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Abstract: Liver fibrosis is reversible when treated in its early stages and when liver inflammatory
factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid
extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-
inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating
liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of
mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1β, IL-6,
and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore,
corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs)
and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This in-
hibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth
muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation,
which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects
of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced
liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits
HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.

Keywords: corylin; anti-inflammation; liver fibrosis; hepatic stellate cell; growth arrest-specific gene
6/AXL signaling pathway

1. Introduction

Liver fibrosis, caused by viral or metabolic chronic liver diseases, is a major challenge
of global health [1,2]. In Taiwan, approximately 60% of patients with liver cancer have
previously suffered from viral hepatitis B and C infections [3–5]. Chronic hepatitis causes
repeated liver inflammation and activates hepatic stellate cells (HSCs) to secrete collagen for
tissue repair. Consequently, the extracellular matrix (ECM) accumulates during repeated
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inflammation and repair, leading to liver fibrosis and liver cirrhosis. Patients with cirrhosis
are 60–250 times more likely to develop liver cancer than those without liver disease [6].

Liver fibrosis can be reversed by administering treatment at an early stage and in-
hibiting the factors that cause liver inflammation [7]. Current treatment options for liver
fibrosis can be classified based on three strategies: the inhibition of liver inflammation,
the inhibition of HSC activation, and the acceleration of ECM breakdown. In the clinical
setting, the administration of antiviral drugs alone, such as entecavir or lamivudine, or
interferon (IFN) alone, may help ameliorate liver fibrosis caused by viral hepatitis; however,
these treatments show low efficacy [8,9]. The treatment outcomes of liver fibrosis can be
effectively improved if an appropriate adjuvant is administered to suppress inflammation
or inhibit HSC activation. However, no clinically effective drugs are currently available
for treating liver fibrosis with low side effects; thus, continuous research and development
are required.

HSCs play a key role in the progression of liver fibrosis. When liver tissues are injured
or stimulated by oxidative stress or inflammatory cytokines, HSCs are activated followed by
proliferation and transformation into fibrogenic cells, thereby synthesizing large amounts
of ECM. HSC activation is regulated by various pathways, with the growth arrest-specific
6 (GAS6)/AXL receptor tyrosine kinase (AXL) being a key regulatory pathway [10–12].
AXL, a member of the TYRO-AXL-MER (TAM) receptor tyrosine kinase (RTK) family, is
mainly expressed in neural, vascular, immune, and stellate cells and is involved in the regu-
lation of cellular physiological processes, such as growth, survival, differentiation, adhesion,
and migration [13]. The binding of AXL to its ligand protein, GAS6, initiates autophosphory-
lation, which further activates the downstream phosphoinositide 3-kinase/protein kinase B
(PI3K/AKT), rat sarcoma/rapidly accelerated fibrosarcoma kinase/mitogen-activated pro-
tein kinase (MAPK) kinase/extracellular signal-regulated kinase (RAS/RAF/MEK/ERK),
and wingless-related integration site (Wnt) signaling pathways, thereby promoting cell
growth, migration, and angiogenesis and inhibiting apoptosis [14]. The GAS6/AXL signal-
ing pathway regulates HSC proliferation and activation, which play an important role in
liver fibrosis development. The treatment of carbon tetrachloride (CCl4)-exposed mice with
an AXL inhibitor effectively alleviates fibrosis symptoms [10]. Therefore, at present, TAM
receptors, including AXL, are considered as key targets for treating liver fibrosis [15,16].

Natural products contain diverse pharmacophores and highly complex stereochem-
istry, and most of them have low physiological toxicity. Therefore, natural products have
always represented important sources for new drug development [17,18]. Compounds,
such as paclitaxel, curcumin, camptothecin, and their derivatives, have been used to
treat various cancers, such as breast cancer, lung cancer, colorectal cancer, and melanoma,
as they significantly prolong patient survival time [19–23]. Other natural compounds,
such as resveratrol, metformin, magnolol, sulforaphane, and diallyl disulfide, exhibit anti-
inflammatory activity and have the potential to be used in the treatment of inflammatory
diseases [24–28].

