Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis
Abstract
:1. Introduction
2. Results
2.1. The Reduction of Cell Energy Status and Inflammatory Responses in Macrophages with LPS Tolerance
2.2. LPS-Tolerant Mice Demonstrated More Prominent Diarrhea with More Profound Expression of Murine Norovirus Than Other Groups
3. Discussion
3.1. LPS Tolerance Interfered with Several Macrophage Activities Partly through a Reduction in Cell Energy
3.2. LPS Tolerance Enhanced the Reactivation of MNV Infection
3.3. Clinical Aspect and Future Experiments
4. Materials and Methods
4.1. Cell Culture and Stimulations
4.2. Mass Spectrometry Proteomic Analysis
4.3. Extracellular Flux Analysis
4.4. Animals and Animal Model
4.5. RNA Extraction and Real-Time PCR for Gene Expression
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amornphimoltham, P.; Yuen, P.S.T.; Star, R.A.; Leelahavanichkul, A. Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Dig. Dis. Sci. 2019, 64, 2416–2428. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Panpetch, W.; Chancharoenthana, W.; Bootdee, K.; Nilgate, S.; Finkelman, M.; Tumwasorn, S.; Leelahavanichkul, A. Lactobacillus rhamnosus L34 Attenuates Gut Translocation-Induced Bacterial Sepsis in Murine Models of Leaky Gut. Infect. Immun. 2018, 86, e00700-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taratummarat, S.; Sangphech, N.; Vu, C.T.B.; Palaga, T.; Ondee, T.; Surawut, S.; Sereemaspun, A.; Ritprajak, P.; Leelahavanichkul, A. Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse model through the induction of M2 macrophage polarization. BMC Microbiol. 2018, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.P.; Leelahavanichkul, A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS ONE 2020, 15, e0236038. [Google Scholar] [CrossRef] [PubMed]
- Issara-Amphorn, J.; Chancharoenthana, W.; Visitchanakun, P.; Leelahavanichkul, A. Syk Inhibitor Attenuates Polymicrobial Sepsis in FcgRIIb-Deficient Lupus Mouse Model, the Impact of Lupus Characteristics in Sepsis. J. Innate Immun. 2020, 12, 461–479. [Google Scholar] [CrossRef]
- Chancharoenthana, W.; Udompronpitak, K.; Manochantr, Y.; Kantagowit, P.; Kaewkanha, P.; Issara-Amphorn, J.; Leelahavanichkul, A. Repurposing of High-Dose Erythropoietin as a Potential Drug Attenuates Sepsis in Preconditioning Renal Injury. Cells 2021, 10, 3133. [Google Scholar] [CrossRef]
- Dang, C.P.; Issara-Amphorn, J.; Charoensappakit, A.; Udompornpitak, K.; Bhunyakarnjanarat, T.; Saisorn, W.; Sae-Khow, K.; Leelahavanichkul, A. BAM15, a Mitochondrial Uncoupling Agent, Attenuates Inflammation in the LPS Injection Mouse Model: An Adjunctive Anti-Inflammation on Macrophages and Hepatocytes. J. Innate Immun. 2021, 13, 359–375. [Google Scholar] [CrossRef]
- van Vught, L.A.; Klein Klouwenberg, P.M.; Spitoni, C.; Scicluna, B.P.; Wiewel, M.A.; Horn, J.; Schultz, M.J.; Nürnberg, P.; Bonten, M.J.; Cremer, O.L.; et al. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 2016, 315, 1469–1479. [Google Scholar] [CrossRef] [Green Version]
- Mallet, F.; Perret, M.; Tran, T.; Meunier, B.; Guichard, A.; Tabone, O.; Mommert, M.; Brengel-Pesce, K.; Venet, F.; Pachot, A.; et al. Early herpes and TTV DNAemia in septic shock patients: A pilot study. Intensive Care Med. Exp. 2019, 7, 28. [Google Scholar] [CrossRef]
- Goh, C.; Burnham, K.L.; Ansari, M.A.; de Cesare, M.; Golubchik, T.; Hutton, P.; Overend, L.E.; Davenport, E.E.; Hinds, C.J.; Bowden, R.; et al. Epstein-Barr virus reactivation in sepsis due to community-acquired pneumonia is associated with increased morbidity and an immunosuppressed host transcriptomic endotype. Sci. Rep. 2020, 10, 9838. [Google Scholar] [CrossRef] [PubMed]
