants and
somatic alterations is of great importance for patients with breast and ovarian cancer. Their
detection allows at-risk patients to be identified and more effective treatment strategies
to be chosen, such as PARP inhibitors for carriers of pathogenic variants. Numerous
commercial tests were developed to detect point and short mutations. These include the
AmpliSeq BRCA Panel (Illumina, San Diego, CA, USA), the GeneRead QIAact BRCA 1/2
Panel (Qiagen, Hilden, Germany), the Ion AmpliSeq™ BRCA1 and BRCA2 Panel (Thermo
Fisher Scientific, Waltham, MA, USA), and the ACCEL-AMPLICON® BRCA1 and BRCA2
Panel (Swift Biosciences, Ann Arbor, MI, USA). These developments improved the statistics
of the occurrence of pathogenic BRCA1/2 variants worldwide and enlarged the patient
groups suitable for targeted therapy. Moreover, somatic large rearrangements (LRs) are
considered to be involved in the mechanism of drug resistance [1], which further increases
their clinical relevance.

However, the study of large rearrangements, including germline copy number vari-
ations (CNVs) and somatic copy number alterations (CNAs), remains limited due to the
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scarcity of reliable programs that can be tested on a large sample of patients [2,3]. In
some studies, large rearrangements (LRs) were detected by combining several methods,
including NGS dosage, microarray comparative genomic hybridization (CGH), and/or
multiplex ligation-dependent probe amplification (MLPA) [4]. The latter has long been
considered the gold standard for CNV detection. The methodology involves the ampli-
fication of probes that can be ligated only if they both hybridize to neighboring regions,
yielding PCR products with different lengths for multiple target regions [5]. It would be
more significant to detect CNVs and CNAs along with short mutations routinely identified
with targeted NGS. Several new algorithms for CNV detection were developed for targeted
NGS data, with some organized into bioinformatic tools, e.g., panelcn.MOPS [6], CNVpy-
tor [7], and several simple R scripts [8]. All of them use coverage depth values for target
regions, detecting outlier values, i.e., the signals of potential CNVs. At the same time, these
algorithms have some differences. For example, the R scripts developed by Singh et al. [8]
create a pool of normal samples, evaluate the coverage for many sliding windows, and
calculate the ratio of coverage depth for the query sample and a pool of normal samples
for each nucleotide of the sliding windows. Panelcn.MOPS additionally applies one-step
normalization to the third quartile, also selecting control samples. The unique feature of
CNVpytor is the correction of the GC content and the use of variant allele frequency (VAF)
values. Despite the high sensitivity and specificity exhibited by the tools mentioned above
for the datasets tested, their suitability for other datasets and in-house targeted NGS panels
remains unverified in large cohorts, particularly for the two genes BRCA1 and BRCA2, with
frequent CNVs.

Here, we present a new tool for the detection of BRCA1/2 CNVs, called BRACNAC
(BRAC1/2 Copy Number Alteration Caller). It should be noted that our tool does not
require a control sample set. The method involves several steps of data normalization
and the identification of sets of target regions with elevated or lowered copy numbers. Of
critical relevance is the estimation of the probability of an observed copy number increase
or decrease to be random, i.e., the p-value. We compared the performance of our tool with
those of the multiplex ligation-dependent probe amplification (MLPA) method regarded as
the gold standard for CNV detection and of another recently reported tool for targeted NGS
panels, referred to as panelcn.MOPS. We confirmed the suitability of our tool for targeted
NGS data from other studies and whole-exome (WES) sequencing data. Furthermore, we
show that many BRCA1/2 NGS datasets previously described could be reanalyzed using
our tool to extend our knowledge of BRCA1/2 CNV occurrence. Finally, we describe our
attempt to define the limits of BRACNAC by identifying CNVs with different numbers of
samples per run and different ratios of patients with and without CNVs.

2. Results

The BRACNAC algorithm and initial values of different parameters were chosen
based on the in-house dataset of 213 leukocyte DNA samples. The whole coding sequences
of the BRCA1 and BRCA2 genes were obtained with in-house and commercial targeted
NGS panels. Other datasets were used for comparison with the panelcn.MOPS results
and validation on other NGS library enrichment approaches and sequencing technologies
(Table 1).