Psoralea corylifolia L. (cullen corylifolium; Fabaceae) is an herb widely used for treat-
ing bacterial infections, inflammation, and cancers in many Asian countries [29–31]. Its
polyphenolic extracts, such as psoralen, isopsoralen, and psoralidin; flavonoid extracts,
such as bavachin, isobavachalcone, and neobavaisoflavone; and the phenolic extract backu-
chiol have all been identified as biologically active with different therapeutic effects [32].
Corylin, a flavonoid isolated from the fruits of P. corylifolia L., exerts an anti-inflammatory
effect by inhibiting the expression of inducible nitric oxide synthase and cyclooxygenase
which is increased during bacterial infections [33,34]. In addition, the antioxidant, anti-
aging, and anti-tumor activities of corylin have also been reported recently [35–38], and
have also shown the therapeutic potential of corylin in hyperlipidemia, insulin resistance,
atherosclerosis, hepatocellular carcinoma, and neurological diseases [39–41]. We previously
showed that corylin ameliorates obesity by activating adipocyte browning and reduces
hepatic steatosis and hepatic fibrosis in high-fat diet (HFD)-fed mice [38]. However, the
molecular mechanism of corylin’s anti-inflammation and anti-hepatic fibrosis effects have
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not yet been fully clarified. Therefore, in this study, we investigated the anti-inflammatory
and therapeutic effects of corylin on liver fibrosis and further clarified its downstream
regulatory mechanisms. Our findings showed that corylin has anti-inflammatory activity
and inhibits HSC activation; thus, it can be used as a potential adjuvant in the treatment of
liver fibrosis.

2. Results
2.1. Corylin Treatment Suppressed Lipopolysaccharide-Induced Pro-Inflammatory Cytokine
Production in THP-1 and RAW264.7 Cells

To determine whether corylin exhibits anti-inflammatory activity, we treated human
monocyte THP-1 cells and RAW 264.7 mouse macrophage cells with different concentra-
tions of corylin for 2 h followed by lipopolysaccharide (LPS) treatment for 24 h to induce an
inflammatory response. The culture media were collected to perform an enzyme-linked im-
munosorbent assay (ELISA) to analyze the expression of pro-inflammatory cytokines. LPS
treatment significantly increased the expression of cytokines, such as interleukin (IL)-1β,
IL-6, and tumor necrosis factor alpha (TNF-α), in THP-1 and RAW264.7 cells. The ex-
pression of these pro-inflammatory cytokines was significantly reduced in corylin-treated
cells compared to that in the control group (dimethyl sulfoxide (DMSO)-treated), indi-
cating that corylin exhibited anti-inflammatory activity and inhibited the expression of
pro-inflammatory cytokines (Figure 1).
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 Figure 1. Corylin significantly inhibits IL-1β, IL-6, and TNF-α expression in THP-1 and RAW264.7
cells. Expression of pro-inflammatory cytokines, according to enzyme-linked immunosorbent assays,
in (A–C) THP-1 and (D–F) RAW264.7 cells that were treated with different concentrations of corylin
or vehicle for 2 h and then treated with 200 ng/mL LPS to induce an inflammatory response for
24 h. All data are expressed as the mean ± standard deviations of three independent experiments.
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). LPS, lipopolysaccharide; IL-1β, interleukin 1 beta; TNF-α,
tumor necrosis factor alpha; TGF-β, transforming growth factor beta.
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2.2. Corylin Treatment Inhibited the Activation of MAPK Signaling Pathways in LPS-Stimulated
THP1 and RAW264.7 Cells

