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Abstract: Rice (Oryza sativa L.) is a staple food for more than half of the global population. Various
abiotic and biotic stresses lead to accumulation of reactive oxygen species in rice, which damage
macromolecules and signaling pathways. Rice has evolved a variety of antioxidant systems, including
glutaredoxin (GRX), that protect against various stressors. A total of 48 GRX gene loci have been
identified on 11 of the 12 chromosomes of the rice genome; none were found on chromosome 9. GRX
proteins were classified into four categories according to their active sites: CPYC, CGFS, CC, and
GRL. In this paper, we summarized the recent research advances regarding the roles of GRX in rice
development regulation and response to stresses, and discussed future research perspectives related
to rice production. This review could provide information for rice researchers on the current status of
the GRX and serve as guidance for breeding superior varieties.

Keywords: glutaredoxin (GRX); rice; growth development; stress resistance; breeding utilization

1. Introduction

Rice (Oryza sativa L.) is a monocotyledonous model plant grown globally and a staple
food for more than half of the global population [1]. The rice production and consumption
in Asia accounts for approximately 90% of global production, and has an important role in
the international economy [2].

The intensification of global climate change, abnormal temperatures, drought, salinity,
and other abiotic stresses that occur frequently will have a huge impact on crop yields and
food security worldwide within the next 20 years [3]. Under normal circumstances, the
reactive oxygen species (ROS) content in plants is maintained at a low level, but under
adverse conditions, such as low or high temperatures and drought, plants accumulate
more ROS. It is generally accepted that low levels of ROS accumulation might be related to
normal signal transduction pathways, whereas higher levels may affect the cellular redox
state and cause oxidative damage [4].

ROS acted as important regulators in plant development in addition to oxidative stress
responses. ROS was involved in the signaling of dormancy release and germination in
seeds [5]. Emerging evidence suggests that ROS level and redox status change during
anther development [6]. The role of hypoxia status in specifying anther cell identity was
critical for subsequently triggering signal of ROS, inducing tapetal programmed cell death
(PCD) to nourish microspores for producing mature pollen grains in rice, maize, and
Arabidopsis [7].

Plant growth, development, and response to environmental stresses required the judi-
cious dynamic balance of ROS [8]. To adapt to ROS accumulation caused by various stres-
sors, plants have evolved a series of antioxidant systems, and the glutathione/glutaredoxin
(GRX) system is a significant component of the redox pathway [9]. GRX regulates protein
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function by changing the intracellular redox state through switching between the SH- (thiol)
and -S-S (disulfide) forms [8]. Electrons are first transferred from nicotinamide adenine
dinucleotide phosphate to glutathione reductase, then to glutathione (GSH), and finally to
GRX, which uses the acquired electrons to reduce S-S bonds between proteins [10,11].

Since GRX was first discovered in an E. coli mutant lacking the Trx gene [12], GRX
genes have been partially characterized in Oryza sativa [13], Arabidopsis thaliana [14], and
Lycopersicon esculentum [15], among others [16]. Recent reviews on plant GRX, in general,
have comprehensively summarized the constantly accumulating knowledge within this
field [8,17–19]. This review will focus specifically on the diversity and the function of
rice GRX, summarize recent studies on the GRX involved in development regulation and
responses to stress, and discuss their potential for genetic improvement in rice.

2. Diversity of GRX Genes in Rice

The 48 GRX gene names in rice were retrieved from the report by Garg et al. [20],
and the genomic data were obtained from the rice genome annotation project website
(http://rice.plantbiology.msu.edu/) (accessed on 25 May 2023). No GRX locus has yet been
identified on chromosome 9, while nine, five, four, five, five, three, four, four, two, four, and
three GRX loci mapped to chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12, respectively. In
addition, we visualized the chromosomal locations of GRX genes in rice [20] (Figure 1); this
figure was adapted from Garg et al. [20]. Different numbers of GRX genes were found in
clusters on chromosomes 11 and 12. Such gene clustering resulted from gene duplication,
which might lead to functional redundancy or the creation of new functions [21].
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Figure 1. Physical map of glutaredoxin (GRX) genes in Oryza sativa L.