2.1. Algorithm

The main idea of the BRACNAC algorithm is to remove any potential variation
between samples (first normalization step), between target regions (second normalization
step), and arising from differences in multiplex reactions (third (optional) normalization) or
clusters of sample sets (e.g., samples whose libraries were prepared in different experiments)
(Figure 1A–D). The normalization steps are carried out by dividing each value by the
median value of the corresponding sets of values. The resulting value should be 1.0 if
there are no changes in copy number for a target. Therefore, by multiplying the resulting
value by 2, we should obtain the number of copies of the target in the diploid genome.
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Then, the algorithm searches for values that deviate from 2.0. The theoretical values for
deletion and duplication are 1.0 and 3.0, respectively. In the case of CNVs/CNAs of several
exons or one exon but covered by several target regions, these deviating values follow
each other, forming a continuous set. However, natural variation in the number of reads
makes these values vary around 1.0 and 3.0, respectively. Exons comprising several target
regions may demonstrate values with lower deviation than that obtained for one copy (e.g.,
1.3 instead of 1.0 for deletions and 2.7 instead of 3.0 for amplifications). Therefore, the initial
algorithm allows determining four thresholds to consider some coverage value of a target
region for deletions or amplifications. The second values (higher for deletions, “del2”, e.g.,
1.7 and lower for amplifications, “dupl2”, e.g., 2.4) are used for calculating the CNV/CNA
score. The first values (lower for deletions, “del1”, e.g., 1.3 and higher for amplifications,
“dupl1”, e.g., 2.7) are used for lowering the score if some values are between the first and
the second thresholds. We set the limits that any potential CNV/CNA score should include
at least one value less than “del1” (for deletions) or higher than “dupl1” (for amplifications)
and no more than one value higher than “del2” (for deletions) or lower than “dupl2” (for
amplifications) (Figure 1E,F). Additionally, the lower threshold of deletions is used as the
basis of the power function for decreasing the score (1.3 in the equations of the Section 4).

Table 1. NGS datasets used in this study.

Step Type of Dataset Number of Samples Method of CNV Validation

- Initial algorithm development
- Optimization of threshold values
- Comparison with panelcn.MOPS results

in-house targeted
NGS data 147 Only BRCA1

MRC-Holland-179
BRCA1 and BRCA2/CHEK2

MRC-Holland-34
GeneRead BRCA
panel v2 (Qiagen) 66

- Comparison with panelcn.MOPS results
- Validation using other researchers’ targeted
- NGS data

TruSightTM Cancer
targeted NGS-panel

99 BRCA1 and BRCA2 MLPA

- Validation using other researchers’ targeted
- NGS data

AmpliSeq BRCA1 and
BRCA2 targeted

NGS panel
192 No

- Validation using other researchers’
- WES data

Whole-exome
sequencing data 60 No

We collected different overlapping sets of target regions by extracting the normalized
coverage values of neighboring target regions exhibiting copy numbers below 2.0 (for
deletions) or above 2.0 (for amplifications). Subsequently, we calculated the scores and
estimated the p-values based on the probability of a given set of target regions to have
such a score at random. For that purpose, the normalized coverage values of the analyzed
sample were randomly shuffled. Then, this procedure was repeated for the values of
the same target regions of other samples. In this way, we accounted for variation of the
coverage values of the examined sample and target regions among all samples. The p-value
evaluation by the procedure described above was performed in two steps. In the first step,
BRACNAC identified CNVs/CNAs with a high score (by default, 9.9) and a low p-value (by
default, 0.01). Then, it excluded such samples from the second step of p-value evaluation
to avoid their influence on the probability values for other potential CNVs/CNAs. We
implemented this two-step p-value evaluation procedure to decrease the false-negative rate.
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Figure 1. A theoretical example of coverage data processing for calling CNVs and CNAs. In (A–C), the
color-filled cells designate the set of values, the median of which is used to normalize the darker
cell. So, each value of the table is divided by the median value of rows (A), columns (B), or cells of
rows corresponding to one multiplex reaction (C). In (D), the cells of the target regions with one copy
deletion are filled in orange. (A) Initial coverage values calculated as the median value among all the
nucleotides of a target region. The arrows designate the process of the median value calculation and
its use for data normalization. (B) Coverage values normalized by the median for all sample values.
The arrows designate the process of the median value calculation and its use for data normalization.
(C) Coverage values from step (B) normalized by the median for all values of a target region. The
arrows designate normalization for the next step and are shown for only two rows. For the other
rows, the procedure is the same. (D) Coverage values from step (C) normalized by the median for
the target regions of the same multiplex of the same sample. Finally, these values are multiplied by
2. (E,F) Examples of “del1”, “del2”, “dupl1”, and “dupl2” thresholds used for calling duplications
(E) and deletions (F). Each dot is the theoretical normalized coverage value calculated as described
above and multiplied by 2 for each target region. The horizontal axis represents the number of target
regions in the genes studied. For both deletions and amplifications, at least one value should be
higher than “dupl1” (for amplifications, indicated by an arrow) or less than “del1” (for deletions,
indicated by an arrow), and no more than one value should be less than “dupl2” (for amplifications,
indicated by an arrow) or greater than “del2” (for deletions, indicated by an arrow).