To further determine whether the anti-inflammatory effect of corylin was associated
with MAPK signaling pathways, THP-1 and RAW264.7 cells were pre-treated with corylin
and stimulated with LPS. Subsequently, the phosphorylation levels of c-Jun N-terminal
kinase, ERK, and p38 proteins were analyzed using Western blotting. LPS treatment
activated the aforementioned MAPKs, which subsequently upregulated pro-inflammatory
cytokines. However, in corylin-treated cells, the activation of these kinases was significantly
inhibited (Figure 2), leading to the decreased expression of pro-inflammatory cytokines.
Therefore, the anti-inflammatory activity of corylin was mediated by blocking the activation
of MAPK signaling pathways.
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Figure 2. Corylin inhibits mitogen-activated protein kinase activation in THP-1 and RAW264.7 cells.
(A) THP-1 cells and (B) RAW264.7 cells stimulated with 200 ng/mL LPS and 40 mM corylin for the
indicated time period, and the activities of JNK, ERK, and p38 examined using Western blot analysis
with phosphospecific antibodies are shown. (C,D) The total protein levels of JNK, ERK, and p38
were measured, and quantitative results are shown. LPS, lipopolysaccharide; JNK, c-Jun N-terminal
kinase; ERK, extracellular signal-regulated kinase; p-JNK, phosphorylated JNK; IL-1β, interleukin
1 beta; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor beta.
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2.3. Corylin Treatment Alleviated the Symptoms of CCl4-Induced Liver Fibrosis in Mice

To confirm the anti-inflammatory activity of corylin and its efficacy in treating liver
fibrosis in vivo, BALB/c mice were intraperitoneally injected with CCl4 (0.5 µL/g body
weight) twice a week for six weeks to induce liver fibrosis. Further, the mice were intraperi-
toneally injected with/without corylin (30 mg/kg of body weight). After six weeks of CCl4
treatment, the mice exhibited significant fibrosis of the liver tissue, whereas liver fibrosis
in corylin-treated mice was significantly alleviated compared with that in mice without
corylin treatment (Figure 3A–C). Serological analysis also revealed that liver function indi-
cator levels, including aspartate aminotransferase (AST) and alanine transaminase (ALT),
in CCl4-treated mice were 8–10-fold higher than those in untreated mice, indicating that
their liver tissues were in an inflammatory and injured state. In contrast, liver function
indicator levels in corylin-treated mice were significantly reduced, indicating that corylin
effectively inhibited liver tissue inflammation and injury caused by CCl4 (Figure 3D).
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Figure 3. Effect of corylin on liver fibrosis in mice induced by CCl4 treatment. (A) Mice livers
treated with CCl4, CCl4 + corylin, or olive oil (NC), as described in Section 4, are shown. Corylin
treatment reduces liver fibrosis symptoms in CCl4-exposed mice six weeks after drug administration.
(B) Body weights measured every three days after CCl4 injection are shown. (C) Masson’s trichrome
staining reveals the effects of corylin on CCl4-induced liver fibrosis. (D) Effect of corylin on serum
AST and ALT levels in mice. p < 0.05 (*), p < 0.01 (**). CCl4, carbon tetrachloride; AST, aspartate
aminotransferase; ALT, alanine transaminase.

2.4. Corylin Treatment Inhibited HSC Activation

Liver fibrosis is caused by the excessive accumulation of ECM proteins, such as
collagen, which are secreted by activated HSCs. To determine whether corylin inhibits
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HSC activation, HHSteC cells were treated with corylin or a vehicle for 2 h, followed
by transforming growth factor-β (TGF-β) treatment for 24 h to stimulate cell activation.
Western blotting was performed to analyze the expression of alpha-smooth muscle actin (α-
SMA) and collagen 1A to determine the effects of corylin on HSC activation. The expression
of α-SMA and collagen 1A decreased significantly in HHSteC cells treated with corylin
compared with that in the control group, indicating that corylin inhibited HSC activation
(Figure 4A,B). In addition, immunohistochemical staining also showed that the expression
of α-SMA and collagen 1A was significantly reduced in the tissues of corylin-treated mice
compared to that in mice in the control group (Figure 4C,D). Therefore, corylin retards the
progression of liver fibrosis in mice by inhibiting HSC activation.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 14 
 

