Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Clinical Outcomes
2.2.1. Safety Variables
2.2.2. Outcome of VAS for Pain and ODI Scores
2.2.3. Radiological Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patient Selection
4.3. Diagnosis of Discogenic LBP and Selection of Disc for Injection
4.4. Primary and Secondary end Points
4.5. MRI Acquisition
4.6. Cell Production and Preparation
4.7. Preparation of HA (Hyruan Plus®) for Cell Delivery
4.8. Implantation of Matrilin-3 Primed ASC Spheroids in Combination with HA
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study. Ann. Transl. Med. 2017, 8, 299. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Cao, J.; Chapin, A.; Chen, C.; Li, Z.; Liu, A.; Horst, C.; Kaldjian, A.; Matyasz, T.; Scott, K.W.; et al. US health care spending by payer and health condition, 1996–2016. JAMA 2020, 323, 863–884. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cheung, C.W.; Wong, S.S.C. Regenerative medicine for the treatment of chronic low back pain: A narrative review. J. Int. Med. Res. 2023, 51, 3000605231155777. [Google Scholar] [CrossRef]
- Chen, Z.; He, L.; Huang, L.; Liu, Z.; Dong, J.; Liu, B.; Chen, R.; Zhang, L.; Xie, P.; Rong, L. Risk factors for poor outcomes following minimally invasive discectomy: A post hoc subgroup analysis of 2-year follow-up prospective data. Neurospine 2022, 19, 224–235. [Google Scholar] [CrossRef]
- Goel, A. Cervical facet joint degeneration. Neurospine 2022, 19, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, A.F.; Lee, N.J.; Riew, K.D. Revision surgeries at the index level after cervical disc arthroplasty—A systematic review. Neurospine 2021, 18, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Yingsakmongkol, W.; Jitpakdee, K.; Kerr, S.; Limthongkul, W.; Kotheeranurak, V.; Singhatanadgige, W. Successful criteria for indirect decompression with lateral lumbar interbody fusion. Neurospine 2022, 19, 805–815. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Pathak, Z.; Kumar, H. Extra cellular matrix remodeling: An adjunctive target for spinal cord injury and intervertebral disc degeneration. Neurospine 2022, 19, 632–645. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, S.; Shi, Y.; Tian, N.; Zhou, Y.; Zhang, X. Senolytics: Eliminating senescent cells and alleviating intervertebral disc degeneration. Front. Bioeng. Biotechnol. 2022, 10, 823945. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Chen, F.; Liu, H.; Wang, H.; Li, X.; Liu, X.; Wang, J.; Zheng, Z. TGF-beta1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model. Exp. Mol. Med. 2017, 49, e379. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, K.; Yu, W.; Wang, Y.; Hua, J.; Liu, B.; Gong, Z.; Wang, J.; Xu, A.; You, Z.; et al. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater. 2019, 86, 300–311. [Google Scholar] [CrossRef]
- Abdel Fattah, I.O.; Nasr El-Din, W.A. Granulocyte-colony stimulating factor improves intervertebral disc degeneration in experimental adult male rats: A microscopic and radiological study. Anat. Rec. 2021, 304, 787–802. [Google Scholar] [CrossRef]
- Volleman, T.N.E.; Schol, J.; Morita, K.; Sakai, D.; Watanabe, M. Wnt3a and wnt5a as Potential chondrogenic stimulators for nucleus pulposus cell induction: A comprehensive review. Neurospine 2020, 17, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; An, S.B.; Jung, M.; Joshi, H.P.; Kumar, H.; Kim, C.; Song, S.Y.; Lee, J.R.; Kang, M.; Han, I.; et al. Local delivery of senolytic drug inhibits intervertebral disc degeneration and restores intervertebral disc structure. Adv. Healthc. Mater. 2022, 11, e2101483. [Google Scholar] [CrossRef]