- Lambe, G.; Mansukhani, D.; Khodaiji, S.; Shetty, A.; Rodrigues, C.; Kapadia, F. Immune Modulation and Cytomegalovirus Reactivation in Sepsis-induced Immunosuppression: A Pilot Study. Indian J. Crit. Care Med. 2022, 26, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Delano, M.J.; Ward, P.A. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? J. Clin. Investig. 2016, 126, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leelahavanichkul, A.; Somparn, P.; Bootprapan, T.; Tu, H.; Tangtanatakul, P.; Nuengjumnong, R.; Worasilchai, N.; Tiranathanagul, K.; Eiam-ong, S.; Levine, M.; et al. High-dose ascorbate with low-dose amphotericin B attenuates severity of disease in a model of the reappearance of candidemia during sepsis in the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R223–R234. [Google Scholar] [CrossRef] [Green Version]
- Perner, A.; Rhodes, A.; Venkatesh, B.; Angus, D.C.; Martin-Loeches, I.; Preiser, J.C.; Vincent, J.L.; Marshall, J.; Reinhart, K.; Joannidis, M.; et al. Sepsis: Frontiers in supportive care, organisation and research. Intensive Care. Med. 2017, 43, 496–508. [Google Scholar] [CrossRef]
- Schrijver, I.T.; Théroude, C.; Roger, T. Myeloid-Derived Suppressor Cells in Sepsis. Front. Immunol. 2019, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Mithal, L.B.; Arshad, M.; Swigart, L.R.; Khanolkar, A.; Ahmed, A.; Coates, B.M. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr. Res. 2022, 91, 447–453. [Google Scholar] [CrossRef]
- Chancharoenthana, W.; Sutnu, N.; Visitchanakun, P.; Sawaswong, V.; Chitcharoen, S.; Payungporn, S.; Schuetz, A.; Schultz, M.J.; Leelahavanichkul, A. Critical roles of sepsis-reshaped fecal virota in attenuating sepsis severity. Front. Immunol. 2022, 13, 940935. [Google Scholar] [CrossRef]
- Chancharoenthana, W.; Kamolratanakul, S.; Ariyanon, W.; Thanachartwet, V.; Phumratanaprapin, W.; Wilairatana, P.; Leelahavanichkul, A. Abnormal Blood Bacteriome, Gut Dysbiosis, and Progression to Severe Dengue Disease. Front. Cell Infect. Microbiol. 2022, 12, 890817. [Google Scholar] [CrossRef]
- Hiengrach, P.; Visitchanakun, P.; Tongchairawewat, P.; Tangsirisatian, P.; Jungteerapanich, T.; Ritprajak, P.; Wannigama, D.L.; Tangtanatakul, P.; Leelahavanichkul, A. Sepsis Encephalopathy Is Partly Mediated by miR370-3p-Induced Mitochondrial Injury but Attenuated by BAM15 in Cecal Ligation and Puncture Sepsis Male Mice. Int. J. Mol. Sci. 2022, 23, 5445. [Google Scholar] [CrossRef]
- Thim-Uam, A.; Makjaroen, J.; Issara-Amphorn, J.; Saisorn, W.; Wannigama, D.L.; Chancharoenthana, W.; Leelahavanichkul, A. Enhanced Bacteremia in Dextran Sulfate-Induced Colitis in Splenectomy Mice Correlates with Gut Dysbiosis and LPS Tolerance. Int. J. Mol. Sci. 2022, 23, 1676. [Google Scholar] [CrossRef] [PubMed]
- Ondee, T.; Surawut, S.; Taratummarat, S.; Hirankarn, N.; Palaga, T.; Pisitkun, P.; Pisitkun, T.; Leelahavanichkul, A. Fc Gamma Receptor IIB Deficient Mice: A Lupus Model with Increased Endotoxin Tolerance-Related Sepsis Susceptibility. Shock 2017, 47, 743–752. [Google Scholar] [CrossRef]