Structurally, GRX proteins are small thiol-containing molecules of the thioredoxin-fold
superfamily, which contains an active site with a specific sequence motif. In rice, GRX
proteins were classified into four types, CPYC, CGFS, CC, and GRL, according to the
conserved residues in their active sites (Figure 2) [20]. The active site of CPYC-type GRX
proteins was C(P/S)(F/Y)(C/S), while that of CGFS-type GRX molecules was CGFS, which
was structurally similar to CPYC-type sites. CGFS- and CPYC-type GRX proteins have been
reported in a wide range of organisms, from prokaryotes to eukaryotes, while CC-type GRX
motifs occurred only in higher plants [22]. The conserved CC-type GRX active site motifs
extended to C(C/G/F/P/Y)(M/L)(A/C/I/S) in rice [23]. Members of the GRL-type class
exhibited low homology to classical GRX proteins and do not harbor conserved active-site

http://rice.plantbiology.msu.edu/
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motifs [20]. There were 17 CC-type, 5 CGFS-type, 7 CPYC-type, and 19 GRL-type GRX
molecules in rice [19]. Studies on numerous plants have shown that numbers of CC-type
and GRL-type GRXs gradually increased during evolution (Figure 3), suggesting that these
classes of GRX molecules might have roles in promoting the evolution of land plants with
highly complex organs [24,25].
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To gain further insights into the possible evolution of protein structure and motif com-
position in OsGRX genes, we constructed a phylogenetic tree and analyzed the features of
CC-type, CGFS-type, and CPYC-type GRX proteins (Figure 4A–C). As shown in Figure 4B,
20 distinct conserved regulatory motifs were predicted in CC-, CGFS-, and CPYC-type GRX
proteins, with three to seven motifs in each protein. GRX proteins within each subfamily
shared similar motif patterns, while motif compositions in CC- and CPYC-type subfamilies
were also similar. We further analyzed OsGRX gene structures, as shown in Figure 4C,
and the number of exons in OsGRX genes varied from one to twelve. Notably, all CC-type
GRX genes were intronless. Such intronless gene classes/families evolved rapidly via gene
duplication or reverse transcription, followed by integration into the genome, which might
explain the large number of CC-type proteins detected [20,26].
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type, and CC-type rice GRX genes. (A) Multiple alignment of 29 full length OsGRX proteins conducted
using Clustal X 2.0 and a phylogenetic tree constructed using MEGA 11 with the neighbor-joining
(NJ) method (5000 bootstrap replicates). (B) Schematic representation of conserved motifs in OsGRX
proteins elucidated using TBtool v2.021. Each colored box represents a motif in the protein; motif
names are indicated in the top right of boxes. (C) Structure of OsGRX genes coding sequences.
Untranslated regions (UTRs), coding sequences (CDSs), and introns are represented by green boxes,
yellow boxes, and lines, respectively.

3. GRX Proteins Participate in Rice Development Regulation and Response to Stresses

GRX molecules have been extensively studied in humans and animals, while there
have been relatively few studies in rice. To date, only eight of the seventeen CC-type,
two of the five CGFS-type, and three of the seven CPYC-type GRX molecules have been
characterized in rice (Table 1). GRX proteins were isolated from rice as early as 1997 [27],
and subsequent studies have confirmed that they have roles in rice development and
oxidative stress [28]. In the following sections, we describe some of the most important
aspects of the involvement of GRX proteins in rice development regulation and response to
stresses (Figure 5).
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Table 1. Predicted and functionally characterized rice GRX genes.