- Ma, Y.H.; Liang, Q.Y.; Ding, Y.; Han, I.; Zeng, X. Multimodal repair of spinal cord injury with mesenchymal stem cells. Neurospine 2022, 19, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Ha, D.H.; Lee, E.J.; Park, J.H.; Shim, J.H.; Ahn, T.K.; Kim, K.T.; Ropper, A.E.; Sohn, S.; Kim, C.H.; et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Nan, L.P.; Zhou, S.F.; Liu, Y.; Wang, Z.Y.; Wang, J.C.; Feng, X.M.; Zhang, L. Injectable hydrogel combined with nucleus pulposus-derived mesenchymal stem cells for the treatment of degenerative intervertebral disc in rats. Stem Cells Int. 2019, 2019, 8496025. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ning, L.; Qiu, P.; Mo, J.; Mei, S.; Xia, C.; Zhang, J.; Lin, X.; Fan, S. Photo-crosslinked gelatin-hyaluronic acid methacrylate hydrogel-committed nucleus pulposus-like differentiation of adipose stromal cells for intervertebral disc repair. J. Tissue Eng. Regen. Med. 2019, 13, 682–693. [Google Scholar] [CrossRef]
- Vadalà, G.; Sowa, G.; Hubert, M.; Gilbertson, L.G.; Denaro, V.; Kang, J.D. Mesenchymal stem cells injection in degenerated intervertebral disc: Cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 2012, 6, 348–355. [Google Scholar] [CrossRef]
- Peck, S.H.; Bendigo, J.R.; Tobias, J.W.; Dodge, G.R.; Malhotra, N.R.; Mauck, R.L.; Smith, L.J. Hypoxic preconditioning enhances bone marrow-derived mesenchymal stem cell survival in a low oxygen and nutrient-limited 3D microenvironment. Cartilage 2021, 12, 512–525. [Google Scholar] [CrossRef]
- Ouyang, A.; Cerchiari, A.E.; Tang, X.; Liebenberg, E.; Alliston, T.; Gartner, Z.J.; Lotz, J.C. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells. J. Orthop. Res. 2017, 35, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Soufi, K.H.; Castillo, J.A.; Rogdriguez, F.Y.; DeMesa, C.J.; Ebinu, J.O. Potential role for stem cell regenerative therapy as a treatment for degenerative disc disease and low back pain: A systematic review. Int. J. Mol. Sci. 2023, 24, 8893. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Rahman, M.T.; Abu Kasim, N.H.; Alabsi, A.M. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci. World J. 2013, 2013, 632972. [Google Scholar] [CrossRef] [PubMed]
- Ejtehadifar, M.; Shamsasenjan, K.; Movassaghpour, A.; Akbarzadehlaleh, P.; Dehdilani, N.; Abbasi, P.; Molaeipour, Z.; Saleh, M. The effect of hypoxia on mesenchymal stem cell Biology. Adv. Pharm. Bull. 2015, 5, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, T.; Homan, K.; Fukushima, A.; Ukeba, D.; Iwasaki, N.; Sudo, H. A review: Methodologies to promote the differentiation of mesenchymal stem cells for the regeneration of intervertebral disc cells following intervertebral disc degeneration. Cells 2023, 12, 2161. [Google Scholar] [CrossRef] [PubMed]
- Hegewald, A.A.; Ringe, J.; Bartel, J.; Krüger, I.; Notter, M.; Barnewitz, D.; Kaps, C.; Sittinger, M. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: A preliminary study. Tissue Cell 2004, 36, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Gionet-Gonzales, M.A.; Leach, J.K. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomed. Mater. 2018, 13, 034109. [Google Scholar] [CrossRef]
