Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies
Abstract
:1. Introduction
2. Results
2.1. Impact of the His147Arg and Leu224Val Mutations on the CCT5 Structure
2.2. Predicted Fluctuation of Amino Acids in the Apical and Intermediate Domains of the Two Mutants Compared with the Wild Type
2.3. The Number of Hydrogen Bonds Differ in the Two Mutant and the Wild-Type Molecules
2.4. Electrostatic Potential of ATP-Bound CCT5 Variants
3. Discussion
4. Materials and Methods
Molecular Dynamics Simulation, RMSF, and APBS Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macario, A.J.L.; Conway de Macario, E. Chaperone proteins and chaperonopathies. In Stress: Physiology, Biochemistry, and Pathology, Handbook of Stress Series, 1st ed.; Fink, G., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MS, USA, 2019; Volume 3, Chapter 12; pp. 135–152. [Google Scholar]
- Rodolico, V.; Tomasello, G.; Zerilli, M.; Martorana, A.; Pitruzzella, A.; Marino Gammazza, A.; David, S.; Zummo, G.; Damiani, P.; Accomando, S.; et al. Hsp60 and Hsp10 increase in colon mucosa of Crohn’s disease and ulcerative colitis. Cell Stress Chaperones 2010, 15, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappa, F.; Pitruzzella, A.; Marino Gammazza, A.; Barone, R.; Mocciaro, E.; Tomasello, G.; Carini, F.; Farina, F.; Zummo, G.; Conway de Macario, E.; et al. Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer. Cell Stress Chaperones 2016, 21, 927–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangiorgi, C.; Vallese, D.; Gnemmi, I.; Bucchieri, F.; Balbi, B.; Brun, P.; Leone, A.; Giordano, A.; Conway de Macario, E.; Macario, A.J.L.; et al. HSP60 activity on human bronchial epithelial cells. Int. J. Immunopathol. Pharm. 2017, 30, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino Gammazza, A.; Légaré, S.; Lo Bosco, G.; Fucarino, A.; Angileri, F.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: Possible role of molecular mimicry in COVID-19. Cell Stress Chaperones 2020, 25, 737–741. [Google Scholar] [CrossRef]
- Macario, A.J.L.; Conway de Macario, E. Chaperonins in cancer: Expression, function, and migration in extracellular vesicles. Semin. Cancer Biol. 2021, 86, 26–35. [Google Scholar] [CrossRef]
- Basset, C.A.; Rappa, F.; Lentini, V.L.; Barone, R.; Pitruzzella, A.; Unti, E.; Cappello, F.; Conway de Macario, E.; Macario, A.J.L.; Leone, A. Hsp27 and Hsp60 in human submandibular salivary gland: Quantitative patterns in healthy and cancerous tissues with potential implications for differential diagnosis and carcinogenesis. Acta Histochem. 2021, 123, 151771. [Google Scholar] [CrossRef]
- Jay, D.; Luo, Y.; Li, W. Extracellular heat shock protein-90 (eHsp90): Everything you need to know. Biomolecules 2022, 12, 911. [Google Scholar] [CrossRef]
- Ziaka, K.; van der Spuy, J. The role of Hsp90 in retinal proteostasis and disease. Biomolecules 2022, 12, 978. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, K.; Conway de Macario, E.; Macario, A.J.L.; Brocchieri, L. Chaperonin genes on the rise: New divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol. Biol. 2010, 10, 64. [Google Scholar] [CrossRef]
- Macario, A.J.L.; Conway de Macario, E. Sick chaperones, cellular stress, and disease. New Eng. J. Med. 2005, 353, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Scalia, F.; Marino Gammazza, A.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. Myelin pathology: Involvement of molecular chaperones and the promise of chaperonotherapy. Brain Sci. 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalia, F.; Vitale, A.M.; Santonocito, R.; Conway de Macario, E.; Macario, A.J.L.; Cappello, F. The neurochaperonopathies: Anomalies of the chaperone system with pathogenic effects in neurodegenerative and neuromuscular disorders. Appl. Sci. 2021, 11, 898. [Google Scholar] [CrossRef]