Class Chr. Locus Gene Name Active Site Functions References

CC

1 LOC_Os01g09830 OsGrx_A2/OsGRX2 CYMA
1 LOC_Os01g13950 OsGrx_A1/OsGRX3/PHS9 CCMA Pre-harvest sprouting [29]

1 LOC_Os01g27140 OsGrx_C7/OsGRX4 CCMC Tolerance to arsenic, salinity, and
drought stress [13,30–33]

1 LOC_Os01g47760 OsGrx_I1/OsGRX6 CCLI Hormone and nitrogen status;
flower development, grain weight [34,35]

1 LOC_Os01g70990 OsGrx_C6/OsGRX7 CFMC

2 LOC_Os02g30850 OsGrx_C8/OsGRX8/
OsROXY2/WG1 CCMC

Flower development
and pathogen response; grain size

and weight
[36,37]

4 LOC_Os04g32300 OsGrx_C9/OsGRX13/OsROXY1 CCMC Flower development; response
to pathogens [36]

5 LOC_Os05g05730 OsGrx_S1/OsGRX15 CGMS
5 LOC_Os05g10930 OsGrx_C15/OsGRX16 CCMC
5 LOC_Os05g48930 OsGrx_S2/OsGRX17 CCLS Disease resistance to Xoo [38]

7 LOC_Os07g05630 OsGrx_C10/OsGRX19/MIL1 CCMC Anther development and
microspore formation [39]

11 LOC_Os11g43520 OsGrx_C17/OsGRX23 CGMC
11 LOC_Os11g43530 OsGrx_C13/OsGRX24 CCMC
11 LOC_Os11g43550 OsGrx_C14/OsGRX25 CCMC
11 LOC_Os11g43580 OsGrx_C16/OsGRX26 CCMC
12 LOC_Os12g35330 OsGrx_C12/OsGRX28 CCMC Lateral root elongation [40]
12 LOC_Os12g35340 OsGrx_C11/OsGRX29 CPMC

CGFS

1 LOC_Os01g07950 OsGrx_S15/OsGRX1 CGFS

1 LOC_Os01g34620 OsGrx_S15.1/OsGRX5/OsGRXS15 CGFS Disease resistance to Xoo
and Fusariumfujikuroi [41]

3 LOC_Os03g63420 OsGrx_S14/OsGRX11 CGFS
10 LOC_Os10g35720 OsGrx_S17/OsGRX22/OsGRXS17 CGFS Tolerance to drought stress [42]
12 LOC_Os12g07650 OsGrx_S16/OsGRX27 CGFS

CPYC

2 LOC_Os02g40500 OsGrx_C2.1/OsGRX9 CPFC Tolerance to arsenic and
drought stress [31,33]

2 LOC_Os02g43180 OsGrx_C3/OsGRX10 CPYS
4 LOC_Os04g17050 OsGRX12 CPFC

4 LOC_Os04g42930 OsGrx_C2.2/OsGRX14 CPFC
Embryo development and grain

weight; oxidative stress in
developing and mature seeds

[5,43]

6 LOC_Os06g44910 OsGrx_C4/OsGRX18 CPYC

LOC_Os08g44400 OsGRX20 CPFC Tolerance to salt, cold, and heat
stresses; resistance to sheath blight [44,45]

8 LOC_Os08g45140 OsGrx_S12/OsGRX21 CSYS

GRL

1 LOC_Os01g13480 OsGRL1
1 LOC_Os01g61350 OsGRL2
2 LOC_Os02g01200 OsGRL3
2 LOC_Os02g51370 OsGRL4
3 LOC_Os03g07470 OsGRL5
3 LOC_Os03g24030 OsGRL6
3 LOC_Os03g44650 OsGRL7
3 LOC_Os04g33680 OsGRL8
4 LOC_Os04g54860 OsGRL9
4 LOC_Os05g28530 OsGRL10
5 LOC_Os05g39450 OsGRL11
5 LOC_Os06g12030 OsGRL12
6 LOC_Os06g12190 OsGRL13
6 LOC_Os07g06600 OsGRL14
7 LOC_Os07g46410 OsGRL15
7 LOC_Os07g46570 OsGRL16
8 LOC_Os08g07450 OsGRL17

10 LOC_Os08g44070 OsGRL18
12 LOC_Os10g34170 OsGRL19
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3.1. GRX Proteins Are Involved in Rice Seed Development