 

reduces liver fibrosis symptoms in CCl4-exposed mice six weeks after drug administration. (B) Body 

weights measured every three days after CCl4 injection are shown. (C) Masson’s trichrome staining 

reveals the effects of corylin on CCl4-induced liver fibrosis. (D) Effect of corylin on serum AST and 

ALT levels in mice. p < 0.05 (*), p < 0.01 (**). CCl4, carbon tetrachloride; AST, aspartate aminotrans-

ferase; ALT, alanine transaminase. 

2.4. Corylin Treatment Inhibited HSC Activation 

Liver fibrosis is caused by the excessive accumulation of ECM proteins, such as col-

lagen, which are secreted by activated HSCs. To determine whether corylin inhibits HSC 

activation, HHSteC cells were treated with corylin or a vehicle for 2 h, followed by trans-

forming growth factor-β (TGF-β) treatment for 24 h to stimulate cell activation. Western 

blo�ing was performed to analyze the expression of alpha-smooth muscle actin (α-SMA) 

and collagen 1A to determine the effects of corylin on HSC activation. The expression of 

α-SMA and collagen 1A decreased significantly in HHSteC cells treated with corylin com-

pared with that in the control group, indicating that corylin inhibited HSC activation (Fig-

ure 4A,B). In addition, immunohistochemical staining also showed that the expression of 

α-SMA and collagen 1A was significantly reduced in the tissues of corylin-treated mice 

compared to that in mice in the control group (Figure 4C,D). Therefore, corylin retards the 

progression of liver fibrosis in mice by inhibiting HSC activation. 

 

Figure 4. Corylin inhibits HSC activation. (A) Western blot analysis of human HSCs HHSteC cells 

treated with corylin or vehicle for 2 h, followed by TGF-β (4 ng/mL) treatment for 24 h to stimulate 

cell activation, to analyze α-SMA and COL1A1 protein expression, and to determine the effects of 

corylin on HSC activation. Quantitative results are shown in (B). All data are expressed as the mean 

± standard deviations of three independent experiments. p < 0.01 (**), p < 0.001 (***). (C) Immuno-

histochemical staining representing the effects of corylin on COL1A1 and α-SMA expression in 

mouse livers. Quantitative results are shown in (D). p < 0.01 (**). HSCs, hepatic stellate cells; 

COL1A1, collagen 1A; α-SMA, smooth muscle-actin; TGF-β, transforming growth factor beta; 

DMSO, dimethyl sulfoxide. 

  

Figure 4. Corylin inhibits HSC activation. (A) Western blot analysis of human HSCs HHSteC cells
treated with corylin or vehicle for 2 h, followed by TGF-β (4 ng/mL) treatment for 24 h to stimulate
cell activation, to analyze α-SMA and COL1A1 protein expression, and to determine the effects
of corylin on HSC activation. Quantitative results are shown in (B). All data are expressed as the
mean ± standard deviations of three independent experiments. p < 0.01 (**), p < 0.001 (***). (C) Im-
munohistochemical staining representing the effects of corylin on COL1A1 and α-SMA expression
in mouse livers. Quantitative results are shown in (D). p < 0.01 (**). HSCs, hepatic stellate cells;
COL1A1, collagen 1A; α-SMA, smooth muscle-actin; TGF-β, transforming growth factor beta; DMSO,
dimethyl sulfoxide.

