Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays
Abstract
:1. Introduction
Rationale and Work Design
2. Results and Discussion
2.1. Chemistry
2.2. Biological Screening
2.2.1. Cytotoxic Screening
2.2.2. Structure–Activity Relationship (SAR) Study
2.2.3. Anti-EGFR Activity
2.2.4. MMP-2 Inhibition
2.2.5. Carbonic Anhydrase CAII inhibition
2.3. Molecular Docking Analysis
2.3.1. In Case of EGFR Protein
2.3.2. In MMP-2 Case
2.3.3. In hCAII Case
3. Methods and Materials
3.1. Material and Methods
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of 4-((2-Amino-4-aryl-7-hydroxy-4-aryl-4H-chromen-6-yl)diazinyl) Benzenesulfonamides 7a–g
3.2.2. Ethyl 2-Amino-7′-hydroxy-4-oxo-6′-((4-sulfamoylphenyl)diazenyl)-4H,4′H-[3,4′-bichromene)-3′-carboxylate 8
3.2.3. General Procedure for the Synthesis of Ethyl 2-((2-Cyano-3-ethoxy-3-oxo-1-(p-tolyl)prop-1-en-1-yl)amino)-7-hydroxy-6-((4-sulfamoylphenyl)diazenyl)4-(p-tolyl)-4H-chromene-3-carboxylates 11a–e
3.3. Biological Screening
3.3.1. Cytotoxicity Evaluation Using Viability Assay
3.3.2. EGFR Inhibition Activities
3.3.3. MMP-2 Inhibition
3.3.4. CA-II Inhibition Assay
3.4. Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Arruda, M.C.S.; da Silva, M.R.O.B.; Cavalcanti, V.L.R.; Brandao, R.M.P.C.; Marques, D.D.V.; de Lima, L.R.A.; Porto, A.L.F.; Bezerra, R.P. Antitumor lectins from algae: A systematic review. Algal Res. 2023, 70, 102962. [Google Scholar] [CrossRef]
- Kaplan, R.M. Quality of life assessment for cost/utility studies in cancer. Cancer Treat. Rev. 1993, 19, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.; Brown, M.T.; Billington, R.A. The cytotoxic activity of extracts of the brown alga Cystoseira tamariscifolia (Hudson) Papenfuss, against cancer cell lines changes seasonally. J. Appl. Phycol. 2020, 32, 2419–2429. [Google Scholar] [CrossRef]
- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Walsh, J.J.; Bell, A. Hybrid drugs for malaria. Curr. Pharmaceut. Des. 2009, 15, 2970–2985. [Google Scholar] [CrossRef]
- Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis andevaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem. 2012, 20, 5150–5163. [Google Scholar] [CrossRef]
- Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone anddienone hybrid compounds. Bioorg. Med. Chem. 2010, 18, 8243–8256. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.; Batista, V.F.; Pinto, D.C.; Silva, A.M. Challenges with chromone as a privileged scaffold in drug discovery. Expert Opin. Drug Discov. 2018, 13, 795–798. [Google Scholar] [CrossRef]
- Evdokimov, N.M.; Kireev, A.S.; Yakovenko, A.A.; Antipin, M.Y.; Magedov, I.V.; Kornienko, A. One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J. Org. Chem. 2007, 72, 3443–3453. [Google Scholar] [CrossRef]
- Chaudhary, A.; Singh, K.; Verma, N.; Kumar, S.; Kumar, D.; Sharma, P.P. Chromenes-A Novel Class of Heterocyclic Compounds: Recent Advancements and Future Directions. Mini-Rev. Med. Chem. 2022, 22, 2736–2751. [Google Scholar] [CrossRef]
- Maddahi, M.; Asghari, S.; Pasha, G.F. A facile one-pot green synthesis of novel 2-amino-4H-chromenes: Antibacterial and antioxidant evaluation. Res. Chem. Intermed. 2023, 49, 253–272. [Google Scholar] [CrossRef]
- Tajti, Á.; Szabó, K.E.; Popovics-Tóth, N.; Iskanderov, J.; Perdih, F.; Hackler, L.; Kari, B.; Puskás, L.G.; Bálint, E. PMDTA-catalyzed multicomponent synthesis and biological activity of 2-amino-4H-chromenes containing aphosphonate or phosphine oxide moiety. Org. Biomol. Chem. 2021, 19, 6883–6891. [Google Scholar] [CrossRef]