The rice grain size is mainly determined by the grain hull that limits grain growth, and
several factors that control grain size by influencing cell proliferation and cell expansion in
the grain hull have been reported in rice [46]. However, the molecular mechanisms of GRX
proteins by which rice determines its seed size remain elusive. The TGACG-binding (TGA)
transcription factor OsbZIP47 restricted grain growth by decreasing cell proliferation [37].
Hao et al. [37] found that WG1 (OsGRX8) acted as a conserved amino acid A(L/I)W(L/V)
(ALWL) motif-containing adaptor protein that repressed OsbZIP47 transcriptional activity
by recruiting the transcriptional co-repressor, ASP1. GW2, a functional E3 ubiquitin lig-
ase, can control grain width and weight in rice by restricting cell proliferation in spikelet
husks [47]. GW2 ubiquitinated WG1 and caused its degradation, thereby releasing in-
hibition of OsbZIP47 transcriptional activity. GW2-WG1-OsbZIP47 regulatory module
controlled grain width and weight in rice [37]. An increase in grain weight was observed in
OsGRX6-overexpressing plants [34]. OsGRX6 also delayed rice plant senescence by slow-
ing the degradation of chlorophyll and increasing the activity of photosystem II, thereby
improving rice nutritional status [34].

With continued seed growth, most of the space in the mature seed is occupied by the
endosperm in rice. Developmental coordination of the embryo and endosperm becomes
crucial for the normal development of rice seeds. However, the associated molecular
mechanisms remain poorly understood. OsGrx2.2 (OsGRX14) regulated rice embryonic de-
velopment, and its overexpression produced embryoless seeds, but seed weight was signif-
icantly increased, possibly due to replacement of the embryo by the larger endosperm [43].
OsGRX14 was abundantly expressed in the aleurone layer of mature seeds and involved in
seed tolerance to oxidative stress [5]. Furthermore, enhanced OsGRX14 activity directly
increased the ability of plants to clear ROS [5].

3.2. GRX Proteins Are Involved in Rice Flower Development

The development of male germ cells in flowering plants involves a series of complex
biological events, including male meiosis, pollen development, and pollen maturation [7].
In rice, the ROS level and redox status changed at different cell specification stages during
anther development [6]. ROS level was extremely low before stage 3, which is less than
200 pmol mg−1; the ROS level increased twice at stage 4 and stage 5 [6]. Redox homeostasis
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is important for specifying the cell identity of tapetal and microsporocyte cells [7]. CC-type
GRX proteins regulated redox homeostasis and had crucial roles in flower development in
rice [7].

Mutation of MIL1 (OsGRX19) caused failure of secondary parietal cells to differentiate
into the middle layer and tapetum cells in rice anthers [35]. MIL1 interacted with the
TGA transcription factor, TGA1, eventually leading to GRX modification of Cys residues,
thereby altering TGA1 transcriptional activity [39,48]. Mutation of OsGRX_I1 (OsGRX6)
led to programmed cell death of tapetal cells. Some researchers proposed that TGA1-MIL1
(OsGRX19) and OsTGA10-OsGRX_I1 (OsGRX6) had roles differentiated in time and space,
with OsGRX6 potentially contributing to anther cell degeneration [7,35].

Mutants of MIL1 (OsGRX19) gene homologs also caused defects in anther cell de-
velopment [49]. MSCA1, a homolog of MIL1 (OsGRX19) in maize, cooperated with the
TGA transcription factor, FEA4, to control meristem size [50]. ROXY1 and ROXY2, two
MIL1 gene homologs, controlled the initiation and differentiation of flower organs in Ara-
bidopsis, where deficiency in either gene resulted in defective anthers and microspores [36].
Furthermore, ROXY1 and ROXY2 interacted with TGA9 and TGA10 during anther develop-
ment, and mutations of TGA9 or TGA10 also caused anther cell developmental defects [51].
OsROXY1 (OsGRX13) and OsROXY2 (OsGRX8) in rice had more than 60% amino acid
similarity with Arabidopsis ROXY1, and both proteins had CCMC-type active motifs [52].
OsROXY1 (OsGRX13) and OsROXY2 (OsGRX8) mediated petal and anther initiation and
differentiation in Arabidopsis [36]. In situ hybridization showed that OsROXY1/OsROXY2
was expressed in the inflorescence meristem and briefly at the initial stage of flower organ
development [36].