- Ryu, N.-E.; Lee, S.-H.; Park, H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells. 2019, 8, 1620. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Choi, B.; Yoshie, A.; Kumar, H.; Han, I.; Park, H.; Lee, S.H. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model. J. Tissue Eng. Regen. Med. 2018, 12, 667–675. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Choi, B.; Han, I.; Park, H.; Lee, S.H. Matrilin-3-primed adipose-derived mesenchymal stromal cell spheroids prevent mesenchymal stromal-cell-derived chondrocyte hypertrophy. Int. J. Mol. Sci. 2020, 21, 8911. [Google Scholar] [CrossRef]
- Li, Y.Y.; Diao, H.J.; Chik, T.K.; Chow, C.T.; An, X.M.; Leung, V.; Cheung, K.M.; Chan, B.P. Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: Reduced risk of osteophyte formation. Tissue Eng. Part A 2014, 20, 1379–1391. [Google Scholar] [CrossRef]
- Deutsch, H. The predictive value of the baseline Oswestry Disability Index in lumbar disc arthroplasty. Neurosurg. Focus 2010, 28, E7. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Hou, S.; Wu, W.; Zhang, C.; Yang, Y. The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur. Spine J. 2006, 15, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Ravikanth, R. A review of discogenic pain management by interventional techniques. J. Craniovertebr. Junction Spine 2020, 11, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sánchez, A.; García-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation 2011, 92, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Zeckser, J.; Wolff, M.; Tucker, J.; Goodwin, J. Multipotent mesenchymal stem cell treatment for discogenic low back pain and disc degeneration. Stem Cells Int. 2016, 2016, 3908389. [Google Scholar] [CrossRef] [PubMed]
- Amirdelfan, K.; Bae, H.; McJunkin, T.; DePalma, M.; Kim, K.; Beckworth, W.J.; Ghiselli, G.; Bainbridge, J.S.; Dryer, R.; Deer, T.R.; et al. Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease: A prospective randomized, placebo-controlled 36-month study of safety and efficacy. Spine J. 2021, 21, 212–230. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Vivian, D.; Freitag, J.; Wickham, J.; Mitchell, B.; Verrills, P.; Shah, K.; Boyd, R.; Federman, D.; Barnard, A.; et al. Low-dose mesenchymal stem cell therapy for discogenic pain: Safety and efficacy results from a 1-year feasibility study. Future Sci. OA 2022, 8, FSO794. [Google Scholar] [CrossRef]
- Atluri, S.; Murphy, M.B.; Dragella, R.; Herrera, J.; Boachie-Adjei, K.; Bhati, S.; Manocha, V.; Boddu, N.; Yerramsetty, P.; Syed, Z.; et al. Evaluation of the effectiveness of autologous bone marrow mesenchymal stem cells in the treatment of chronic low back pain due to severe lumbar spinal degeneration: A 12-month, open-label, prospective controlled trial. Pain Phys. 2022, 25, 193–207. [Google Scholar]
- Pettine, K.A.; Murphy, M.B.; Suzuki, R.K.; Sand, T.T. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015, 33, 146–156. [Google Scholar] [CrossRef]
- Mochida, J.; Sakai, D.; Nakamura, Y.; Watanabe, T.; Yamamoto, Y.; Kato, S. Intervertebral disc repair with activated nucleus pulposus cell transplantation: A three-year, prospective clinical study of its safety. Eur. Cell Mater. 2015, 29, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Centeno, C.J.; Schultz, J.R.; Lutz, G.; Ichim, T.; Silva, F.J. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: A long-term safety and feasibility study. J. Transl. Med. 2016, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Centeno, C.; Markle, J.; Dodson, E.; Stemper, I.; Williams, C.J.; Hyzy, M.; Ichim, T.; Freeman, M. Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: A pilot study on safety and efficacy. J. Transl. Med. 2017, 15, 197. [Google Scholar] [CrossRef]