2.2. BRACNAC vs. MLPA and Panelcn.MOPS for Targeted NGS

Two hundred eleven leukocyte DNA samples from ovarian cancer patients and two
samples from prostate cancer patients were analyzed using targeted NGS, followed by
BRACNAC and panelcn.MOPS analysis and MLPA. MLPA identified twelve positive cases
(Table 2). The coverage values are provided in Supplementary Table S1, and the ratio plots
are shown in Supplementary Figures S1–S12. An example of BRACNAC output plot for a
positive sample is shown in Figure 2.
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Table 2. CNV-positive cases identified with MLPA. The patients with a complete match between the
MLPA and the BRACNAC results are shown in bold. del_BRCA1_up-ex2 and del_BRCA1_ex2-ex2
were regarded as matched because the targeted NGS panel used did not cover the BRCA1 non-coding
(exon 1 and exon 2, 5’-ends) and promoter regions.

Sample ID CNV Detected with MLPA CNV Detected with BRACNAC

mlpa_1 del_BRCA1_ex20-ex23 del_BRCA1_ex20-ex23

mlpa_2 del_BRCA1_ex10-ex11 del_BRCA1_ex10-ex11

mlpa_3 del_BRCA2_ex21-ex24 del_BRCA2_ex21-ex24

mlpa_4 del_BRCA1_up-ex2 del_BRCA1_ex2-ex2

mlpa_5 dupl_BRCA1_ex4-ex6 dupl_BRCA1_ex5-ex6

mlpa_6 del_BRCA1_ex3-ex12 del_BRCA1_ex4-ex12

mlpa_7 del_BRCA1_ex20-ex21 del_BRCA1_ex20-ex21

mlpa_8 del_BRCA1_up-ex2 del_BRCA1_ex2-ex2

mlpa_9 del_BRCA1_ex19-ex23 del_BRCA1_ex19-ex23

mlpa_10 del_BRCA1_ex19-ex23 del_BRCA1_ex20-ex22

mlpa_11 del_BRCA1_up-ex2 del_BRCA1_ex2-ex2

mlpa_12 del_BRCA1_ex20-ex23 del_BRCA1_ex20-ex23
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Figure 2. An example of BRACNAC output plot. The blue and red dots designate target regions
which were not or were considered as potential CNVs/CNAs, respectively. The black dots are the
target regions with coverage values less than the coverage threshold. The final result and the most
likely CNV/CNA identified, reported with score value and p-value above the plot, are shown. The
horizontal axis includes the exon numbers for the BRCA1 and BRCA2 genes. The vertical axis reflects
the normalized coverage values. The grey area around the line of normalized coverage corresponding
to 2 illustrates the first and third quartiles for sample of normalized values for each target region
among all samples.