- Malik, M.S.; Ather, H.; Asif Ansari, S.M.; Siddiqua, A.; Jamal, Q.M.S.; Alharbi, A.H.; Al-Rooqi, M.M.; Jassas, R.S.; Hussein, E.M.; Moussa, Z.; et al. Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights. Pharmaceuticals 2023, 16, 333. [Google Scholar] [CrossRef]
- Abdelall, E.K.A.; Elshemy, H.A.H.; Labib, M.B.; Mohamed, F.E.A. Characterization of novel heterocyclic compounds based on 4-aryl-4H-chromene scaffold as anticancer agents: Design, synthesis, antiprofilerative activity against resistant cancer cells, dual β-tubulin/c-Src inhibition, cell cycle arrest and apoptosis induction. Bioorg. Chem. 2022, 120, 105591. [Google Scholar] [CrossRef]
- Tehrani, M.B.; Rezaei, Z.; Asadi, M.; Behnammanesh, H.; Nadri, H.; Afsharirad, F.; Moradi, A.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, Synthesis, and Cholinesterase Inhibition Assay of Coumarin-3-carboxamide-N-morpholine Hybrids as New Anti-Alzheimer Agents. Chem. Biodivers. 2019, 16, 1900144. [Google Scholar] [CrossRef]
- Ahmad, S.; Jalil, S.; Zaib, S.; Aslam, S.; Ahmad, M.; Rasul, A.; Arshade, M.N.; Sultan, S.; Hameed, A.; Asiri, A.M.; et al. Synthesis, X-ray crystal and monoamine oxidase inhibitory activity of 4, 6-dihydrobenzo [c] pyrano [2, 3-e] [1, 2] thiazine 5, 5-dioxides: In Vitro studies and docking analysis. Eur. J. Pharmaceut. Sci. 2019, 131, 9–22. [Google Scholar] [CrossRef]
- Soni, R.; Durgapal, S.D.; Soman, S.S.; Georrge, J.J. Design, synthesis and anti-diabeticactivity of chromen-2-one derivatives. Arab. J. Chem. 2019, 12, 701–708. [Google Scholar] [CrossRef]
- Rawat, P.; Verma, S.M. Design and synthesis of chroman derivatives with dual anti-breast cancer and antiepileptic activities. Drug Des. Devel. Ther. 2016, 10, 2779–2788. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.R.P.; Aghamohammadi, P.; Vessally, E. Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro2-oxindole derivatives by highly efficient Fe3O4@ SiO2@ NH2@ Pd (OCOCH3)2 nanocatalyst. J. Mol. Struct. 2022, 1249, 131534. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Esmaeili, E.; Mollania, N.; Atharifar, H.; Keywanlu, M.; Tayebee, R. Biosynthesized CuO as a Green and Efficient Nanophotocatalyst in the Solvent-Free Synthesis of Some Chromeno [4,3-b] Chromenes. Studying anti-Gastric Cancer Activity. Polycycl. Aromat. Compd. 2021, 42, 7071–7090. [Google Scholar] [CrossRef]
- Olomola, T.O.; Klein, R.; Mautsa, N.; Sayed, Y.; Kaye, P.T. Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg. Med. Chem. 2013, 21, 1964–1971. [Google Scholar] [CrossRef]
- Johannes, C.W.; Visser, M.S.; Weatherhead, G.S.; Hoveyda, A.H. Zr-catalyzed kinetic resolution of allylic ethers and Mo-catalyzed chromene formation in synthesis. Enantioselective total synthesis of the antihypertensive agent (S, R, R, R)-Nebivolol. J. Am. Chem. Soc. 1998, 120, 8340–8347. [Google Scholar] [CrossRef]
- Chavan, P.; Pansare, D.; Shelke, R.; Shejul, S.; Bhoir, P. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3-carbonitrile using greenery approaches. Curr. Chem. Lett. 2021, 10, 43–52. [Google Scholar] [CrossRef]
- Parthiban, A.; Muthukumaran, J.; Manhas, A.; Srivastava, K.; Krishna, R.; Rao, H.S.P. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorg. Med. Chem. Lett. 2015, 25, 4657–4663. [Google Scholar] [CrossRef] [PubMed]
- Badiger, K.B.; Kamanna, K.; Hanumanthappa, R.; Devaraju, K.S.; Giddaerappa, G.; Sannegowda, L.K. Synthesis, Antioxidant, and Electrochemical Behavior Studies of 2-Amino-4H-Chromene Derivatives Catalyzed by WEOFPA: Green Protocol. Polycycl. Aromat. Compd. 2023, in press. [CrossRef]
- Subbareddy, C.V.; Sundarrajan, S.; Mohanapriya, A.; Subashini, R.; Shanmugam, S. Synthesis, antioxidant; antibacterial, solvatochromism and molecular docking studies of indolyl-4H-chromene-phenylprop-2-en-1-one derivatives. J. Mol. Liq. 2018, 251, 296–307. [Google Scholar] [CrossRef]