- Pettine, K.; Suzuki, R.; Sand, T.; Murphy, M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int. Orthop. 2015, 40, 135–140. [Google Scholar] [CrossRef]
- Pettine, K.A.; Suzuki, R.K.; Sand, T.T.; Murphy, M.B. Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int. Orthop. 2017, 41, 2097–2103. [Google Scholar] [CrossRef]
- Noriega, D.C.; Ardura, F.; Hernández-Ramajo, R.; Martín-Ferrero, M.Á.; Sánchez-Lite, I.; Toribio, B.; Alberca, M.; García, V.; Moraleda, J.M.; Sánchez, A.; et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: A randomized controlled trial. Transplantation 2017, 101, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Yang, H.; Peng, B. Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain. Pain Physician 2014, 17, E525–E530. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Kumar, H.; Park, S.; Choi, U.Y.; Han, I.; Park, H.; Lee, S.H. Efficacy of matrilin-3-primed adipose-derived mesenchymal stem cell spheroids in a rabbit model of disc degeneration. Stem Cell Res. Ther. 2020, 11, 363. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Han, I.; Park, H.K.; Park, H.; Lee, S.H. Matrilin-3 role in cartilage development and osteoarthritis. Int. J. Mol. Sci. 2016, 17, 590. [Google Scholar] [CrossRef]
- Tsvetkova, A.V.; Vakhrushev, I.V.; Basok, Y.B.; Grigor’ev, A.M.; Kirsanova, L.A.; Lupatov, A.Y.; Sevastianov, V.I.; Yarygin, K.N. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull. Exp. Biol. Med. 2021, 170, 528–536. [Google Scholar] [CrossRef]
- Buöen, C.; Holm, S.; Thomsen, M.S. Evaluation of the cohort size in phase I dose escalation trials based on laboratory data. J. Clin. Pharmacol. 2003, 43, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Shebib, R.; Bailey, J.F.; Smittenaar, P.; Perez, D.A.; Mecklenburg, G.; Hunter, S. Randomized controlled trial of a 12-week digital care program in improving low back pain. Npj Digit. Med. 2019, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Ostelo, R.W.; Deyo, R.A.; Stratford, P.; Waddell, G.; Croft, P.; Von Korff, M.; Bouter, L.M.; de Vet, H.C. Interpreting change scores for pain and functional status in low back pain: Towards international consensus regarding minimal important change. Spine 2008, 33, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.S.; Albert, H.B.; Soerensen, J.S.; Manniche, C.; Leboeuf-Yde, C. Natural course of disc morphology in patients with sciatica: An MRI study using a standardized qualitative classification system. Spine 2006, 31, 1605–1612; discussion 1613. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, P.; Tunset, A.; Boyle, E.; Jensen, T.S. Progression of lumbar disc herniations over an eight-year period in a group of adult Danes from the general population--a longitudinal MRI study using quantitative measures. BMC Musculoskelet. Disord. 2016, 17, 26. [Google Scholar] [CrossRef]
- Yoo, B.R.; Son, S.; Lee, S.G.; Kim, W.K.; Jung, J.M. Factors predicting the clinical outcome after trans-sacral epiduroscopic laser decompression for lumbar disc herniation. Neurospine 2021, 18, 336–343. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhuo, Y.; Hu, Y.; Li, X.; Xu, Y.; Sun, B.; Liu, M.; Zou, L.; Liu, L.; et al. Spheroid formation enhances the regenerative capacity of nucleus pulposus cells via regulating N-CDH and ITGbeta1 interaction. Int. J. Biol. Sci. 2022, 18, 3676–3696. [Google Scholar] [CrossRef]