- Gillen, J.; Ondee, T.; Gurusamy, D.; Issara-Amphorn, J.; Manes, N.P.; Yoon, S.H.; Leelahavanichkul, A.; Nita-Lazar, A. LPS Tolerance Inhibits Cellular Respiration and Induces Global Changes in the Macrophage Secretome. Biomolecules 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Niendorf, S.; Klemm, U.; Mas Marques, A.; Bock, C.T.; Höhne, M. Infection with the Persistent Murine Norovirus Strain MNV-S99 Suppresses IFN-Beta Release and Activation of Stat1 In Vitro. PLoS ONE 2016, 11, e0156898. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.G.; Huang, L.; VanderVen, B.C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 2019, 19, 291–304. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, R.; Gu, H.; Zhang, E.; Qu, J.; Cao, W.; Huang, X.; Yan, H.; He, J.; Cai, Z. Metabolic reprogramming in macrophage responses. Biomark. Res. 2021, 9, 1. [Google Scholar] [CrossRef]
- McBride, M.A.; Owen, A.M.; Stothers, C.L.; Hernandez, A.; Luan, L.; Burelbach, K.R.; Patil, T.K.; Bohannon, J.K.; Sherwood, E.R.; Patil, N.K. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front. Immunol. 2020, 11, 1043. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Duic, I.; Tadakuma, H.; Harada, Y.; Yamaue, R.; Deguchi, K.; Suzuki, Y.; Yoshimura, S.H.; Kato, H.; Takeyasu, K.; Fujita, T. Viral RNA recognition by LGP2 and MDA5, and activation of signaling through step-by-step conformational changes. Nucleic Acids Res. 2020, 48, 11664–11674. [Google Scholar] [CrossRef]
- Tanaka, K.; Ichihara, A. Involvement of proteasomes (multicatalytic proteinase) in ATP-dependent proteolysis in rat reticulocyte extracts. FEBS Lett. 1988, 236, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Killoran, K.E.; Miller, A.D.; Uray, K.S.; Weisbrodt, N.W.; Pautler, R.G.; Goyert, S.M.; van Rooijen, N.; Conner, M.E. Role of innate immunity and altered intestinal motility in LPS- and MnCl2-induced intestinal intussusception in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G445–G453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef]
- Leelahavanichkul, A.; Panpetch, W.; Worasilchai, N.; Somparn, P.; Chancharoenthana, W.; Nilgate, S.; Finkelman, M.; Chindamporn, A.; Tumwasorn, S. Evaluation of gastrointestinal leakage using serum (1→3)-β-D-glucan in a Clostridium difficile murine model. FEMS Microbiol. Lett. 2016, 363, fnw204. [Google Scholar] [CrossRef] [Green Version]
- Panpetch, W.; Hiengrach, P.; Nilgate, S.; Tumwasorn, S.; Somboonna, N.; Wilantho, A.; Chatthanathon, P.; Prueksapanich, P.; Leelahavanichkul, A. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes 2020, 11, 465–480. [Google Scholar] [CrossRef]
- Panpetch, W.; Phuengmaung, P.; Cheibchalard, T.; Somboonna, N.; Leelahavanichkul, A.; Tumwasorn, S. Lacticaseibacillus casei Strain T21 Attenuates Clostridioides difficile Infection in a Murine Model through Reduction of Inflammation and Gut Dysbiosis with Decreased Toxin Lethality and Enhanced Mucin Production. Front. Microbiol. 2021, 12, 745299. [Google Scholar] [CrossRef]
- Ondee, T.; Jaroonwitchawan, T.; Pisitkun, T.; Gillen, J.; Nita-Lazar, A.; Leelahavanichkul, A.; Somparn, P. Decreased Protein Kinase C-β Type II Associated with the Prominent Endotoxin Exhaustion in the Macrophage of FcGRIIb-/- Lupus Prone Mice is Revealed by Phosphoproteomic Analysis. Int. J. Mol. Sci. 2019, 20, 1354. [Google Scholar] [CrossRef] [Green Version]
- Tungsanga, S.; Panpetch, W.; Bhunyakarnjanarat, T.; Udompornpitak, K.; Katavetin, P.; Chancharoenthana, W.; Chatthanathon, P.; Somboonna, N.; Tungsanga, K.; Tumwasorn, S.; et al. Uremia-Induced Gut Barrier Defect in 5/6 Nephrectomized Mice Is Worsened by Candida Administration through a Synergy of Uremic Toxin, Lipopolysaccharide, and (1→3)-β-D-Glucan, but Is Attenuated by Lacticaseibacillus rhamnosus L34. Int. J. Mol. Sci. 2022, 23, 2511. [Google Scholar] [CrossRef]