- Gari, M.S.; Narasaiah, B.P.; Pandurengan, A.; Mandal, B.K.; Natarajan, M. Synthesis and Antioxidant Activity of some novel 4H-Chromene Derivatives Catalysed by Biogenic Tin Oxide Nanoparticles. Biointerface Res. Appl. Chem. 2023, 13, 521. [Google Scholar] [CrossRef]
- Ahagh, M.H.; Dehghan, G.; Mehdipour, M.; Teimuri-Mofrad, R.; Payami, E.; Sheibani, N.; Ghaffari, M.; Asadi, M. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg. Chem. 2019, 93, 103329. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, B.; Liu, Y.; Fu, L.; Sheng, L.; Zhao, H.; Lu, Y.; Zhang, D. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. Eur. J. Med. Chem. 2020, 189, 112075. [Google Scholar] [CrossRef]
- Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Boudreau, C.; Geerts, L.; Cai, S.; et al. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol. Cancer Ther. 2004, 3, 1375–1384. [Google Scholar] [CrossRef]
- Lu, T.; Yan, Y.; Zhang, T.; Zhang, G.; Xiao, T.; Cheng, W.; Jiang, W.; Wang, J.; Tang, X. Design, synthesis; biological evaluation, and molecular modeling of novel 4H-chromeneanalogs as potential succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2021, 69, 10709–10721. [Google Scholar] [CrossRef]
- Karimian, S.; Ranjbar, S.; Dadfar, M.; Khoshneviszadeh, M.; Gholampour, M.; Sakhteman, A.; Khoshneviszadeh, M. 4H-benzochromene derivatives as novel tyrosinase inhibitors and radical scavengers: Synthesis, biological evaluation, and molecular docking analysis. Mol. Divers. 2021, 25, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Mariami, M.; Edrisi, M. Greener construction of 4H-chromenes based dyes in deep eutectic solvent. Dyes Pigm. 2014, 100, 215–221. [Google Scholar] [CrossRef]
- Albiston, A.L.; DiWakarla, S.; Fernando, R.N.; Mountford, S.J.; Yeatman, H.R.; Morgan, B.; Pham, V.; Holien, J.K.; Parker, M.W.; Thompson, P.E.; et al. Identification and Development of Specific Inhibitors for Insulin-regulated Aminopeptidase as a New Class of Cognitive Enhancers. Br. J. Pharmacol. 2011, 164, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ahagh, M.H.; Dehghan, G.; Mahdavi, M.; Feizi, M.A.H.; Teimuri-Mofrad, R.; Payami, E.; Mehdipour, M.; Rashtbari, S. DNA binding ability and cytotoxicity, cell cycle arrest and apoptosis-inducing properties of a benzochromene derivative against K562 human leukemia cells, against K562 human leukemia cells. Nucleos. Nucleot. Nucl. 2021, 40, 732–753. [Google Scholar] [CrossRef]
- Cai, S.; Drewe, J.; Kemnitzer, W. Discovery of 4-Aryl-4H-Chromenes as Potent Apoptosis Inducers Using a Cell- and Caspase-Based Anti-Cancer Screening Apoptosis Program (ASAP): SAR Studies and the Identification of Novel Vascular Disrupting Agents. Anti-Cancer Agents Med. Chem. 2009, 9, 437–456. [Google Scholar] [CrossRef]
- Das, S.G.; Doshi, J.M.; Tian, D.; Addo, S.N.; Srinivasan, B.; Hermanson, D.L.; Xing, C. Structure- Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (sHA 14-1) and Its Analogues. J. Med. Chem. 2009, 52, 5937–5949. [Google Scholar] [CrossRef] [PubMed]
- Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.; Dhar, K. Rational approaches; design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem. 2014, 77, 422–487. [Google Scholar] [CrossRef]
- Decker, M. Hybrid molecules incorporating natural products: Applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem. 2011, 18, 1464–1475. [Google Scholar] [CrossRef]
- Szumilak, M.; Wiktorowska-Owczarek, A.; Stanczak, A. Hybrid drugs—A strategy for overcoming anticancer drug resistance. Molecules 2021, 26, 2601. [Google Scholar] [CrossRef]