- Videman, T.; Battié, M.C.; Gibbons, L.E.; Gill, K. A new quantitative measure of disc degeneration. Spine J. 2017, 17, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Attal, N.; Casale, R.; Dickenson, A.H.; Treede, R.D. Neuropathic low back pain in clinical practice. Eur. J. Pain 2016, 20, 861–873. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Griffith, J.F.; Wang, Y.X.; Antonio, G.E.; Choi, K.C.; Yu, A.; Ahuja, A.T.; Leung, P.C. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 2007, 32, E708–E712. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.J.; Dagher, A.P.; Eckel, T.S.; Clark, M.; Reinig, J.W. Modic changes on MR images as studied with provocative diskography: Clinical relevance—A retrospective study of 2457 disks. Radiology 2009, 250, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Kim, Y.H.; Lee, S.H.; Derby, R.; Kim, J.H.; Chung, K.B.; Sung, D.J. Can magnetic resonance imaging accurately predict concordant pain provocation during provocative disc injection? Skelet. Radiol. 2009, 38, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Bogduk, N.; Aprill, C.; Derby, R. Lumbar discogenic pain: State-of-the-art review. Pain Med. 2013, 14, 813–836. [Google Scholar] [CrossRef]
- Carragee, E.J. Is lumbar discography a determinate of discogenic low back pain: Provocative discography reconsidered. Curr. Rev. Pain 2000, 4, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ludescher, B.; Effelsberg, J.; Martirosian, P.; Steidle, G.; Markert, B.; Claussen, C.; Schick, F. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: An in vivo MRI study at 1.5 Tesla. J. Magn. Reson. Imaging 2008, 28, 252–257. [Google Scholar] [CrossRef]
Case Number | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Sex (M/F) | M | M | M | M | M | F | M | M | |
Age (years) | 54 | 46 | 32 | 64 | 38 | 52 | 51 | 50 | |
BMI (kg/m2) | 23.3 | 25.1 | 26.8 | 26.8 | 28.41 | 23.8 | 25.4 | 20.6 | |
Hypertension (Y/N) | N | N | N | Y | N | N | N | N | |
Diabetes mellitus (Y/N) | N | N | N | N | N | N | N | N | |
Smoking history (Y/N) | N | N | Y | N | N | N | N | N | |
Duration of LBP (month) | 120 | 36 | 37 | 11 | 60 | 12 | 49 | 48 | |
Implanted disc level | L4/5 | L4/5 | L4/5 | L4/5 | L4/5 | L4/5 | L4/5 | L4/5 | |
Preoperative VAS | 9 | 7 | 6 | 5 | 9 | 6 | 4 | 6 | |
Preoperative ODI (%) | 45 | 56 | 35 | 45 | 70 | 45 | 35 | 35 | |
Preoperative modified Pfirrmann grade | Ⅴ | Ⅳ | Ⅵ | Ⅴ | Ⅳ | Ⅳ | Ⅲ | VII | |
Cell number in a vial (×107) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Injected cell number with 400 μL of hyaluronic acid (×106) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | |
Cell viability (%) | 91.5 | 95.86 | 96.55 | 95.8 | 96.55 | 92.76 | 96.46 | 95.9 | |
Cell surface marker | CD44 (%) | 87.2 | 100 | 100 | 99.9 | 99.7 | 100 | 99.6 | 98.4 |
CD73 (%) | 97.9 | 98.9 | 99 | 98.7 | 96.8 | 87.4 | 94.1 | 94.4 | |
CD45 (%) | 1.6 | 1.4 | 0.8 | 1 | 0.6 | 0.5 | 0.8 | 0.5 |
Case No. | VAS (0–10 Point) | ODI (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | 1 W | 1 M | 3 M | 6 M | Pre | 1 W | 1 M | 3 M | 6 M | |
1 | 9 | 6 | 8 | 6 | 7 | 45 | 45 | 48 | 45 | 45 |
2 | 7 | 4 | 3 | 3 | 3 | 56 | 45 | 40 | 34 | 25 |
3 | 6 | 5 | 4 | 4 | 3 | 35 | 30 | 25 | 15 | 15 |
4 | 5 | 1 | 1 | 0 | 0 | 45 | 35 | 10 | 0 | 0 |
5 | 9 | 6 | 5 | 5 | 5 | 70 | 55 | 45 | 40 | 35 |
6 | 6 | 7 | 5 | 4 | 3 | 45 | 30 | 30 | 35 | 33 |