For BRACNAC, several sets of parameters were tested (Figure 3). CNVs with a match
between mutation type and gene (BRCA1 or BRCA2) were considered true positive, with
the remaining cases deemed to be false positive. Therefore, four (if BRCA2 was also tested
with MLPA) or two comparisons were performed for each patient. Unfortunately, the low
number of positive cases prevented us from performing fair tests (subdividing the samples
into training and test groups) and ROC analysis for deletions and amplifications, separately.
However, even with no optimization of the BRACNAC parameters, its performance yielded
an area under the curve (AUC) of more than 94% (Figure 3), with a sensitivity of 92–100%
and a specificity of 94%.
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Figure 3. BRACNAC ROC curves for different thresholds, including a minimal median coverage
of the sample to be included in the analysis as 20 (A) or 100 (B). Three curves with the best AUC
values and two curves with the worst values are shown to reflect the variation in AUC values.
“cov” is the minimal acceptable median coverage depth for a sample and each target region; “th”
represents the BRACNAC thresholds for calling CNVs (-del1, -del2, -dupl1, and -dupl2, respectively).
AUC is the area under the curve, and M is the percent of CNVs identified as completely matching
by the LR boundaries. All combinations of the following values of “del1”, “del2”, “dupl1”, and
“dupl2” were tested: 1.2 and 1.3 (“del1”); 1.4, 1.5, 1.6, 1.7, and 1.8 (“del2”); 2.7, 2.8, 2.9, and 3.1
(“dupl1”); 2.4, 2.5, 2.6, and 2.7 (“dupl2”). We found that 12 and 201 samples were CNV-positive or
CNV-negative by MLPA, respectively. Thirty-four were also tested for CNVs in the BRCA2 gene. The
deletions and duplications were identified as distinct cases. In total, we considered 494 cases, with
12 identified as CNV-positive, and the others as CNV-negative. For the coverage value of 20, there
were 12 and 478 CNV-positive and -negative cases. For the coverage value of 100, there were 12 and
454 CNV-positive and -negative cases.

Panelcn.MOPS testing of the resulting NGS data identified all the samples with CNVs.
However, there were a lot of false-positive exon deletions/duplications for the true-positive
samples and 178 false-positive samples, yielding a sensitivity of 100% and a specificity of
11%. The percentage of complete matches for the CNV-positive samples was 58%. Provided
that the clinical values were based on the number of correctly determined copies of exons,
the sensitivity and specificity were 64 and 84%, respectively. The accuracy of CNV detection
did not correlate with the NGS assay used (Qiagen or in-house assay).

The panelcn.MOPS data included only three BRCA1/2 CNV-positive and 96 CNV-
negative samples. BRACNAC and panelcn.MOPS identified all positive samples correctly.
BRACNAC detected six false-positive CNVs but only one with p-value = 0.006, which was
observed for all true-positive samples. Thus, the AUC for BRACNAC and panelcn.MOPS
was 99.9% and 100%, respectively.

To confirm that BRACNAC can also be used for other targeted NGS panels and NGS
platforms, we applied it to call CNVs from the AmpliSeq BRCA1 and BRCA2 NGS Panel
and the Ion Proton platform data. The procedure involved 192 leukocyte DNA samples.
The BRACNAC excluded eight samples due to a low median coverage (less than 100). We
detected seven BRCA1 exon deletions and two exon amplifications, respectively, with a
p-value of ≤0.001 (Table 3 and Supplementary Figures S13–S18). During manual figure
analysis, at least two CNVs identified (BRCA1 ex2-ex22 and BRCA1 ex23-ex23 deletions)
could be considered true-positive (see Supplementary Figures S13–S18). These two patients
were also diagnosed at early ages (33 and 35). Other cases should be confirmed by an
alternative assay.
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Table 3. CNVs detected in the BRCA1/2 NGS data obtained by Solodskikh et al. [9]. The sample ID
corresponds to the NCBI sequence read archive (SRA) accession number. LRs confirmed during the
manual figure analysis are in bold.