- Longfei, Z.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem. 2019, 181, 111587. [Google Scholar] [CrossRef]
- Fouda, A.M.; El-Eisawy, R.A.; El-Nassag, M.A.A.; Mohamed, H.M.; Fekry, A.H.F.; El-Mawgoud, H.K.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Elhenawy, A.A.; et al. Discovery of pyran annulated heterocyclic scaffolds linked to carboxamide fragments: Anticancer evaluation, topoisomerase I/II, tyrosine kinase receptor inhibition and molecular docking studies. J. Mol. Struct. 2023, 1295, 136518. [Google Scholar] [CrossRef]
- Al-Harbi, L.M.; Al-Harbi, E.A.; Okasha, R.M.; El-Eisawy, R.A.; El-Nassag, M.A.A.; Mohamed, H.M.; Fouda, A.M.; Elhenawy, A.A.; Mora, A.; El-Agrody, A.M.; et al. Discovery of benzochromene derivatives first example with dual cytotoxic activity against the resistant cancer cell MCF-7/ADR and inhibitory effect of the P-glycoprotein expression levels. J. Enzyme. Inhib. Med. Chem. 2023, 38, 2155814. [Google Scholar] [CrossRef] [PubMed]
- Albalawi, F.F.; El-Nassag, M.A.A.; El-Eisawy, R.A.; Mohamed, M.B.I.; Fouda, A.M.; Afifi, T.H.; Elhenawy, A.A.; Mora, A.; El-Agrody, A.M.; El-Mawgoud, H.K.A. Synthesis of 9-Hydroxy-1 H-Benzo [f] chromene Derivatives with Effective Cytotoxic Activity on MCF7/ADR, P-Glycoprotein Inhibitors, Cell Cycle Arrest and Apoptosis Effects. Int. J. Mol. Sci. 2022, 24, 49. [Google Scholar] [CrossRef] [PubMed]
- Alsehli, M.H.; Al-Harbi, L.M.; Okasha, R.M.; Fouda, A.M.; Ghabbour, H.A.; Amr, A.E.-G.E.; Elhenawy, A.A.; El-Agrody, A.M. Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety. Crystals 2023, 13, 24. [Google Scholar] [CrossRef]
- Al-Harbi, L.M.; Nassar, H.S.; Moustfa, A.; Alosaimi, A.M.; Mohamed, H.M.; Khowdiary, M.M.; El-Gazzar, M.A.; Elhenawy, A.A. Novel coumarin amino acid derivatives: Design, synthesis, docking, absorption, distribution, metabolism, elimination, toxicity (ADMET), quantitative structure–activity relationship (QSAR) and anticancer studies. Mater. Express 2020, 10, 1375–1394. [Google Scholar] [CrossRef]
- Mustafa, M.; Winum, J.-Y. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin. Drug Discov. 2022, 17, 501–512. [Google Scholar] [CrossRef]
- Harter, W.G.; Albrect, H.; Brady, K.; Caprathe, B.; Dunbar, J.; Gilmore, J.; Hays, S.; Kostlan, C.R.; Lunney, B.; Walker, N. The design and synthesis of sulfonamides as caspase-1 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 809–812. [Google Scholar] [CrossRef]
- Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett. 2004, 14, 4093–4097. [Google Scholar] [CrossRef]
- Stranix, B.R.; Lavallée, J.F.; Sévigny, G.; Yelle, J.; Perron, V.; LeBerre, N.; Herbart, D.; Wu, J.J. Lysine sulfonamides as novel HIV-protease inhibitors: Nε-Acyl aromatic α-amino acids. Bioorg. Med. Chem. Lett. 2006, 16, 3459–3462. [Google Scholar] [CrossRef]
- Han, T.; Goralski, M.; Gaskill, N.; Capota, E.; Kim, J.; Ting, T.C.; Xie, Y.; Williams, N.S.; Nijhawan, D. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 2017, 356, eaan3755. [Google Scholar] [CrossRef]
- Scott, K.A.; Njardarson, J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr. Chem. 2018, 376, 5. [Google Scholar] [CrossRef]
- Supuran, C.T.; Casini, A.; Scozzafava, A. Protease inhibitors of the sulfonamide type: Anticancer, anti-inflammatory, and antiviral agents. Med. Res. Rev. 2003, 23, 535–558. [Google Scholar] [CrossRef]