3.3. GRX Proteins Are Involved in Rice Root Development

The root system absorbs nutrients and water and is strongly associated with rice
yield. Studies have shown that GRX proteins were involved in rice root development
in rice [13,40]. Overexpression of OsGRXC12 (OsGRX28) caused an obvious decrease in
cortex and epidermis cell length in the lateral root apical differentiation zone, leading to
lateral roots that were much shorter than those of wild-type controls [40]. Verma et al. [13]
showed that OsGrx_C7 (OsGRX4) promoted root growth and plant health by regulating
the expression of the oxidative stress-induced root expansion-related genes, OsMADS15,
OsMADS25, OsWOX3, OsWOX11, and OsRR2.

3.4. GRX Proteins Are Involved in Rice Pre-Harvest Sprouting (PHS)

PHS led to a loss of seed viability and reduced the yield and grain quality, and thus
led to great economic loss [29]. ROS was demonstrated to play a signaling function in
the alleviation of seed dormancy [53,54]. Abscisic acid (ABA) is an important hormone
for the induction and maintenance of plant seed dormancy. Mutations of genes in this
pathway may have caused plants to exhibit PHS [55]. However, the roles of integration of
ROS signaling and ABA signaling in PHS in rice are far from understood. Unexpectedly,
Xu et al. [29] identified a CC-type GRX protein, PHS9 (OsGRX3), and found that it links
ABA signaling with the active oxygen signal via OsGAP, which interacts with the ABA
receptor, OsRCAR1, thereby regulating pre-harvest rice germination. Expression of PHS9
(OsGRX3) and OsGAP was promoted by H2O2 and suppressed ABA signaling, resulting in
earlier germination.

3.5. GRX Proteins in Rice Responses to Abiotic Stress
3.5.1. GRX Proteins in Rice Responses to Drought Stress

Drought directly affected soil microorganism and plant diversity, as well as negatively
impacting other aspects of ecosystems. ROS production in cells was induced by drought,
and ROS accumulation can disrupt the cellular redox balance [56]. Kumar et al. [33]
overexpressed the rice GRX genes OsGrx_C2.1 (OsGRX9) and OsGrx_C7 (OsGRX4) in
Arabidopsis and found that they significantly improved its resistance to drought stress. The
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authors speculated that this might be due to the fact that GRX proteins could reduce or
eliminate the toxic effects of ROS production by promoting increased levels of antioxidant
enzymes and molecules [30].

H2O2 is an important signal that regulates plant stomatal size, and high levels of
H2O2 in guard cells help plants to withstand drought [57,58]. Rice plants with suppressed
OsGRXS17 (OsGRX22) exhibited elevated H2O2 production in the guard cells, increased
sensitivity to ABA, and reduced stomatal apertures. Furthermore, silencing of OsGRXS17
in rice can improve drought stress tolerance [42].

3.5.2. GRX Proteins in Rice Responses to Salinity Stress

Salinity is a significant threat to the development and yield production of rice worldwide [59].
Salinity has been shown to affect total development by altering intricate interactions in
nutrient absorption and accumulation, hormonal imbalance, and oxidative stress [60].
Oxidative stress disrupted cell redox balance, leading to ROS accumulation [61]. Plants
have evolved a variety of adaptive systems to address the above challenges, among which
GRX helps plants to cope with abiotic stresses [44]. OsGrx_C7 (OsGRX4) expression was
induced in rice under salinity stress, and plants over-expressing OsGrx_C7 (OsGRX4) had a
lower Na+/K+ ratio and lipid peroxidation levels, and higher proline and soluble sugar
content. Furthermore, OsGrx_C7 (OsGRX4) mediated salinity stress tolerance by increasing
the content of proteins involved in Na+ transport [32].