- Visitchanakun, P.; Panpetch, W.; Saisorn, W.; Chatthanathon, P.; Wannigama, D.L.; Thim-uam, A.; Svasti, S.; Fucharoen, S.; Somboonna, N.; Leelahavanichkul, A. Increased susceptibility to dextran sulfate-induced mucositis of iron-overload β-thalassemia mice, another endogenous cause of septicemia in thalassemia. Clin. Sci. 2021, 135, 1467–1486. [Google Scholar] [CrossRef]
- Boonhai, S.; Bootdee, K.; Saisorn, W.; Takkavatakarn, K.; Sitticharoenchai, P.; Tungsanga, S.; Tiranathanagul, K.; Leelahavanichkul, A. TMAO reductase, a biomarker for gut permeability defect induced inflammation, in mouse model of chronic kidney disease and dextran sulfate solution-induced mucositis. Asian Pac. J. Allergy Immunol. 2021. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, G.; Wang, X.; Liu, D. Metabolic reprogramming consequences of sepsis: Adaptations and contradictions. Cell. Mol. Life Sci. 2022, 79, 456. [Google Scholar] [CrossRef]
- Escoll, P.; Buchrieser, C. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism? FEBS J. 2018, 285, 2146–2160. [Google Scholar] [CrossRef] [Green Version]
- Jaroonwitchawan, T.; Visitchanakun, P.; Dang, P.C.; Ritprajak, P.; Palaga, T.; Leelahavanichkul, A. Dysregulation of Lipid Metabolism in Macrophages Is Responsible for Severe Endotoxin Tolerance in FcgRIIB-Deficient Lupus Mice. Front. Immunol. 2020, 11, 959. [Google Scholar] [CrossRef]
- Lee, A.H.; Ledderose, C.; Li, X.; Slubowski, C.J.; Sueyoshi, K.; Staudenmaier, L.; Bao, Y.; Zhang, J.; Junger, W.G. Adenosine Triphosphate Release is Required for Toll-Like Receptor-Induced Monocyte/Macrophage Activation, Inflammasome Signaling, Interleukin-1β Production, and the Host Immune Response to Infection. Crit. Care Med. 2018, 46, e1183–e1189. [Google Scholar] [CrossRef]
- Ondee, T.; Gillen, J.; Visitchanakun, P.; Somparn, P.; Issara-Amphorn, J.; Dang Phi, C.; Chancharoenthana, W.; Gurusamy, D.; Nita-Lazar, A.; Leelahavanichkul, A. Lipocalin-2 (Lcn-2) Attenuates Polymicrobial Sepsis with LPS Preconditioning (LPS Tolerance) in FcGRIIb Deficient Lupus Mice. Cells 2019, 8, 1064. [Google Scholar] [CrossRef] [Green Version]
- Bhunyakarnjanarat, T.; Udompornpitak, K.; Saisorn, W.; Chantraprapawat, B.; Visitchanakun, P.; Dang, C.P.; Issara-Amphorn, J.; Leelahavanichkul, A. Prominent Indomethacin-Induced Enteropathy in Fcgriib Defi-cient lupus Mice: An Impact of Macrophage Responses and Immune Deposition in Gut. Int. J. Mol. Sci. 2021, 22, 1377. [Google Scholar] [CrossRef]
- Panpetch, W.; Sawaswong, V.; Chanchaem, P.; Ondee, T.; Dang, C.P.; Payungporn, S.; Leelahavanichkul, A. Candida Administration Worsens Cecal Ligation and Puncture-Induced Sepsis in Obese Mice through Gut Dysbiosis Enhanced Systemic Inflammation, Impact of Pathogen-Associated Molecules from Gut Translocation and Saturated Fatty Acid. Front. Immunol. 2020, 11, 561652. [Google Scholar] [CrossRef]
- Cavaillon, J.M.; Adib-Conquy, M. Bench-to-bedside review: Endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care 2006, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Investig. 2008, 118, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S. Inflammation during Virus Infection: Swings and Roundabouts. In Dynamics of Immune Activation in Viral Diseases; Springer: Singapore, 2019; pp. 43–59. [Google Scholar] [CrossRef]
- Schildermans, J.; De Vlieger, G. Cytomegalovirus: A Troll in the ICU? Overview of the Literature and Perspectives for the Future. Front. Med. 2020, 7, 188. [Google Scholar] [CrossRef]