- McDonald, P.C.; Chia, S.; Bedard, P.L.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; et al. A Phase 1 Study of SLC-0111, a Novel Inhibitor of Carbonic Anhydrase IX, in Patients With Advanced Solid Tumors. Am. J. Clin Oncol. 2020, 43, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. J. Med. Chem. 2020, 63, 12460–12484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.-Y.; Qin, H.-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 162, 679–734. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Murtaza, S.; Tahir, M.N.; Shamim, S.; Sirajuddin, M.; Rana, U.A.; Naseem, K.; Rafique, H. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. J. Mol. Struct. 2016, 1117, 269–275. [Google Scholar] [CrossRef]
- Mutahir, S.; Jończyk, J.; Bajda, M.; Khan, I.U.; Khan, M.A.; Ullah, N.; Ashraf, M.; Qurat-ul-Ain Riaz, S.; Hussain, S.; Yar, M. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem. 2016, 64, 13–20. [Google Scholar] [CrossRef]
- Ahmed, M.; Qadir, M.A.; Hameed, A.; Arshad, M.N.; Asiri, A.M.; Muddassar, M. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies. Bioorg. Chem. 2018, 76, 218–227. [Google Scholar] [CrossRef]
- Supuran, C.T.; Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G. Carbonic anhydrase inhibitors. Part 71: Synthesis and ocular pharmacology of a new class of water-soluble, topically effective intraocular pressure lowering sulfonamides incorporating picolinoyl moieties. Eur. J. Pharm. Sci. 1999, 8, 317–328. [Google Scholar] [CrossRef]
- Remko, M.; von der Lieth, C.W. Theoretical study of gas-phase acidity, pKa, lipophilicity, and solubility of some biologically active sulfonamides. Bioorg. Med. Chem. 2004, 12, 5395–5403. [Google Scholar] [CrossRef] [PubMed]
- Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and Antiviral Sulfonamides. Curr. Med. Chem. 2003, 10, 925–953. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.; Petrou, A.; Kartsev, V.; Lichitsky, B.; Komogortsev, A.; Capasso, C.; Geronikaki, A.; Supuran, C.T. Synthesis, Biological and In Silico Studies of Griseofulvin and Usnic Acid Sulfonamide Derivatives as Fungal, Bacterial and Human Carbonic Anhydrase Inhibitors. Int. J. Mol. Sci. 2023, 24, 2802. [Google Scholar] [CrossRef]
- Nazreen, S.; Almalki, A.S.; Elbehairi, S.E.I.; Shati, A.A.; Alfaifi, M.Y.; Elhenawy, A.A.; Alsenani, N.I.; Alfarsi, A.; Alhadhrami, A.; Alqurashi, E.A.; et al. Cell Cycle Arrest and Apoptosis-Inducing Ability of Benzimidazole Derivatives: Design, Synthesis, Docking, and Biological Evaluation. Molecules 2022, 27, 6899. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.H.; Johnson, J.R.; Chen, Y.F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist 2005, 10, 461–466. [Google Scholar] [CrossRef]
- Bishoyi, A.K.; Mahapatra, M.; Sahoo, C.R.; Paidesetty, S.K.; Padhy, R.N. Design, molecular docking and antimicrobial assessment of newly synthesized p-cuminal-sulfonamide Schiff base derivatives. J. Mol. Struct. 2022, 1250, 131824. [Google Scholar] [CrossRef]
- Angeli, A.; Kartsev, V.; Petrou, A.; Pinteala, M.; Brovarets, V.; Slyvchuk, S.; Pilyo, S.; Geronikaki, A.; Supuran, C.T. Chromene-Containing Aromatic Sulfonamides with Carbonic Anhydrase Inhibitory Properties. Int. J. Mol. Sci. 2021, 22, 5082. [Google Scholar] [CrossRef]
- Fouda, A.M.; Okasha, R.M.; Alblewi, F.F.; Mora, A.; Afifi, T.H.; El-Agrody, A.M. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg. Chem. 2020, 95, 103549. [Google Scholar] [CrossRef]
- El Gaafary, M.; Lehner, J.; Fouda, A.M.; Hamed, A.; Ulrich, J.; Simmet, T.; Syrovets, T.; El-Agrody, A.M. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo [f] chromene derivatives. Bioorg. Chem. 2021, 116, 105402. [Google Scholar] [CrossRef]