3.5.3. GRX Proteins in Rice Responses to Metal Stress

In plants, metal stress can lead to ROS production and accumulation, which in turn
leads to DNA damage and non-specific oxidation of proteins and membrane lipids. As
a highly toxic metal, arsenic toxicity directly affects plant growth and development [62].
To cope with the oxidative stress caused by arsenic, plants have evolved a variety of
enzymes that can scavenge ROS, including GRX proteins, ascorbate peroxidase, catalase,
and superoxide dismutase [63]. OsGRX genes can meditate arsenic detoxification in rice
through glutathione recycling [30].

OsGrx_C7 (OsGRX4) and OsGrx_C2.1 reduced arsenic content, maintained the in-
tracellular GSH pool, and improved arsenic tolerance in Arabidopsis [26]. OsGrx_C7 also
regulated the expression of arsenic III transporter genes (OsNip1,1, OsNip3;1, OsLsi1, and
OsLsi2) in rice, thereby reducing arsenic III transport from roots to shoots, and ultimately
reducing arsenic content in seeds [13]. Furthermore, overexpression of OsGrx_C7 led to
the production of a more extensive root system by affecting oxidative stress-induced root
regulatory transcription factors (OsMADS15, OsMADS25, OsWOX3, and OsWOX11) and
cytokinin-responsive root-related genes (OsRR2 and OsCKX4), which could support in-
creased accumulation of arsenic III in a bound form and reduce root to shoot arsenic III
translocation [13]. Furthermore, the reduction in arsenic III in channel proteins facilitated
higher nutrient flow, which could improve plant growth status [64].

3.6. GRX Proteins in Rice Responses to Biotic Stress

Bacterial blight and bakanae disease, caused by Xanthomonas oryzae pv. oryzae (Xoo)
and Fusarium fujikuroi, respectively, are two serious bacterial diseases of rice. Rice sheath
blight is a fungal disease caused by the soil-borne necrotrophic fungus, Rhizoctonia solani
Kühn, which results in serious loss of rice yield. Botrytis cinerea is a typical necrotrophic
pathogen that infects more than 200 plant species [65]. Limited numbers of OsGRX genes
involved in disease resistance have been characterized.

TGA transcription factors OsTGAL1 negatively regulated resistance to Xoo by regu-
lating the salicylic acid glucosyltransferase OsSGT1 in rice [38]. Li et al. [38] identified a
CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 decreased
the ability of OsTGAL1 to bind to the OsSGT1 promoter, thereby potentially influencing
the OsTGAL1-mediated defense response to Xoo. OsGRXS15 (OsGRX5) interacted with
the transcription factor, OsWRKY65, in the nucleus, and enhanced disease resistance to
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Xoo and F. fujikuroi by upregulating expression of OsPR1, which was related to pathogen
responses [41]. OsGRX20 positively regulated plant responses to bacterial and fungal
attack. Overexpression of OsGRX20 in rice significantly enhanced its resistance to bacterial
blight attack and tolerance to methyl viologen and salt stress [44]. Wang et al. [45] showed
that protein kinase domain-containing protein OsRLCK5 interacted with OsGRX20, which
participated in the GSH-ascorbic acid antioxidant system, thereby regulating ROS balance
to enhance rice resistance to sheath blight. The ectopic expression of the rice homolog,
OsROXY1, in Arabidopsis led to increased H2O2 accumulation and enhanced susceptibility
to B. cinerea [36].

4. GRX Proteins Cross-Talk with Hormones in Rice Development and Stress Responses

Hormones play an important role throughout the life cycle of plants, and changes in
their synthesis or signaling pathways affect the morphology and development of plants.
Studies have shown that the overexpression of OsGRX6 in rice caused plants to become
semi-dwarfs as it affected the metabolism of hormones, including gibberellin and cy-
tokinin [34]. OsGRX6 might alter the biosynthesis of gibberellin and cytokinin by increas-
ing the expression of genes (OsIPT-4, OsIPT7, OsIPT8, OsIPT9, OsIPT10, OsGA3ox2, and
OsGA20ox2) in the gibberellin and cytokinin pathways, thereby affecting the rice plant
phenotype. Greenboim-Wainberg et al. [66] showed that OsSPY, a gibberellin negative
regulatory gene, enhanced the cytokinin pathway in Arabidopsis. El-Kereamy et al. [34]
further found that the overexpression of OsGRX6 in rice led to the upregulation of OsSPY
expression. Moreover, the increase in nitrogen content in rice shoots and seeds might be
the result of increased cytokinin content by the overexpression of OsGRX6 [34,67]. PHS9
played an important role in the regulation of rice PHS through the integration of ROS
signaling and ABA signaling [29].