- Widdrington, J.D.; Gomez-Duran, A.; Pyle, A.; Ruchaud-Sparagano, M.H.; Scott, J.; Baudouin, S.V.; Rostron, A.J.; Lovat, P.E.; Chinnery, P.F.; Simpson, A.J. Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Front. Immunol. 2018, 9, 2217. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.S.; Lahni, P.M.; Denenberg, A.G.; Poynter, S.E.; Wong, H.R.; Cook, J.A.; Zingarelli, B. Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock 2008, 30, 267–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubair, K.; You, C.; Kwon, G.; Kang, K. Two Faces of Macrophages: Training and Tolerance. Biomedicines 2021, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, J.A.; Robinson, B.A.; Peters, A.M.; Li, L.; Nouboussi, R.V.; Mack, M.; Nice, T.J. Persistence of Systemic Murine Norovirus Is Maintained by Inflammatory Recruitment of Susceptible Myeloid Cells. Cell Host Microbe 2018, 24, 665–676.e4. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Liu, H.J.; Chen, S.H.; Chen, C.C.; Chou, L.S.; Tsai, L.H. Effect of lipopolysaccharide on diarrhea and gastrointestinal transit in mice: Roles of nitric oxide and prostaglandin E2. World J. Gastroenterol. 2005, 11, 357–361. [Google Scholar] [CrossRef]
- Tufvesson-Alm, M.; Imbeault, S.; Liu, X.C.; Zheng, Y.; Faka, A.; Choi, D.S.; Schwieler, L.; Engberg, G.; Erhardt, S. Repeated administration of LPS exaggerates amphetamine-induced locomotor response and causes learning deficits in mice. J. Neuroimmunol. 2020, 349, 577401. [Google Scholar] [CrossRef]
- Visitchanakun, P.; Kaewduangduen, W.; Chareonsappakit, A.; Susantitaphong, P.; Pisitkun, P.; Ritprajak, P.; Townamchai, N.; Leelahavanichkul, A. Interference on Cytosolic DNA Activation Attenuates Sepsis Severity: Experiments on Cyclic GMP–AMP Synthase (cGAS) Deficient Mice. Int. J. Mol. Sci. 2021, 22, 11450. [Google Scholar] [CrossRef]
- Issara-Amphorn, J.; Dang, C.P.; Saisorn, W.; Limbutara, K.; Leelahavanichkul, A. Candida Administration in Bilateral Nephrectomy Mice Elevates Serum (1→3)-β-D-glucan That Enhances Systemic Inflammation through Energy Augmentation in Macrophages. Int. J. Mol. Sci. 2021, 22, 5031. [Google Scholar] [CrossRef]
- Makjaroen, J.; Thim-Uam, A.; Dang, C.P.; Pisitkun, T.; Somparn, P.; Leelahavanichkul, A. A Comparison between 1 Day versus 7 Days of Sepsis in Mice with the Experiments on LPS-Activated Macrophages Support the Use of Intravenous Immunoglobulin for Sepsis Attenuation. J. Inflamm. Res. 2021, 14, 7243–7263. [Google Scholar] [CrossRef]
- Saisorn, W.; Saithong, S.; Phuengmaung, P.; Udompornpitak, K.; Bhunyakarnjanarat, T.; Visitchanakun, P.; Chareonsappakit, A.; Pisitkun, P.; Chiewchengchol, D.; Leelahavanichkul, A. Acute Kidney Injury Induced Lupus Exacerbation through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice with Renal Ischemia Reperfusion Injury. Front. Immunol. 2021, 12, 669162. [Google Scholar] [CrossRef]
- Hiengrach, P.; Visitchanakun, P.; Finkelman, M.A.; Chancharoenthana, W.; Leelahavanichkul, A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int. J. Mol. Sci. 2022, 23, 4026. [Google Scholar] [PubMed]
- Saithong, S.; Saisorn, W.; Visitchanakun, P.; Sae-Khow, K.; Chiewchengchol, D.; Leelahavanichkul, A. A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in Candida Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus. J. Inflamm. Res. 2021, 14, 2333–2352. [Google Scholar] [CrossRef] [PubMed]
- Hiengrach, P.; Panpetch, W.; Chindamporn, A.; Leelahavanichkul, A. Helicobacter pylori, Protected from Antibiotics and Stresses Inside Candida albicans Vacuoles, Cause Gastritis in Mice. Int. J. Mol. Sci. 2022, 23, 8568. [Google Scholar] [CrossRef] [PubMed]