Sample ID Age Short Pathogenic
Variants CNV p-Value

SRR7910157 33 No del_BRCA1_ex2-ex22 0.001

SRR7910176 49 No del_BRCA2_ex2-ex3 0.001

SRR7910204 59 No dupl_BRCA2_ex3-ex6 0.001

SRR7910262 62 No dupl_BRCA1_ex21-ex23 0.001

SRR7910265 62 No del_BRCA1_ex2-ex2 0.001

SRR7910283 35 No del_BRCA1_ex23-ex23 0.001

2.3. BRACNAC for WES

To confirm that BRACNAC can also be used for WES NGS data, we used it to call
CNVs from the available data, although they were poorly described. The database included
60 FFPE DNA samples containing germline BRCA1/2 mutations (Table 4). Large deletions
and amplifications were found for eight and five patients, respectively. Based on the
BRACNAC plots (Supplementary Figures S19–S31), we can suggest that the SRR5604273
and SRR5604295 samples contained germline CNVs, and the others only somatic CNAs.

Table 4. CNVs/CNAs detected in the PRJNA388048 WES NGS data from FFPE DNA samples. The
sample ID corresponds to the NCBI SRA accession number. Likely true-positive LRs are highlighted
in bold.

Sample ID Age Cancer Short Pathogenic
Variants CNV p-Value

SRR5604273 55 Ovary No del_BRCA1_ex13-ex13 0.018

SRR5604275 33 Breast BRCA2 c.271_271delTA del_BRCA1_ex2-ex23 0.001

SRR5604279 58 Breast BRCA1 c.5266dupC del_BRCA1_ex17-ex21 0.018

SRR5604281 43 Breast BRCA2 c.5946delT dupl_BRCA1_ex13-ex23 0.001

SRR5604292 35 Breast BRCA2 c.8364G>A dupl_BRCA1_ex2-ex23 0.001

SRR5604295 39 Breast No del_BRCA1_ex13-ex19 0.001

SRR5604298 57 Ovary BRCA1 c.68_69delAG del_BRCA1_ex11-ex12 0.001

SRR5604299 49 Breast BRCA2 c.5645C>A del_BRCA1_ex2-ex23 0.018

SRR5604308 43 Breast BRCA2 c.3922G>T dupl_BRCA1_ex17-ex22 0.001

SRR5604312 34 Breast BRCA1 c.68_69delAG del_BRCA2_ex15-ex18 0.001

SRR5604313 50 Breast BRCA2 c.1054dupT dupl_BRCA1_ex15-ex16 0.001

SRR5604314 40 Ovary BRCA1 c.3155delA
dupl_BRCA1_ex13-ex17 0.001
dupl_BRCA1_ex19-ex23 0.001

SRR5604315 40 Ovary BRCA1 c.3155delA del_BRCA1_ex12-ex13 0.001

For the SRR5604279 sample, a CNV was identified as a deletion of BRCA1 exons 17–19.
However, we suggest the complete BRCA1 deletion for this sample to be due to a possible
low tumor cell percent. For the SRR5604275 and SRR5604299 samples, deletion of the whole
BRCA1 was identified.

2.4. BRACNAC Limitations

To identify the limitations of BRACNAC, we applied it to the in-house data of patients
for which MLPA analysis had been performed. We tested three types of limits: (1) a minimal
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number of samples per NGS run; (2) a maximally acceptable percentage of BRCA1/2 CNV-
positive samples per random set tested (with at least one CNV-positive sample per dataset);
(3) the opportunity to use several NGS run data for the same library preparation kit.
First, we tested BRACNAC on 100 random sets of samples with up to 70 patients from one
(Figure 4a) or several (Figure 4b) NGS runs. At least six samples were necessary to obtain an
AUC higher than 80%. Furthermore, using several runs of NGS data considerably decreased
the CNV detection efficacy, especially for the sets with more than 60 samples. To determine
which maximal percentage of CNV-positive samples per NGS dataset was acceptable for
accurate CNV detection, we tested BRACNAC on 100 random sets of 100 samples with
a share of CNV-positive samples from 0.1 to 0.9 (Figure 4c). We combined the NGS data
of several NGS runs due to the low number of CNV-positive samples (12) that led to low
AUCs. However, we identified a rapid decline in the AUC value for sets with more than
40% of CNV-positive samples.
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boundary) quartiles of AUC values obtained. (a). The dependence of the AUC values on the number
of samples in a random NGS dataset used for CNV detection. (b). The dependence of the AUC
values on the number of samples in a random NGS dataset used for CNV detection allowing for
the use of the samples from multiple runs. (c). The dependence of the AUC values on the share of
CNV-positive samples.