2.5. Corylin Treatment Inhibited HSC Activation by Suppressing GAS6 Expression and
Downstream PI3K/AKT Pathway Activation

The GAS6/AXL signaling pathway is important in regulating HSC activation [10]. To
determine the effects of corylin on the expression of GAS6 and AXL and their downstream
regulatory pathways, HHSteC cells were treated with corylin or vehicle for 2 h, followed
by TGF-β treatment for 24 h to stimulate cell activation. Western blotting was performed
to analyze the effects of corylin on the GAS6/AXL signaling pathway. GAS6 expression
was significantly reduced in corylin-treated cells compared to that in the control group
(DMSO-treated), and the activation of the downstream PI3K/AKT signaling pathway
was also significantly inhibited. This indicated that corylin inhibits GAS6 expression
and downstream signaling pathway activation in HSCs, which subsequently inhibits the
expression of ECM proteins, such as α-SMA and collagen (Figure 5).
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Figure 5. Corylin inhibits HSC activation by suppressing GAS6 expression and downstream
PI3K/AKT signaling. (A) Western blotting results of cell lysates of HHSteC cells treated with
corylin or DMSO for 2 h, followed by TGF-β (4 ng/mL) treatment for 24 h to stimulate cell activation
and to determine the effects of corylin on the GAS6/AXL signaling pathway. β-Actin is the internal
control. Quantitative results are shown in (B,C). All data are expressed as the mean ± standard
deviations of three independent experiments. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). HSCs, hepatic
stellate cells; GAS6, growth arrest-specific gene 6; PI3K/AKT, phosphoinositide 3-kinase/protein
kinase B; p-PI3K, phosphorylated PI3K; DMSO, dimethyl sulfoxide; TGF-β, transforming growth
factor beta; COL1A1, collagen 1A; α-SMA, smooth muscle-actin.

2.6. Corylin Inhibited the Expression of MMP Inhibitors, TIMP-1 and TIMP-2, in HSCs

In addition to ECM, HSCs express matrix metalloproteinase (MMP)-2 and MMP-9
along with their inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, to
regulate ECM breakdown. To evaluate the effects of corylin on the expression of these
proteins, HHSteC cells were treated with corylin or vehicle for 2 h, followed by TGF-β
treatment to stimulate cell activation. Cell lysates were collected after 24 h for Western
blotting to analyze the expression of MMP-2, TIMP-1, and TIMP-2. The results showed
that TIMP-1 and TIMP-2 expression in the corylin-treated group was significantly lower
than that in the control group. In contrast, there was a minor decrease in the expression
of MMP-2 (Figure 6), indicating that corylin may upregulate the activity of MMP2 by
inhibiting the expression of TIMP1 and TIMP2, thereby accelerating ECM breakdown.
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vehicle for 2 h and then treated with 4 ng/mL TGF-β to induce an inflammatory response for
24 h; to analyze the expression of MMP-2, TIMP-1, and TIMP-2. Quantitative results are shown in
(B). All data are expressed as the mean ± standard deviations of three independent experiments.
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). TIMP-1, tissue inhibitor of metalloproteinase 1; MMP-2, matrix
metalloproteinase 2.

2.7. Corylin Treatment Promoted HSC Apoptosis

To further evaluate the effects of corylin on HSC physiology, HHSteC cells were
treated with different concentrations of corylin for 48 h. The cells were harvested and
subjected to flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) assay analysis to assess the apoptosis and cell cycle statuses. Compared
to those in the control group, corylin-treated cells were mostly arrested in the S phase, and
the number of cells in the sub-G1 phase were significantly increased, indicating that corylin
inhibits cell cycle progression and induces apoptosis (Figure 7A,B). TUNEL assay analysis
also showed that the number of apoptotic cells in the corylin-treated group increased
compared to that in the control group (Figure 7C). Furthermore, Western blotting showed
that the levels of cleaved caspase 3 and caspase 9 were significantly increased in corylin-
treated HHSteC cells, indicating that corylin promotes HSC apoptosis (Figure 7D).
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Figure 7. Effects of corylin on apoptosis in HHSteC cells. The apoptotic cell rate and cell cycle status
according to (A) flow cytometry and (C) TUNEL assays of cells incubated with a vehicle (DMSO) and
different concentrations of corylin (20 and 40 µM) for 48 h. (B) Quantitative results of flow cytometry.
Error bars present the mean ± standard deviation from three independent experiments. (D) Effects
of corylin on apoptosis-related protein expression according to Western blotting analysis. b-actin is
the internal control. (E) Schematic representation summarizing the anti-liver fibrosis mechanisms
of corylin. TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling. Red up arrow
indicates up-regulation, and green down arrow means down-regulation.
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3. Discussion