- Bouhouche, A.; Benomar, A.; Bouslam, N.; Chkili, T.; Yahyaoui, M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J. Med. Genet. 2006, 43, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Antona, V.; Scalia, F.; Giorgio, E.; Radio, F.C.; Brusco, A.; Oliveri, M.; Corsello, G.; Lo Celso, F.; Vadalà, M.; Conway de Macario, E.; et al. A novel CCT5 missense variant associated with early onset motor neuropathy. Int. J. Mol. Sci. 2020, 21, 7631. [Google Scholar] [CrossRef] [PubMed]
- Macario, A.J.L.; Conway de Macario, E. Molecular mechanisms in chaperonopathies: Clues to understanding the histopathological abnormalities and developing novel therapies. J. Pathol. 2020, 250, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Scalia, F.; Barone, R.; Rappa, F.; Marino Gammazza, A.; Lo Celso, F.; Lo Bosco, G.; Barone, G.; Antona, V.; Vadalà, M.; Vitale, A.M.; et al. Muscle histopathological abnormalities in a patient with a CCT5 mutation predicted to affect the apical domain of the chaperonin subunit. Front. Mol. Biosci. 2022, 9, 887336. [Google Scholar] [CrossRef]
- Sergeeva, O.A.; Chen, B.; Haase-Pettingell, C.; Ludtke, S.J.; Chiu, W.; King, J.A. Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. J. Biol. Chem. 2013, 288, 17734–17744. [Google Scholar] [CrossRef] [Green Version]
- Darrow, M.C.; Sergeeva, O.A.; Isas, J.M.; Galaz-Montoya, J.G.; King, J.A.; Langen, R.; Schmid, M.F.; Chiu, W. Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like CCT5 complex explained by cryoelectron tomography. J. Biol. Chem. 2015, 290, 17451–17461. [Google Scholar] [CrossRef] [Green Version]
- Sergeeva, O.A.; Tran, M.T.; Haase-Pettingell, C.; King, J.A. Biochemical characterization of mutants in chaperonin proteins CCT4 and CCT5 associated with hereditary sensory neuropathy. J. Biol. Chem. 2014, 289, 27470–27480. [Google Scholar] [CrossRef]
- Brackley, K.I.; Grantham, J. Subunits of the chaperonin CCT interact with F-actin and influence cell shape and cytoskeletal assembly. Exp. Cell Res. 2010, 316, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.L.; Svanström, A.; Spiess, M.; Karlsson, R.; Grantham, J. A novel function of the monomeric CCTε subunit connects the serum response factor pathway to chaperone-mediated actin folding. Mol. Biol. Cell. 2015, 26, 2801–2809. [Google Scholar] [CrossRef]
- Sergeeva, O.A.; Haase-Pettingell, C.; King, J.A. Co-expression of CCT subunits hints at TRiC assembly. Cell Stress Chaperones 2019, 24, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.H.; McAndrew, R.P.; Sergeeva, O.A.; Ralston, C.Y.; King, J.A.; Adams, P.D. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy. Sci. Rep. 2017, 7, 3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, W.; Angileri, F.; Luo, H.; Lauria, A.; Shanmugasundaram, M.; Almerico, A.M.; Cappello, F.; Conway de Macario, E.; Lednev, I.K.; Macario, A.J.L.; et al. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model. Sci. Rep. 2014, 4, 6688. [Google Scholar] [CrossRef] [Green Version]
- Vallin, J.; Grantham, J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: Implications for cancer cell biology. Cell Stress Chaperones 2019, 24, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.R.; Meyer, A.S.; Cong, Y.; Topf, M.; Sali, A.; Ludtke, S.J.; Chiu, W.; Frydman, J. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat. Struct. Mol. Biol. 2008, 15, 746–753. [Google Scholar] [CrossRef]
- Zang, Y.; Jin, M.; Wang, H.; Cui, Z.; Kong, L.; Liu, C.; Cong, Y. Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat. Struct. Mol. Biol. 2016, 23, 1083–1091. [Google Scholar] [CrossRef]
- Iizuka, R.; So, S.; Inobe, T.; Yoshida, T.; Zako, T.; Kuwajima, K.; Yohda, M. Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J. Biol. Chem. 2004, 279, 18834–18839. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.S.; Gillespie, J.R.; Walther, D.; Millet, I.S.; Doniach, S.; Frydman, J. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 2003, 113, 369–381. [Google Scholar] [CrossRef]