- Panpetch, W.; Phuengmaung, P.; Hiengrach, P.; Issara-Amphorn, J.; Cheibchalard, T.; Somboonna, N.; Tumwasorn, S.; Leelahavanichkul, A. Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int. J. Mol. Sci. 2022, 23, 7050. [Google Scholar] [CrossRef] [PubMed]
- Hiengrach, P.; Panpetch, W.; Chindamporn, A.; Leelahavanichkul, A. Macrophage depletion alters bacterial gut microbiota partly through fungal overgrowth in feces that worsens cecal ligation and puncture sepsis mice. Sci. Rep. 2022, 12, 9345. [Google Scholar] [CrossRef]
- Udompornpitak, K.; Charoensappakit, A.; Sae-Khow, K.; Bhunyakarnjanarat, T.; Dang, C.P.; Saisorn, W.; Visitchanakun, P.; Phuengmaung, P.; Palaga, T.; Ritprajak, P.; et al. Obesity Exacerbates Lupus Activity in Fc Gamma Receptor IIb Deficient Lupus Mice Partly through Saturated Fatty Acid-Induced Gut Barrier Defect and Systemic Inflammation. J. Innate Immun. 2022, 1–22. [Google Scholar] [CrossRef]
Abbr | Name | Abbr | Name |
---|---|---|---|
Aco2 | Aconitate hydratase, mitochondrial | Irf9 | Interferon regulatory factor 9 |
Adar | Double-stranded RNA-specific adenosine deaminase | Isg15 | Ubiquitin-like protein ISG15 |
Akt1S1 | Proline-rich AKT1 substrate 1 | Itgam | Integrin alpha-M |
Aldoa | Fructose-bisphosphate aldolase A | Ldha | L-lactate dehydrogenase A chain |
Aldoc | Fructose-bisphosphate aldolase C | Lgp2 | Laboratory of genetics and physiology 2 |
Atp5f1a | ATP synthase subunit alpha, mitochondrial | Litaf | Lipopolysaccharide-induced tumor necrosis factor-alpha factor homolog |
Atp5f1b | ATP synthase subunit beta, mitochondrial | Lyn | Tyrosine-protein kinase Lyn |
Atp5f1c | ATP synthase subunit gamma, mitochondrial | Malt1 | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 homolog |
Atp5f1d | ATP synthase subunit delta, mitochondrial | Map2k4 | Dual-specificity mitogen-activated protein kinase 4 |
Atp5f1e | ATP synthase subunit epsilon, mitochondrial | Mapk1 | Mitogen-activated protein kinase 1 |
Atp5if1 | ATPase inhibitor, mitochondrial | Mapk3 | Mitogen-activated protein kinase 3 |
Atp5mf | ATP synthase subunit f, mitochondrial | Mapkapk2 | MAP kinase-activated protein kinase 2 |
Atp5mg | ATP synthase subunit g, mitochondrial | MAVS | Mitochondrial anti-viral signaling protein |
Atp5mpl | ATP synthase subunit ATP5MPL, mitochondrial | Mdh2 | Malate dehydrogenase, mitochondrial |
Atp5pb | ATP synthase F(0) complex subunit B1, mitochondrial | Msr1 | Macrophage scavenger receptor types I and II |
Atp5pd | ATP synthase subunit d, mitochondrial | Mtatp8 | ATP synthase protein 8 |
Atp5po | ATP synthase subunit O, mitochondrial | Mtco2 | Cytochrome c oxidase subunit 2 |
Bcl10 | B-cell lymphoma/leukemia 10 | Mx1 | Myxovirus resistance protein 1 |
Bst2 | Bone marrow stromal antigen 2 | Ndufa13 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 |
Card9 | Caspase recruitment domain-containing protein 9 | Ndufa2 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 |
Ccl2 | C-C motif chemokine 2 | Ndufa8 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 |
Ccl3 | C-C motif chemokine 3 | Ndufa9 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 |
Cd14 | Monocyte differentiation antigen CD14 | Ndufb1 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 |
Cd36 | Platelet glycoprotein 4 | Ndufb2 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2 |
Cebpb | CCAAT/enhancer-binding protein β | Ndufb6 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 |