Chronic hepatitis leads to liver fibrosis and cirrhosis, which are risk factors for liver
cancer. However, the early suppression of factors that cause liver injury and inflammation
along with the administration of anti-inflammatory drugs can help reverse the progression
of liver fibrosis. In this study, we found that corylin, a flavonoid extracted from the fruits of
P. corylifolia, exhibited anti-inflammatory activity and inhibited the macrophage-mediated
secretion of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. Corylin also
inhibited the expression of GAS6 and the downstream activation of the PI3K/AKT signaling
pathway in HSCs, thereby inhibiting HSC activation and the expression of ECM proteins,
including α-SMA and collagen. Moreover, corylin treatment alleviated the symptoms of
CCl4-induced liver fibrosis in a mouse model. These findings suggest that corylin has
the potential to be used in the treatment of hepatitis and liver fibrosis. To the best of our
knowledge, this is the first study to demonstrate that corylin inhibits GAS6 expression and
subsequently inhibits HSC activation to alleviate the symptoms of liver fibrosis in mice
(Figure 7E).

RTK AXL is expressed in most tissues and is involved in the regulation of diverse
cellular physiological processes, including growth, survival, differentiation, adhesion,
and migration. GAS6/AXL signaling is also involved in the regulation of macrophage
polarization and the inflammatory response [42,43]. The downstream signaling pathway of
AXL activation induces macrophage polarization into the M2 type, which subsequently
downregulates pro-inflammatory cytokines, such as IL-6, TNF, type-I IFNs, and IL-12. Most
tumor cells activate the downstream signaling pathway of TAM receptors by secreting
GAS6, which subsequently inhibits macrophage activation and pro-inflammatory cytokine
expression, creating an immune-tolerant environment around the tumor, which helps
cancer cells survive during the immune response [44,45]. In the present study, we also
analyzed the effect of corylin on the expression of GAS6 and AXL in THP1 cells. However,
there was no significant change in their expression, indicating that corylin does not inhibit
macrophage activation and pro-inflammatory cytokine expression by regulating the AXL
signaling pathway. This also suggests that corylin is cell-specific in its regulation of
physiological processes.

GAS6 supports hematopoietic stem cell growth and promotes fibroblast and endothe-
lial cell survival [46,47]. In addition, GAS6/AXL signaling induces the accumulation of
mesangial cells in kidney fibrosis [48], vascular smooth muscle cells in response to intimal
vascular injury [49], and cardiac fibroblasts during the wound-healing process [50], thereby
suggesting that GAS6 plays an important role in tissue fibrosis. Furthermore, GAS6 modu-
lates HSC and HSC/myofibroblastoma survival during liver repair after acute injury [51].
The results of our study showed that corylin promoted HSC apoptosis, and part of this
effect may have been achieved by inhibiting GAS6 expression.