- Muñoz, I.G.; Yebenes, H.; Zhou, M.; Mesa, P.; Serna, M.; Park, A.Y.; Bragado-Nilsson, E.; Beloso, A.; De Cárcer, G.; Malumbres, M.; et al. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 2011, 18, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Suenaga, A.; Kusano, H.; Tanaka, R.; Hatta, T.; Natsume, T.; Fukui, K. Functional profiling of asymmetrically-organized human CCT/TRiC chaperonin. Biochem. Biophys Res. Commun. 2016, 481, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.W.; Knowles, T.P.; Waudby, C.A.; Vendruscolo, M.; Dobson, C.M. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput. Biol. 2011, 7, e1002169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, J.P.; Marsh, H.M.; Sondermann, H.; Sevier, C.S. Disrupted hydrogen-bond network and impaired ATPase activity in an Hsc70 Cysteine mutant. Biochemistry 2018, 57, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Vascon, F.; Gasparotto, M.; Giacomello, M.; Cendron, L.; Bergantino, E.; Filippini, F.; Righetto, I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput. Struct. Biotechnol. J. 2020, 18, 1774–1789. [Google Scholar] [CrossRef]
- Mallamace, D.; Fazio, E.; Mallamace, F.; Corsaro, C. The Role of Hydrogen bonding in the folding/unfolding process of hydrated lysozyme: A review of recent NMR and FTIR results. Int. J. Mol. Sci. 2018, 19, 3825. [Google Scholar] [CrossRef] [Green Version]
- Levy, Y.; Onuchic, J.N. Water and proteins: A love-hate relationship. Proc. Natl. Acad. Sci. USA 2004, 101, 3325–3326. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, A.; Blossey, R.; Rjasanow, S.; Kohlbacher, O.; Lenhof, H.P. Electrostatic potentials of proteins in water: A structured continuum approach. Bioinformatics 2007, 23, e99–e103. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giancarlo, R.; Lo Bosco, G.; Pinello, L.; Utro, F. The three steps of clustering in the post-genomic era: A synopsis. In Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2010. Lecture Notes in Computer Science; Rizzo, R., Lisboa, P.J.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6685, pp. 13–30. [Google Scholar]
- Foloppe, N.; MacKerell, A.D. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 2000, 21, 86–104. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Banavali, N.K. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 2000, 21, 105–120. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
CCT5 | Nucleotide Free | ATP Bound | ADP Bound |
---|---|---|---|
Wild-type Leu224 | 417 | 418 | 426 |
Mutant Leu224Val | 408 | 423 | 427 |
Mutant His147Arg | 436 | 435 | 435 |
Donor | Acceptor | Hydrogen | D..A dist. | D-H..A dist. |
---|---|---|---|---|
ARG 147 N | VAL 143 O | ARG 147 HN | 2.888 | 2.021 |
ARG 147 NE | SER 428 O | ARG 147 HE | 3.263 | 2.728 |
ARG 147 NE | SER 428 OG | ARG 147 HE | 2.916 | 1.960 |
ILE 151 N | ARG 147 O | ILE 151 HN | 3.133 | 2.190 |
Donor | Acceptor | Hydrogen | D..A dist. | D-H..A dist. |
---|---|---|---|---|
HIS 147 N | VAL 143 O | HIS 147 HN | 2.968 | 2.063 |
ILE 151 N | HIS 147 O | ILE 151 HN | 2.765 | 1.776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalia, F.; Lo Bosco, G.; Paladino, L.; Vitale, A.M.; Noori, L.; Conway de Macario, E.; Macario, A.J.L.; Bucchieri, F.; Cappello, F.; Lo Celso, F. Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies. Int. J. Mol. Sci. 2023, 24, 2018. https://doi.org/10.3390/ijms24032018
Scalia F, Lo Bosco G, Paladino L, Vitale AM, Noori L, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Lo Celso F. Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies. International Journal of Molecular Sciences. 2023; 24(3):2018. https://doi.org/10.3390/ijms24032018
Chicago/Turabian StyleScalia, Federica, Giosuè Lo Bosco, Letizia Paladino, Alessandra Maria Vitale, Leila Noori, Everly Conway de Macario, Alberto J. L. Macario, Fabio Bucchieri, Francesco Cappello, and Fabrizio Lo Celso. 2023. "Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies" International Journal of Molecular Sciences 24, no. 3: 2018. https://doi.org/10.3390/ijms24032018
APA StyleScalia, F., Lo Bosco, G., Paladino, L., Vitale, A. M., Noori, L., Conway de Macario, E., Macario, A. J. L., Bucchieri, F., Cappello, F., & Lo Celso, F. (2023). Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies. International Journal of Molecular Sciences, 24(3), 2018. https://doi.org/10.3390/ijms24032018