Additionally, GRX could be affected by exogenous hormones. For example, OsROXY2
(OsGRX8) was a homolog of ROXY1, and its transcription could be induced by exogenous
auxin [68]. Sharma et al. [69] found that the overexpression of OsGRX8 in Arabidopsis
reduced its sensitivity to auxin and abscisic acid, and increased its tolerance to multiple
abiotic stresses, including oxidative stress and salinity stress. The knockout of OsGRX8 re-
duced the tolerance of Arabidopsis seedlings to the above-mentioned stresses. This might be
due to the crosstalk between auxin and ROS signals, mediated by OsGRX8, thus regulating
plant growth, development, and response to stress [69].

5. Perspectives
5.1. Prospects for Application of GRX Genes in Hybrid Rice Breeding

The breeding and large-scale adoption of hybrid seeds is an important achievement in
agriculture. Cytoplasmic male sterile lines (CMS) and photoperiod/thermo-sensitive genic
male sterile lines (PTGMS) are major sterile systems widely used in hybrid seed production;
however, the efficiency of CMS resources for hybrid seed production is low, while PTGMS
lines are often affected by environmental conditions. In contrast, genic male sterility (GMS)
rice has advantages that can address the shortcomings of previous generations of hybrid
rice technology.

Recessive nuclear male sterile genes insensitive to environmental conditions are widely
distributed and ideal for hybrid rice breeding and production. In 2016, Chang et al. [70]
constructed a male sterility system for hybrid rice breeding and seed production, using the
nuclear male sterility gene, OsNP1. Zhen18B was the first GMS rice. Furthermore, a new
technology based on Cas9 was established to develop a third-generation hybrid [71]. This
strategy used the pollen fertility restoration gene, CYP703A3, and led to the generation
of a maintainer, 9311-3B, with stable inheritance. With the availability of CRISPR/Cas9
technology and cloning of numerous GRX male sterile genes, maintainer lines centered
on the male sterile rice genes, such as MIL1 (OsGRX19) and OsGRXI1 (OsGRX6), can be
conveniently obtained to produce non-transgenic male sterile lines and hybrid seeds.
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5.2. Prospects for Application of GRX Genes to Improve Rice Yields

Regulation of seed size is a key strategy for improving crop yield and has been a focus
of much research to investigate the underlying mechanisms [72]. However, the molecular
mechanisms by which plants determine their seed size remain elusive [37]. In particular,
knowledge on the biological roles of members of the GRX family in seed development is
still lacking. GW2, WG1/OsGRX8, and OsbZIP47 functioned in a common pathway to
control grain growth by influencing cell proliferation. This mechanism differed from that
of OsGRX6, which affected hormone signaling and nitrogen status in rice plants leading to
increases in grain weight. Interestingly, however, both of the above two genes positively
regulated grain weight. We believe that GRX molecules warrant further exploration in
future studies to improve grain weight and yield using transgenic breeding approaches.
It will be a challenge to exploit their natural alleles to increase grain size and weight in
the future.