3. Discussion

This work described a new BRCA1/2 CNV/CNA detection tool and compared it with
the freely available program panelcn.MOPS [6] and the gold standard MLPA. We obtained
high sensitivity (100%) and specificity (94%) values. In many cases, MLPA confirmation and
clarification of rearrangement boundaries was necessary, as in other studies [5]. We believe
that even this two-step CNV detection (NGS + MLPA) could significantly simplify the
process of BRCA1/2 LR identification. Compared with panelcn.MOPS, we observed many
false-positive CNVs and CNVs with boundaries incorrectly determined by panelcn.MOPS
when using the in-house amplicon-based targeted NGS data. These results were likely due
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to the fact that the normalized copy numbers for each amplified region were not taken into
account when evaluating the probability of whole exon deletion or duplication performed
with BRACNAC. In contrast, panelcn.MOPS showed a slightly better performance for the
hybridization-based targeted NGS data.

We also demonstrated that BRACNAC could be applied to WES data. However,
we could not compare our method with any alternative assay, and the coverage depth
required can be higher than the usual one. Another limitation of using BRACNAC for
WES data is the absence of non-coding exon coverage. A high frequency of BRCA1 exons
1–2 deletion was shown in our study (25% of all CNVs confirmed with MLPA) and other
investigations [10]. Thus, the inclusion of exons 1–2 and a promoter region may improve
the detection of such CNVs. Another improvement for in-house and commercial NGS
assays could be using additional amplicons for short exons and flanking introns covered
by only one amplicon, potentially increasing the accuracy of such exon CNV detection.

One of the limitations of BRACNAC is the inability to detect automatically the par-
tial CNVs of exons with only some part of the exon deleted or amplified. However, the
operator could suggest some CNVs based on the BRACNAC ratio plots. Other limita-
tions discovered in this study can be extended to similar CNV detection tools, such as
panelcn.MOPS. We found that it is inadvisable to combine the data from multiple runs, as
it could lead to a decreased accuracy of the detection of large rearrangements. Furthermore,
we demonstrated that the minimally acceptable number of samples per single NGS run
is 20 samples with at least 80% of CNV-negative samples. This percentage is significantly
lower than the expected CNV occurrence among breast and ovarian cancer patients in
different populations, which varies from 2 to 10% depending on the race of the patients
and the sample size [11,12]. This result allows one to use the NGS data of sample cohorts
that were not selected for CNV presence in the genome.

Although the sample cohort used for evaluating BRACNAC is one of the largest
described in the literature (e.g., panelcn.MOPS was evaluated on 180 samples) [6,13], we
could not estimate a fair frequency of CNVs in our cohort due to the non-random selection
of samples to confirm the CNV status by MLPA. We plan to perform such an evaluation in
the future.

Another promising direction for further research is the comparison of existing pro-
grams for identifying somatic CNAs. However, the absence of a gold standard complicates
such a study. For example, MLPA is highly sensitive to tissue fixation conditions [14] as
well as ddPCR, but this sensitivity is less pronounced for the latter due to the absence of
the ligation step. Therefore, ddPCR is a potential method of choice that could be applied to
blood and FFPE DNA samples [15,16].

4. Materials and Methods
4.1. Algorithm

BRACNAC is an open-source and freely available Python tool that includes several
parts for effectively calling CNVs and CNAs in the BRCA1 and BRCA2 genes (Figure 5). It
uses the target region coordinate file and TSV table with samples’ coverage depth values
for the target regions. The coverage values for each target region can be mean, median,
minimal, or maximal coverage values per all nucleotides of the region, but they should
be uniform across all the samples analyzed. In the case of amplicon-based targeted NGS
panels, such regions can be represented by the genomic coordinates of the amplified
regions. From the input table, BRACNAC creates a NumPy array that is normalized by the
following types: (1) the median coverage values of one sample for the target regions; (2) the
median normalized coverage value for each target region among all samples; (3) the median
normalized coverage value for each primer pool (if it is known or applicable, e.g., for an
amplicon-based targeted NGS panel); (4) the median normalized coverage for each sample
cluster (optional, applicable, e.g., when some sample libraries are prepared separately from
the rest). To obtain target region copy numbers, BRACNAC multiplies all values by 2.
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Figure 5. BRACNAC’s main parts and LR calling protocol. Yellow, green, and blue boxes demonstrate
input, output, and modules of the program, respectively. The blue arrows designate interactions
between the modules of the program. The underlined text represents names of Python-scripts
included into the program.