- Okasha, R.M.; Alsehli, M.; Ihmaid, S.; Althagfan, S.S.; El-Gaby, M.S.A.; Ahmed, H.A.; Afifi, T.H. First example of Azo-Sulfa Conjugated Chromene Moieties: Synthesis, Characterization, Antimicrobial Assessment, Docking Simulation as Potent Class I Histone Deacetylase Inhibitors and Antitumor Agents. Bioorg. Chem. 2019, 92, 103262. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Phosphane-Catalyzed Knoevenagel Condensation: A Facile Synthesis of α-Cyanoacrylates and α-Cyanoacrylonitriles. Eur. J. Org. Chem. 2004, 2004, 546–551. [Google Scholar] [CrossRef]
- Khidre, M.D.; Kamel, A.A. An approach to biologically important chromenes bearing P-S- heterocycles. Based on the chemistry of Lawesson’s reagent. Arch. Org. Chem. 2008, 2008, 189–201. [Google Scholar] [CrossRef]
- Vullo, D.; Del Prete, S.; Osman, S.M.; De Luca, V.; Scozzafava, A.; Al-Othman, Z.; Supuran, C.T.; Capasso, C. Sulfonamide inhibition studies of the carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg. Med. Chem. Lett. 2014, 24, 275–279. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 21–26. [Google Scholar] [CrossRef]
- Mitra, S.; Ganguli, S.; Chakrabarti, J. Introduction. Cancer Noncoding RNAs 2018, 1, 1–23. [Google Scholar] [CrossRef]
- Lin, Y.; Ukaji, T.; Koide, N.; Umezawa, K. Inhibition of Late and Early Phases of Cancer Metastasis by the NF-KB Inhibitor DHMEQ Derived from Microbial Bioactive Metabolite Epoxy quinomicin: A Review. Int. J. Mol. Sci. 2018, 19, 729. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.M.M.; Wafa, O.M.A.; Amr, M.E.; El-Shoukrofy, M.S.; Activity, A. Enzymatic Inhibition and Apoptosis-Promoting Effects of Benzoxazole-Based Hybrids on Human Breast Cancer Cells. Bioorg. Chem. 2021, 109, 104752. [Google Scholar] [CrossRef]
- Demirci, F.; Başer, K.H.C. Bioassay Techniques for Drug Development by Atta-ur-Rahman, M. Iqbal Choudhary (HEJRIC, University of Karachi, Pakistan), William J. Thomsen (Areana Pharmaceuticals, San Diego, CA). Harwood Academic Publishers, Amsterdam, The Netherlands. 2001. J. Nat. Prod. 2002, 65, 1086–1087. [Google Scholar] [CrossRef]
- Ahmad, R.; Alam, A.; Khan, M.; Ali, T.; Elhenawy, A.A.; Ahmad, M.; Activity, A. Molecular Docking and Quantum Studies of New Bis-Schiff Bases Based on Benzyl Phenyl Ketone Moiety. Chem. Select 2023, 8, e202302338. [Google Scholar] [CrossRef]
- Feng, Y.; Likos, J.J.; Zhu, L.; Woodward, H.; Munie, G.; McDonald, J.J.; Stevens, A.M.; Howard, C.P.; De Crescenzo, G.A.; Welsch, D.; et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002, 1598, 10–23. [Google Scholar] [CrossRef]
- Barqi, M.M.; Abdellah, I.M.; Eletmany, M.R.; Ali, N.M.; Elhenawy, A.A.; El Latif, F.M.A. Synthesis, Characterization, Bioactivity Screening and Computational Studies of Diphenyl− malonohydrazides and Pyridines Derivatives. Chem. Select 2023, 8, e202203913. [Google Scholar] [CrossRef]
- Nazreen, S.; Elbehairi, S.E.; Malebari, A.M.; Alghamdi, N.; Alshehri, R.F.; Shati, A.A.; Ali, N.M.; Alfaifi, M.Y.; Elhenawy, A.A.; Alam, M.M. New Natural Eugenol Derivatives as Antiproliferative Agents: Synthesis, Biological Evaluation, and Computational Studies. ACS Omega 2023, 8, 18811–18822. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Elbehairi, S.E.I.; Shati, A.A.; Hussien, R.A.; Alfaifi, M.Y.; Malebari, A.M.; Asad, M.; Elhenawy, A.A.; Asiri, A.M.; Mahzari, A.M.; et al. Design, synthesis and biological evaluation of new eugenol derivatives containing 1, 3, 4-oxadiazole as novel inhibitors of thymidylate synthase. New J. Chem. 2023, 10, 5021–5032. [Google Scholar] [CrossRef]
- Supuran, C.T. Diuretics: From classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr. Pharm. des. 2008, 14, 641–648. [Google Scholar] [CrossRef]
- Motulsky, H.J. Prism 5 statistics guide. GraphPad Software 2007, 31, 39–42. [Google Scholar]
- Discovery Studio 2.1; Accelrys Inc.: San Diego, CA, USA, 2008.