7 | 4 | 1 | 1 | 2 | 1 | 35 | 20 | 20 | 30 | 20 |
8 | 6 | 5 | 6 | 2 | 2 | 35 | 30 | 35 | 25 | 25 |
Case No. | Percentage VAS Score Reduction | Percentage ODI Score Reduction | ||||||
---|---|---|---|---|---|---|---|---|
1 W | 1 M | 3 M | 6 M | 1 W | 1 M | 3 M | 6 M | |
1 | 33 | 11 | 33 | 22 | 0 | −7 | 0 | 0 |
2 | 43 | 57 | 5 | 57 | 20 | 29 | 39 | 55 |
3 | 17 | 33 | 33 | 50 | 14 | 29 | 57 | 57 |
4 | 80 | 80 | 100 | 100 | 22 | 78 | 100 | 100 |
5 | 33 | 44 | 44 | 44 | 21 | 36 | 43 | 50 |
6 | −17 | 17 | 33 | 50 | 33 | 33 | 22 | 27 |
7 | 75 | 75 | 50 | 75 | 43 | 43 | 14 | 43 |
8 | 17 | 0 | 67 | 67 | 14 | 0 | 29 | 29 |
Case No. | Modified Pfirrmann Grade | ||
---|---|---|---|
Baseline | 1 M | 6 M | |
1 | V | V | V |
2 | IV | IV | IV |
3 | VI | VI | VI |
4 | V | V | V |
5 | IV | IV | IV |
6 | IV | IV | IV |
7 | III | III | III |
8 | VII | VI | VI |
Year, Author | Stem Cells | Cell Number | Case No. | FU (Months) | Finding |
---|---|---|---|---|---|
2011 Orozco L et al. [35] | Autologous BM | 23 ± 5 × 106 | 10 | 12 | VAS, ODI Improvement in VAS, ODI; improvement of water content on MRI |
2013 Pang et al. [47] | Umbilical Cord Mesenchymal Stem Cells | 2 | 24 | The VAS and ODI scores decreased obviously during a 2-year follow-up period | |
2014 Pettine KA et al. [40] | Autologous BM concentrate | 121 × 106 total nucleated cell/ml | 26 | 12 | Improvement in VAS, ODI. Hgher concentration MSC injection patients versus lower concentration. Improvement of at least 1 grade in Modified Pfirrmann Score in 8 of 20 at 12 months |
2015 Pettine KA et al. [44] | Autologous BM concentrate | 121 × 106 total nucleated cell/ml | Same cohort as above | 24 | Reduction in ODI and VAS scores endured at 24 months |
2017 Pettine KA et al. [45] | Autologous BM concentrate | 121 × 106 total nucleated cell/ml | Same cohort as above | 36 | Reduction in ODI and VAS scores endured at 36 months |
2015 Mochida J et al. [41] | Coculture of NP cells with autologous BM | Activated NP cells: 106 | 9 | 36 | JOA scoring system improvement. No injected disc showed worsening degeneration on MRI. |
2016 Elabd et al. [42] | Autologous bone marrow-derived MSCs | 15.8–37.3 × 106 cells/ disc | 5 | 48–72 | No adverse events related to MSC Injection. Majority reported an overall improvement in QoL, strength, and mobility. Effect independent of cell dose |
2017 Kumar et al. [16] | Autologous ASCs in HA carrier | 2 × 107 4 × 107 | 10 | 12 | Improvement in VAS, ODI, SF-36 (n = 6); improvement of water content on diffusion MRI (n = 3) |
2017 Noriega DC et al. [46] | Allogenic BM MSCs | 25 × 106 | 24 Cohort study with control group | 12 | Improvement in VAS and ODI. Improvement in Pfirrmann disc degeneration grade at 12 months |
2017 Centeno et al. [43] | autologous bone marrow-derived MSCs | 2.3 × 107 cells/disc range 1.73–45 × 106 | 33 | 72 | Improvement in NPS, FRI scores. |
2021 Amirdelfan et al. [37] | Allogenic MPCs in HA carrier | 6 × 106 1.8 × 107 | 100 | 36 | Improvement in VAS, ODI, SF-36, Work Productivity and Activity Index MRI |
2022 Bates et al. [38] | Autologous ASCs | 1 × 107 | 9 | 12 | Improvement in pain (78%); Increased work capacity (56%); Reduced analgesic medication (33%); Improvements in EQ-5D and ODI, |
2022 Atluri et al. [39] | Autologous BM-MSCs | 2.1 × 106 | 80 | 12 | Improvement in ODI, pain, and other parameters (EQ-5D-3L, GMH, and GPH). |
Present study | Autologous ASCs spheroids with matrillin-3-priming | 6 × 106 | 8 | 6 | Improvement in VAS and ODI Improvement in MRI: reduction of hyperintensity zone and central disc protrusion |