Activated HSCs not only regulate the expression of ECM proteins, but also regulate
the expression and secretion of MMP-2 and MMP-9 along with their inhibitors, TIMP-1
and TIMP-2, to regulate ECM breakdown [52,53]. During fibrogenesis, this equilibrium
is disturbed, and the expression of TIMPs and MMPs is increased leading to an excess of
TIMPs and subsequent matrix degradation. In the present study, we found that corylin
inhibited the expression of ECM proteins, including α-SMA and collagen, in HSCs and also
inhibited the expression of MMP inhibitors, TIMP-1 and TIMP-2, which may upregulate
MMP-2 activity to accelerate ECM breakdown. In addition, the increased expression of
MMP-2, MMP-9, and TIMP-1 has been regarded as an indicator of HSC activation [54].
The corylin-mediated inhibition of these proteins also indicates the inhibitory effect of
corylin on HSC activation. Furthermore, corylin promoted apoptosis in HSCs. These
findings showed that corylin simultaneously regulated multiple pathways to inhibit the
progression of liver fibrosis. In addition to HSCs, MMP-2 and MMP-9 are expressed in most
inflammatory cells, such as lymphocytes, neutrophils, macrophages, and Kupffer cells [55].
Thus, the effects of corylin on the expression of TIMP-1 and MMP-9 in macrophages and
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Kupffer cells should be further studied to clarify the mechanism by which corylin inhibits
liver fibrosis.

In this study, we demonstrated the anti-inflammatory activity of corylin, an extract of
P. corylifolia, and its efficacy in treating liver fibrosis. Corylin has no obvious physiological
toxicity and thus has great potential to be used as an adjuvant in clinical treatment. We
have clarified the anti-inflammatory molecular mechanism of corylin and its potential for
clinical application.

4. Materials and Methods
4.1. Cell Lines

The human monocyte cell line THP1, and mouse macrophage cell line RAW 264.7 were
purchased from the American Type Culture Collection (Manassas, VA, USA). The afore-
mentioned cells were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum at 37 ◦C in a 5% CO2 atmosphere. The human HSC cell line HHSteC was
purchased from the ScienCell Research Laboratories (Carlsbad, CA, USA) and cultured
using Stellate Cell Medium.

4.2. Materials and Reagents

Primary antibodies against AXL, phosphorylated (phospho)-AXL, GAS6, phospho-
PI3K, PI3K, phospho-AKT, AKT, IL-1β, IL-6, MMP-2, MMP-9, TIMP-1, TIMP2, cleaved
caspase-3, caspase-3, cleaved caspase-9, and caspase-9 were purchased from Genetex
(Irvine, CA, USA), ABclonal (Woburn, MA, USA), and Cell Signaling Technology (Beverly,
MA, USA). Secondary antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Pre-stained protein marker and TOOLSmart RNA extractor were pur-
chased from BIOTOOLS (Taipei, Taiwan). Corylin powder (purity above 98% as measured
by high-performance liquid chromatography) was purchased from Shanghai BS Bio-Tech
(Shanghai, China).

4.3. Western Blot Analysis

Cells treated with different concentrations of corylin for 24 and 48 h were harvested
and washed twice with phosphate-buffered saline (PBS) and then lysed in 200 µL of ra-
dioimmunoprecipitation assay lysis buffer (BIOTOOLS) containing a protease inhibitor.
Protein (30 µg) from the supernatant was loaded onto a sodium dodecyl sulfate polyacry-
lamide gel, followed by Western blot analysis to detect the levels of target proteins. Detailed
information of antibodies used in the experiments is shown Table S1. The immuno-reactive
bands were revealed using an enhanced chemiluminescence system (NEN Life Science
Products, Boston, MA, USA) and detected using UVP ChemStudio Imaging Systems (Ana-
lytik Jena, Upland, CA, USA). The intensity of each band was quantified using ImageQuant
5.2 (GE Healthcare, Piscataway, NJ, USA).

4.4. Enzyme-Linked Immunosorbent Assay

THP-1 and RAW 264.7 cells were treated with different concentrations of corylin for
2 h followed by treatment with lipopolysaccharide (LPS) for 24 h to induce an inflammatory
response. The protein levels of IL-1β, IL-6, and TNF-α in the culture medium were mea-
sured using ELISA kits (BioLegend, San Diego, CA, USA) according to the manufacturer’s
instructions.