Cpds. | Ar | IC50 (µM) | Cpds. | R | IC50 (µM) | Vero. CCL-81 | ||||
---|---|---|---|---|---|---|---|---|---|---|
HepG-2 | MCF-7 | HCT-116 | HepG-2 | MCF-7 | HCT-116 | |||||
7a | C6H5- | 3.92 ±0.09 | 13.05 ±0.12 | 6.82 ±0.19 | 8 | 78.00 ±3.75 | 107.88 ±3.41 | 64.44 ±2.51 | - | |
7b | 4-CH3C6H4 | 45.66 ±2.88 | 29.52 ±3.29 | 17.28 ±4.29 | 11a | H | 32.17 ±1.79 | 20.80 ±1.38 | 12.17 ±0.96 | 138.69 ±5.26 |
7c | 4-OCH3C6H4 | 51.81 ±1.02 | 103.62 ±2.65 | 70.80 ±1.85 | 11b | COCH3 | 146.78 ±6.41 | 66.05 ±3.91 | 39.31 ±2.63 | - |
7d | 4-NO2C6H4 | 34.89 ±2.79 | 97.90 ±3.08 | 113.82 ±5.34 | 11c | NH2-C=NH- | 73.78 ±2.89 | 105.24 ±5.78 | 79.55 ±3.65 | 327.65 ±8.26 |
7e | 4-FC6H4 | 2.92 ±3.52 | 6.15 ±1.23 | 8.00 ±3.45 | 11d | 2-Thiazolyl | 4.71 ±0.47 | 9.13 ±0.93 | 6.32 ±0.68 | 278.49 ±6.45 |
7f | 4-ClC6H4 | 1.74 ±0.07 | 3.93 ±0.09 | 3.57 ±0.11 | 11e | 3-methylisoxazol-5-yl | 17.33 ±1.06 | 23.56 ±2.05 | 18.45 ±1.19 | 162.09 ±6.48 |
7g | 2,4-Cl2C6H3 | 1.63 ±2.36 | 1.72 ±2.5 | 1.74 ±4.06 | Cisplatin | 10.93 ±0.19 | 14.66 ±0.03 | 8.36 ±0.07 | - | |
Doxorubicin | 0.66 ±0.02 | 0.64 ±0.03 | 0.90 ±0.07 |
No. | ΔG | RMSD | H.B. | EInt. | Eele | Ki | LE | No. | ΔG | RMSD | H.B. | EInt. | Eele | Ki | LE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4HJO | |||||||||||||||
7a | −7.844 | 1.909 | −41.488 | −20.541 | −10.914 | 1.80 | 1.936 | 8 | −9.153 | 1.241 | −157.050 | −22.427 | −10.489 | 0.20 | 1.885 |
7b | −8.397 | 1.061 | −42.880 | −12.907 | −10.745 | 0.70 | 1.562 | 11a | −9.985 | 1.420 | −258.370 | −32.923 | −9.602 | 0.05 | 2.029 |
7c | −8.362 | 1.555 | −38.642 | −21.377 | −14.727 | 0.74 | 0.155 | 11b | −9.661 | 1.815 | −100.318 | −19.416 | −8.956 | 0.08 | 1.767 |
7d | −7.710 | 1.125 | −21.609 | −14.687 | −11.687 | 2.22 | 1.815 | 11c | −10.003 | 1.110 | −94.361 | −13.177 | −7.959 | 0.05 | 1.412 |
7e | −7.869 | 1.437 | −33.456 | −16.895 | −10.659 | 1.70 | 1.432 | 11d | −6.420 | 1.095 | −15.427 | −15.208 | −11.841 | 19.70 | 2.471 |
7f | −8.616 | 1.989 | −26.329 | −11.446 | −11.836 | 0.48 | 1.486 | 11e | −7.068 | 1.025 | −115.861 | −18.606 | −12.206 | 6.59 | 1.980 |
7g | −8.567 | 1.766 | −65.246 | −19.407 | −10.628 | 0.52 | 0.941 | Erlotinib | −5.361 | 1.342 | −8.175 | −17.976 | −9.201 | 117 | 2.885 |
1HOV | |||||||||||||||
7a | −7.89 | 1.20 | −55.10 | −16.69 | −11.53 | 1.64 | 1.73 | 8 | −8.62 | 1.99 | −26.33 | −11.45 | −11.84 | 0.48 | 0.94 |
7b | −7.88 | 1.60 | −42.33 | −18.56 | −13.35 | 1.67 | 1.94 | 11a | −8.57 | 1.77 | −65.25 | −19.41 | −10.63 | 0.52 | 1.88 |
7c | −7.84 | 1.91 | −41.49 | −20.54 | −10.91 | 1.79 | 1.56 | 11b | −9.15 | 1.24 | −157.05 | −22.43 | −10.49 | 0.20 | 2.03 |