Clta | Clathrin light chain A | Ndufs6 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 |
Cltb | Clathrin light chain B | Ndufs7 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 |
Cltc | Clathrin heavy chain 1 | Ndufs8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 |
Coa3 | Cytochrome c oxidase assembly factor 3 homolog | Ndufv2 | NADH dehydrogenase [ubiquinone] flavoprotein 2 |
Coa6 | Cytochrome c oxidase assembly factor 6 homolog | Nfkb1 | Nuclear factor NF-kappa-B p105 subunit |
Cox14 | Cytochrome c oxidase assembly protein COX14 | Nfkb2 | Nuclear factor NF-kappa-B p100 subunit |
Cox4I1 | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial | Nlrp3 | NACHT, LRR, and PYD domains-containing protein 3 |
Cox5a | Cytochrome c oxidase subunit 5A, mitochondrial | Nos2 | Nitric oxide synthase, inducible |
Cox5b | Cytochrome c oxidase subunit 5B, mitochondrial | Oas1a | 2’-5’-oligoadenylate synthase 1A |
Cox6c | Cytochrome c oxidase subunit 6C | Ogdh | 2-oxoglutarate dehydrogenase, mitochondrial |
Cs | Citrate synthase, mitochondrial | Pdhb | Pyruvate dehydrogenase E1 component subunit beta |
Cycs | Cytochrome c, somatic | Pfkl | ATP-dependent 6-phosphofructokinase, liver type |
Dhx58 | Probable ATP-dependent RNA helicase DHX58 | Pfkp | ATP-dependent 6-phosphofructokinase, platelet type |
Dlat | Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial | Pgam1 | Phosphoglycerate mutase 1 |
Dld | Dihydrolipoyl dehydrogenase, mitochondrial | Pgk1 | Phosphoglycerate kinase 1 |
Dlst | Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial | Pkm | Pyruvate kinase PKM |
Dnm2 | Dynamin-2 | Pml | Protein PML |
Eif2ak2 | Interferon-induced, double-stranded RNA-activated protein kinase | Psma1 | Proteasome subunit alpha type-1 |
Eno1 | Alpha-enolase | Psma2 | Proteasome subunit alpha type-2 |
Eno3 | Beta-enolase | Psma3 | Proteasome subunit alpha type-3 |
Fcer1g | High-affinity immunoglobulin epsilon receptor subunit gamma | Psma5 | Proteasome subunit alpha type-5 |
Fcgr2 | Low-affinity immunoglobulin gamma Fc region receptor II | Psma7 | Proteasome subunit alpha type-7 |
Fgr | Tyrosine-protein kinase Fgr | Psmb2 | Proteasome subunit beta type-2 |
Gapdh | Glyceraldehyde-3-phosphate dehydrogenase | Psmb5 | Proteasome subunit beta type-5 |
Gls | Glutaminase kidney isoform, mitochondrial | Psmb6 | Proteasome subunit beta type-6 |
Glud1 | Glutamate dehydrogenase 1, mitochondrial | Psmc1 | 26S proteasome regulatory subunit 4 |
Got1 | Aspartate aminotransferase, cytoplasmic | Psmc4 | 26S proteasome regulatory subunit 6B |
Got2 | Aspartate aminotransferase, mitochondrial | Psmc6 | 26S proteasome regulatory subunit 10B |
Gpi | Glucose-6-phosphate isomerase | Psmd12 | 26S proteasome non-ATPase regulatory subunit 12 |
Gsdmd | Gasdermin-D | Psmd13 | 26S proteasome non-ATPase regulatory subunit 13 |
H2-D1 | H-2 class I histocompatibility antigen, D-D alpha chain | Psmd14 | 26S proteasome non-ATPase regulatory subunit 14 |
H2-K1 | H-2 class I histocompatibility antigen, K-B alpha chain | Psmd5 | 26S proteasome non-ATPase regulatory subunit 5 |
H2-L | H-2 class I histocompatibility antigen, L-D alpha chain | Psmd6 | 26S proteasome non-ATPase regulatory subunit 6 |
Hck | Tyrosine-protein kinase HCK | Psmd7 | 26S proteasome non-ATPase regulatory subunit 7 |
Hk1 | Hexokinase-1 | Psmd9 | 26S proteasome non-ATPase regulatory subunit 9 |
Hk2 | Hexokinase-2 | Ptpn6 | Tyrosine-protein phosphatase non-receptor type 6 |
Hk3 | Hexokinase-3 | Rela | Transcription factor p65 |