4.5. Flow Cytometry

HHSteC cells were treated with DMSO, 20 µM corylin, and 40 µM corylin for 24 h, fol-
lowed by trypsinization and then washed twice and incubated in PBS containing 0.12% Tri-
ton X-100, 0.12 mM ethylenediaminetetraacetic acid, and 100 mg/mL ribonuclease A.
Propidium iodide (50 µg/mL) was then added to each sample for 20 min at 4 ◦C. Cell cycle
distribution was analyzed using flow cytometry (Beckman Coulter Epics Elite, Beckman
Coulter, Brea, CA, USA).
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4.6. Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling Assay

The apoptosis status of HHSteC cells was determined using a DeadEndTM Fluoro-
metric TUNEL Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s
protocol. Briefly, HHSteC cells were treated with DMSO, 20 µM corylin, or 40 µM corylin
for 24 h. The cells were then subjected to a TUNEL assay. The cells were counted using a
microscope (magnification, ×100). Cells in five different microscopic fields/dishes were
analyzed for each experiment.

4.7. Mice

Male BALB/c mice (age, 6–8 weeks; National Laboratory animal center, Taipei, Taiwan)
were housed under pathogen-free conditions with a 12 h light/12 h dark schedule and
fed autoclaved standard chow and water. All animal experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) at Chang-Gung memorial Hospital
(IACUC approval no.: 2019032009, approval date: 2019/6/11).

4.8. CCl4-Induced Liver Fibrosis Mouse Model

A total of 20 mice were randomly assigned to three groups: negative control (control,
n = 6), CCl4 treatment + DMSO (vehicle, n = 7), and CCl4 treatment + corylin (30 mg/kg,
n = 7). CCl4 was liquefied in olive oil to obtain a 10% CCl4 solution that was injected
intraperitoneally into mice (0.5 µL/g body weight) twice a week for six weeks. At the
beginning of the second week, mice were intraperitoneally injected with 100 µL of corylin
(at a dose of 30 mg/kg of body weight) or an equal volume of DMSO as a control for 3 d
per week. Negative control mice were treated with olive oil alone. At the endpoint, blood
samples were collected to measure the levels of serum AST and ALT. Liver tissues were
collected for further assays such as histology and Western blotting.

4.9. Masson’s Trichrome Staining

Masson’s trichrome staining was performed at the Chang Gung Memorial Hospital
Department of Anatomic Pathology as follows: First, 5 µm thick formalin-fixed paraffin-
embedded (FFPE) sections were deparaffinized and hydrated in distilled water. Subse-
quently, Bouin’s fixative was used as a mordant for 1 h at 56 ◦C. The FFPE sections were
cooled and washed in running water until the yellow color disappeared. The samples were
stained in Weigert’s hematoxylin stain for 10 min, thoroughly washed in tap water for
10 min, stained in an acid fuchsin solution for 15 min, and then rinsed in distilled water for
3 min. After rinsing, the slides were treated with phosphomolybdic acid solution for 10 min
and rinsed in distilled water for 10 min. Finally, the slides were stained with a light-green
solution for 2 min and rinsed in distilled water. After thorough dehydration using alcohol,
the slides were mounted, and coverslips were placed onto them.

4.10. Immunohistochemistry

Mouse liver tissues were fixed in formalin and embedded in paraffin, and 2 µm thick
consecutive sections were cut and subjected to immunohistochemical staining using a
BOND III autostainer (Leica Biosystems, Wetzlar, Germany) as described previously [35].

4.11. Data Analysis

The quantitative real-time polymerase chain reaction and Western blot data were
recorded as continuous variants and analyzed using the Student’s t-test. All statistical
analyses were performed using SPSS 16.0 (IBM, Armonk, NY, USA) and Excel 2007. All
statistical tests were two-sided, and p values < 0.05 (*), <0.01 (**), and <0.001 (***) were
considered significant.
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