PHS in rice gives rise to a deterioration in the yield and quality of the grain, and thus
results in great economic loss [73,74]. Severe PHS damaged about 6% of conventional
rice and 20% of hybrid rice during the harvest season of southern China [75]. Numerous
studies in rice have concluded that genes associated with PHS were mainly involved in
ABA biosynthesis, catabolism, and signaling [76]. Xu et al. [29] identified a CC-type GRX
molecule PHS9, which combined with OsGAP to disrupt ABA signaling and negatively
regulated PHS in rice. Huaidao 5 and Wuyungeng 27 showed severe PHS in Zhejiang
and Jiangsu province. Knockout of PHS9 in Huaidao 5 and Wuyungeng 27 contributed to
delayed germination by 2 days and had no effects on the phenotype of plant height, tiller
number, grain shape, grain number per plant, grain chalkiness, and starch granules. These
results demonstrated that PHS9 could be a potential target for breeding PHS-resistant rice
varieties using the CRISPR-Cas9 system [29].

5.3. Prospects for Application of GRX Genes in Alleviating Abiotic and Biotic Stresses

Rice (Oryza sativa L.), the world’s most consumed grain, is extremely sensitive to
various abiotic and biotic stresses [77]. Abiotic stresses reportedly cause yield reductions
up to 70% by adversely affecting rice survival, growth, and grain filling [78]. Similarly,
biotic stresses such as pathogens (fungi and bacteria) impart severe yield losses or crop
failure during infestation [79]. Approximately, 50% of rice yield was estimated to be lost
due to bacterial blight disease worldwide [80]. Improving stress tolerance in rice is critical
for increasing productivity to satisfy the projected food demands of the world population.

To date, molecular breeding and functional genomic studies have contributed to the un-
derstanding and improving growth and yield of rice under biotic and abiotic stresses [58,77].
As key stress-tolerance mediators, GRX could be manipulated to boost the tolerance to
abiotic and biotic stresses in rice. In this review, we summarized recent reports about
GRX in response to abiotic and biotic stresses in rice. Overexpressing OsGRX4, OsGRX5,
OsGRX20 or knockout OsGRX17 or OsGRX22 might result in improved stress tolerance.
However, most tolerant rice materials obtained through introduction or knockout of single
genes cannot be directly cultivated to generate tolerant varieties. To develop tolerant rice
varieties, it will be necessary to introduce haplotypes comprising multiple genes involved
in tolerance into rice varieties. On the other hand, based on the deep understanding of
the genetic and molecular basis of crop domestication, de novo domestication of naturally
resistant wild plants using gene-editing techniques may be a novel strategy to obtain
resistant rice [81].

5.4. Prospects for Application of GRX Genes in Molecular Farming

Plant molecular farming uses plant organs or tissues as bioreactors for the production
of recombinant proteins and bioactive metabolites via genetic engineering. Rice endosperm,
as an ideal bioreactor, could be used to produce and store high-value active substances, such
as pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals [82]. Overexpression
of OsGrx2.2 (OsGRX14) impaired embryo development, and subsequently led to increased
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endosperm size. The overexpressing plant may have the potential to become a high-value
resource for producing more valuable nutrients and drugs. The OsGrxC2.2-overexpressed
rice lines could be obtained by use of endosperm-specific promoters, such as GluB4, GluD1,
Gt-1, Gt-2, Gt-3, and Gt-13, which were highly active and widely used for plant molecular
farming [83,84].

6. Conclusions

Rice is widely cultivated worldwide as a major food crop, but its growth is affected by
various abiotic and biotic stresses. Plants have evolved a series of antioxidant systems to
reduce damage in response to the excessive ROS generated by abiotic and biotic stresses.
GRX is a protein produced during plant evolution and is helpful for plants to cope with
stresses. There are four main subtypes of GRX: CPYC, CGFS, CC, and GRL. To date, only
eight of the seventeen CC-type GRXs, three of the five CGFC-type GRXs, and three of the
seven CPYC-type GRXs have been characterized in rice. These genes are involved in rice
seed development, flower development, root development, PHS, abiotic stress (drought,
salinity, metal), and biotic stress (bacterial blight disease, bakanae disease, sheath blight
disease). With the availability of CRISPR/Cas9 technology and other new biotechnologies,
GRX genes can be applied in hybrid rice breeding, improving rice yields, alleviating abiotic
and biotic stresses, and molecular farming. Understanding the mechanisms of GRXs could
serve as guidance for breeding superior rice varieties.
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