Hmgb1 | High mobility group protein B1 | Rel | Proto-oncogene c-Rel |
Hmgb2 | High mobility group protein B2 | Sdhb | Succinate dehydrogenase [ubiquinone] iron-sulfur subunit |
Idh1 | Isocitrate dehydrogenase [NADP] cytoplasmic | Siglec1 | Sialoadhesin |
Idh2 | Isocitrate dehydrogenase [NADP], mitochondrial | Stat1 | Signal transducer and activator of transcription 1 |
Idh3a | Isocitrate dehydrogenase [NAD] subunit alpha | Stat2 | Signal transducer and activator of transcription 2 |
Ifi202 | Interferon-activable protein 202 | Stat6 | Signal transducer and transcription activator 6 |
Ifi35 | Interferon-induced 35 kDa protein homolog | Sucla2 | Succinate—CoA ligase [ADP-forming] subunit beta |
Ifi44 | Interferon-induced protein 44 | Suclg1 | Succinate—CoA ligase [ADP/GDP-forming] subunit alpha |
Ifi44l | Interferon-induced protein 44-like | Syk | Tyrosine-protein kinase SYK |
Ifih1 | Interferon-induced helicase C domain-containing protein 1 | Tbk1 | Serine/threonine-protein kinase TBK1 |
Ifitm3 | Interferon-induced transmembrane protein 3 | Tlr2 | Toll-like receptor 2 |
IKK | Inhibitory kappa B kinase | Tnip1 | TNFAIP3-interacting protein 1 |
Il1a | Interleukin-1 alpha | Tollip | Toll-interacting protein |
Il1rn | Interleukin-1 receptor antagonist protein | Tpi1 | Triosephosphate isomerase |
Inpp5d | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 | Trim25 | E3 ubiquitin/ISG15 ligase TRIM25 |
Irf3 | Interferon regulatory factor 3 | Uqcrh | Cytochrome b-c1 complex subunit 6, mitochondrial |
Target Gene | Primer Sequence |
---|---|
Interferon-induced GTP-binding protein Mx1 (Mx1) | F: 5′-GATCCGACTTCACTTCCAGATGG-3′ |
R: 5′-CATCTCAGTGGTAGTCCAACCC-3′ | |
Interferon-stimulated gene 15 (Isg15) | F: 5′-GATCCGACTTCACTTCCAGATGG-3′ |
R: 5′-GAGCTAGAGCCTGCAGCAAT-3′ | |
NFκB/p65 (Rela) | F: 5′-CGTCAACTTCAAGGAAATGATGT-3′ |
R: 5′-TCACAGGGTAGGAAGGCA-3′ | |
Tumor necrosis factor alpha (Tnfa) | F: 5′-CTTTCTTGTTATCTTTTAAGTTGTTCTT-3′ |
R: 5′-GCAGAGGTCCAAGTTCATCTTC-3′ | |
Interleukin 1 beta (Il1b) | F: 5′-GGCATCAACTGACAGGTCTT-3′ |
R: 5′-GCAGGATGGAGAATTACAGGAA-3′ | |
Interferon induced with helicase C domain 1 (Ifih1) | F: 5′-CTTCCTCAGCCATGGTACCTCT-3′ |
R: 5′-CAAGTCTTCATCAGCATCAAACTG-3′ | |
Murine norovirus (MNV) | F: 5′-CACGCCACCGATCTGTTCTG-3′ |
R: 5′-GCGCTGCGCCATCACTC-3′ | |
Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) | F: 5′-TGCACCACCAACTGCTTAGC-3′ |
R: 5′-GGATGCAGGGATGATGTTCT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makjaroen, J.; Phuengmaung, P.; Saisorn, W.; Udomkarnjananun, S.; Pisitkun, T.; Leelahavanichkul, A. Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. Int. J. Mol. Sci. 2023, 24, 1829. https://doi.org/10.3390/ijms24031829
Makjaroen J, Phuengmaung P, Saisorn W, Udomkarnjananun S, Pisitkun T, Leelahavanichkul A. Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. International Journal of Molecular Sciences. 2023; 24(3):1829. https://doi.org/10.3390/ijms24031829
Chicago/Turabian StyleMakjaroen, Jiradej, Pornpimol Phuengmaung, Wilasinee Saisorn, Suwasin Udomkarnjananun, Trairak Pisitkun, and Asada Leelahavanichkul. 2023. "Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis" International Journal of Molecular Sciences 24, no. 3: 1829. https://doi.org/10.3390/ijms24031829
APA StyleMakjaroen, J., Phuengmaung, P., Saisorn, W., Udomkarnjananun, S., Pisitkun, T., & Leelahavanichkul, A. (2023). Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. International Journal of Molecular Sciences, 24(3), 1829. https://doi.org/10.3390/ijms24031829