SV | V1 | V2 | V3 | V4 | V5 | V6 | |
---|---|---|---|---|---|---|---|
Day | −42 | −21 | 0 | 7 | 30 | 90 | 180 |
Time window (days) | NA | ±3 | ±1 | ±1 | ±7 | ±7 | ±7 |
Informed consent | X | ||||||
Physical examination | X | X | X | X | X | X | X |
Vital signs | X | X | X | X | X | X | X |
Medical history | X | ||||||
Laboratory assessments | X | X | X | X | X | X | |
VAS | X | X | X | X | X | X | X |
ODI | X | X | X | X | X | X | X |
Lumbar spine X-ray | X | X | X | ||||
Lumbar spine MRI | X | X | X | ||||
Liposuction | X | ||||||
Stem cell transplantation | X | ||||||
AE assessment | X | X | X | X | |||
SAE assessment | X | X | X | X |
Inclusion criteria |
Age between 18 to 70 years |
Chronic LBP that is unresponsive to at least 3 months of conservative treatment (i.e., medication, intensive physical therapy, and local anesthetic infiltration in facet joints or medial branches) Pretreatment (baseline) back pain intensity of 4/10 or higher on a visual analog scale (VAS) Pretreatment (Baseline) Oswestry Disability Index Questionnaire (ODI) score of 30 or higher |
Diagnosis of chronic LBP based on clinical and MRI data (modified Pfirrmann grade III–VII at one or two levels based on T2-weighted MRI) |
Able to comply with the protocol physically and mentally, able to adhere to the requirements of the protocol, and willing to voluntarily sign the informed consent form. |
Exclusion criteria |
Radiculopathy resulting from nerve compression at screening or baseline, and unilateral or bilateral leg pain with intensity greater than 50% of the intensity of the low back pain as measured on a VAS at screening or baseline. Prior lumbar spine surgery |
Prior lumbar vertebral body fracture |
Severely herniated disc or spinal stenosis requiring surgery |
Degenerative changes in the lumbar as determined by Modic Changes Type 3 |
Evidence of dynamic instability on lumbar flexion extension, and Grade 2 or higher spondylolisthesis at the target disc at screening. |
Significant underlying neurological condition |
Pregnant, breastfeeding, or planning to become pregnant within 2 years |
Evidence of a spinal infection on an MRI |
Uncontrolled hypertension, uncontrolled diabetes, and other serious systemic diseases, such as cancer, an autoimmune disease, blood disease, and kidney disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.H.; Park, K.-S.; Shin, H.E.; Kim, S.B.; Choi, H.; An, S.B.; Choi, H.; Kim, J.P.; Han, I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. Int. J. Mol. Sci. 2023, 24, 16827. https://doi.org/10.3390/ijms242316827
Lee DH, Park K-S, Shin HE, Kim SB, Choi H, An SB, Choi H, Kim JP, Han I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. International Journal of Molecular Sciences. 2023; 24(23):16827. https://doi.org/10.3390/ijms242316827
Chicago/Turabian StyleLee, Dong Hyun, Kwang-Sook Park, Hae Eun Shin, Sung Bum Kim, Hyejeong Choi, Seong Bae An, Hyemin Choi, Joo Pyung Kim, and Inbo Han. 2023. "Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial" International Journal of Molecular Sciences 24, no. 23: 16827. https://doi.org/10.3390/ijms242316827
APA StyleLee, D. H., Park, K. -S., Shin, H. E., Kim, S. B., Choi, H., An, S. B., Choi, H., Kim, J. P., & Han, I. (2023). Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. International Journal of Molecular Sciences, 24(23), 16827. https://doi.org/10.3390/ijms242316827