After the normalization steps, BRACNAC searches for exons potentially deleted
and/or amplified: (1) it combines the values less than 2.0 and greater than 2.0 to two
distinct sets; (2) it joins the neighboring value ranges if the region between them has low
coverage or has a value less than 2.0 (for deletions) or greater than 2.0 (for amplifications);
(3) it filters out the value ranges where all the exons are affected only partially (this filtration
is performed because almost all BRCA1/2 LRs are associated with Alu-repeats in their
introns); (4) it filters out the deletions for which the number of normalized values of at least
of 1.3 (default value, but can be changed by the “del1” parameter) is less than one; (5) it
filters out the deletions for which the number of values higher than 1.7 (“del2” parameter)
is greater than one; (6) it filters out the deletions for which the number of values of no
more than 1.7 (“del2” parameter) is less than half of the length of the region; (7) it filters
out the amplifications for which the number of normalized values of at least 2.7 (default
value which can be changed by the “dupl1” parameter) is less than one; (8) it filters out the
amplifications for which the number of values less than 2.4 (“dupl2” parameter) is greater
than one; (9) it filters out the amplifications for which the number of values of at least 2.4
(“dupl2” parameter) is less than half of the length of the region; (10) for the left deletions
and amplifications, it calculates the score and p-values and filters them out by these values.

• The deletion score is calculated as follows:

scoredel =
k1 × ∑N

i=1 (4 − ai)− 4 × k2 − 4 × k3

1.3(
D
L +k4×2+ 1

E +Mdist)
(1)

where k1 is 1 if all considered exons are affected completely or 0.5 if any exon is involved
into CNVs/CNAs only partially; ai indicates normalized target region coverage values that
are no more than “del2”; N is the number of such values; k2 is 1 if the first target region
value is no greater than “del2”—otherwise it is 0.5; k3 is 1 if the last target region value is no
greater than ”del2”—otherwise it is 0.5; D is the number of target region values which are
greater than ”del1”; L is the number of target region values that are considered as potential
deletions; k4 has a value of 1 if the exon deletion in question is covered by only one target
region (except for the second exon, which is frequently deleted in BRCA1 with promoter



Int. J. Mol. Sci. 2023, 24, 16630 11 of 13

regions)—otherwise, k4 has a value of 0; E is the number of exons affected; Mdist is the
median for the values of the differences between neighboring normalized coverage values.

• The amplification score is calculated as follows:

scoreamp =
k1 × ∑N

i=1 ai − 4 × k2 − 4 × k3

1.3(
I
L +k4×2+ 1

E +Mdist)
(2)

where k1 is 1 if all considered exons are affected completely, or 0.5 if any exon is affected only
partially; ai indicates normalized target region coverage values that are at least “dupl2”;
N is the number of such values; k2 is 1 if the first target region value is at least “dupl2”—
otherwise, it is 0.5; k3 is 1 if the last target region value is at least “dupl2”—otherwise, it
is 0.5; I is the number of target region values less than “dupl1”; L is the number of target
region values that are considered for the amplification; k4 has a value of 1 if the exon
amplification in question is covered by only one target region, otherwise k4 has a value of
0; E is the number of exons affected; Mdist is the median for the values of the differences
between neighboring normalized coverage values.