7d | −8.40 | 1.06 | −42.88 | −12.91 | −10.74 | 0.70 | 0.16 | 11c | −9.98 | 1.42 | −258.37 | −32.92 | −9.60 | 0.05 | 1.77 |
7e | −8.36 | 1.55 | −38.64 | −21.38 | −14.73 | 7.44 | 1.81 | 11d | −9.66 | 1.81 | −100.32 | −19.42 | −8.96 | 0.08 | 1.41 |
7f | −7.71 | 1.13 | −21.61 | −14.69 | −11.69 | 2.23 | 1.43 | 11e | −7.62 | 1.09 | −20.33 | −14.45 | −2.84 | 2.59 | 1.94 |
7g | −7.87 | 3.44 | −33.46 | −16.90 | −10.66 | 1.70 | 1.49 | hydroxamic | −10.00 | 1.11 | −94.36 | −13.18 | −7.96 | 0.05 | 1.36 |
3M04 | |||||||||||||||
7a | −6.13 | 1.10 | −41.07 | −16.37 | −9.33 | 32.0 | 1.94 | 8 | −9.15 | 1.16 | −68.16 | −8.57 | −9.33 | 0.20 | 1.88 |
7b | −7.99 | 1.19 | −46.20 | −8.34 | −8.97 | 1.39 | 1.56 | 11a | −7.72 | 1.40 | −148.09 | −16.05 | −7.05 | 2.19 | 2.03 |
7c | −7.53 | 1.81 | −50.11 | −9.56 | −8.91 | 3.02 | 0.16 | 11b | −8.74 | 1.52 | −278.47 | −17.12 | −7.32 | 0.39 | 1.77 |
7d | −7.60 | 1.61 | −54.26 | −9.04 | −9.56 | 2.68 | 1.81 | 11c | −8.35 | 1.34 | −95.54 | −14.14 | −7.26 | 0.76 | 1.41 |
7e | −7.35 | 1.98 | −24.32 | −11.12 | −9.48 | 4.09 | 1.43 | 11d | −8.62 | 1.56 | −80.25 | −17.94 | −6.22 | 0.48 | 1.36 |
7f | −7.50 | 1.68 | −46.45 | −9.36 | −10.53 | 3.18 | 1.49 | 11e | −8.44 | 1.09 | 144.84 | −18.19 | −11.35 | 0.65 | 1.30 |
7g | −7.80 | 1.95 | −53.97 | −9.49 | −10.03 | 1.91 | 0.94 | Sulfonamide | −11.12 | 1.03 | −123.16 | −28.51 | −16.33 | 0.01 | 2.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alblewi, F.F.; Alsehli, M.H.; Hritani, Z.M.; Eskandrani, A.; Alsaedi, W.H.; Alawad, M.O.; Elhenawy, A.A.; Ahmed, H.Y.; El-Gaby, M.S.A.; Afifi, T.H.; et al. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. Int. J. Mol. Sci. 2023, 24, 16716. https://doi.org/10.3390/ijms242316716
Alblewi FF, Alsehli MH, Hritani ZM, Eskandrani A, Alsaedi WH, Alawad MO, Elhenawy AA, Ahmed HY, El-Gaby MSA, Afifi TH, et al. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. International Journal of Molecular Sciences. 2023; 24(23):16716. https://doi.org/10.3390/ijms242316716
Chicago/Turabian StyleAlblewi, Fawzia F., Mosa H. Alsehli, Zainab M. Hritani, Areej Eskandrani, Wael H. Alsaedi, Majed O. Alawad, Ahmed A. Elhenawy, Hanaa Y. Ahmed, Mohamed S. A. El-Gaby, Tarek H. Afifi, and et al. 2023. "Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays" International Journal of Molecular Sciences 24, no. 23: 16716. https://doi.org/10.3390/ijms242316716
APA StyleAlblewi, F. F., Alsehli, M. H., Hritani, Z. M., Eskandrani, A., Alsaedi, W. H., Alawad, M. O., Elhenawy, A. A., Ahmed, H. Y., El-Gaby, M. S. A., Afifi, T. H., & Okasha, R. M. (2023). Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. International Journal of Molecular Sciences, 24(23), 16716. https://doi.org/10.3390/ijms242316716