For LRs with a score higher than the threshold (by default, 9.9 and 2 for the first and
second p-value evaluation steps, respectively), the p-value is calculated by the following
bootstrap analysis. When using only the normalized data of samples and target regions
covered enough, BRACNAC shuffles the data array randomly by column for each sample
and then by rows. The shuffle number of the sample columns is equal to 1000 (by default
and can be changed), the shuffle number of the LR target regions (by rows) is equal to
the number of samples without potential LRs from the first step (when we use hard CNV
and CNA filters, with a minimal score of 9.9 and a maximal p-value of 0.01). After each
shuffling step, BRACNAC calculates the score similarly as described above but normalizes
it only by the length:

score = ∑N
i=1 ai

1.3
M
L

(3)

where ai is a normalized value (if we consider amplifications) or 4.0 minus the normalized
value (if we consider deletions); M is the total number of normalized values shuffled more
than “dupl1” (for amplifications) or less than “del1” (for deletions); L is the number of
target regions affected by the LR considered. Such a two-step p-value evaluation helps us
avoid the influence of obviously positive samples on the subsequently calculated p-value.

BRACNAC can be applied in command line or graphical user interface (GUI) versions
and uses the following Python modules: argparse (to read input arguments), NumPy (for
arrays) [17], xlsxwriter (to write outputs into XLS tables), and scipy (for statistics) [18]. The
BRACNAC tool is freely available at https://github.com/aakechin/bracnac/ (accessed on
18 November 2023).

4.2. Datasets

To compare the BRACNAC performance with those of panelcn.MOPS [6] and MLPA,
we used BRCA1/2-targeted NGS data previously obtained from 211 ovarian cancer and
2 prostate cancer patient leukocyte DNA samples with an in-house (nine runs) panel and the
GeneRead BRCA panel v2 (Qiagen, one run), covering whole-coding regions of the BRCA1
and BRCA2 genes [19]. Informed consent was obtained from all patients who participated.

Ten runs were performed using the MiSeq and MiniSeq platforms (Illumina) involving
730 DNA samples from leukocytes and FFPE, from which 213 samples were also selected for
MLPA. For these samples, MLPA was performed with the BRCA1 MRC Holland assay (lot
P002-BRCA1-D1-1114) following the manufacturer’s instructions. For 34 of these samples,
the BRCA2 gene (lot P045-BRCA2/CHEK2-B3-0714) was also analyzed. Two or four results
were compared for each patient to perform ROC analysis, i.e., BRCA1 and/or BRCA2
deletion and/or amplification. For each result compared, the match was considered an
event with the same CNV type (deletion or amplification) and target (BRCA1 or BRCA2).

https://github.com/aakechin/bracnac/


Int. J. Mol. Sci. 2023, 24, 16630 12 of 13

BRACNAC was also tested on targeted NGS of other research groups (NCBI SRA
Project PRJNA493651; European Genome-Phenome Archive EGAD00001003400, which
was used for panelcn.MOPS) [6,20] and WES (PRJNA388048) data. The first dataset was
obtained while discovering germline variants in 192 breast cancer patients using the Am-
pliSeq BRCA1 and BRCA2 panel (Thermo Fisher Scientific) and the Ion Proton platform.
The second one was used for testing the panelcn.MOPS program and includes 99 samples
tested with the BRCA1/2 MLPA assay and sequenced with the TruSightTM Cancer (TSC)
panel (Illumina). The WES dataset were generated for 60 FFPE DNA samples containing
germline BRCA1/2 mutations, from breast and ovarian cancer patients. However, there was
no detailed information about the library preparation protocol or the NGS platform used.
To identify short and point mutations, we applied a BRCA analyzer [19]. The WGS data
were not used because we could not find such data for enough samples in one NGS run.

4.3. Statistics

All plots and statistical tests were performed with Python modules scipy [18], scikit-
learn [20], and matplotlib [21]. For ROC analysis, “roc_auc_score” and “roc_curve” func-
tions of the scikit-learn Python module were used.

5. Conclusions

In this study we presented a newly developed bioinformatics tool for detecting CNVs
and CNAs in the BRCA1 and BRCA2 genes using in NGS data. This tool is specifically
tailored for data obtained with various library preparation kits and sequencing platforms.
Our findings also highlighted the general limitations of such tools, including the minimal
number of samples per NGS run and the minimal percent of CNV-/CNA-negative samples.
We hope our results will be valuable for researchers and clinicians working in cancer
genetics and will contribute to improving the accuracy and sensitivity of CNV and CNA
detection in NGS data.
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