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Abstract: The cancer secretome comprises factors secreted by tumors, including cytokines, growth
factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane
and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins
provide an avenue for communication with other tumor cells and stromal cells, and these in turn
promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer
in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its
aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR),
and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving
patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC,
researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome
are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis,
inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In
this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate
these secreted molecules with potential therapeutic opportunities to facilitate translational research.

Keywords: TNBC; breast cancer; secretome; angiogenesis; cytokine; ECM; protease; tumor
microenvironment; therapeutic target

1. Introduction

Secreted factors released from primary tumors are able to alter the tumor microen-
vironment and, through both autocrine and paracrine mechanisms, the secretome of the
tumor itself [1]. Collectively, these secreted factors (including proteins, RNAs, extracellular
vesicles, etc.) make up the “secretome”. The tumor cell secretome generally comprises
cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and
protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and
metabolic proteins (Figure 1). This variety of secreted proteins renders the tumor cell
secretome as an obvious mechanism by which tumor cells can promote chemoresistance,
induce metastasis, and regulate the immunological response.

Breast cancer is the leading cause of cancer in women in the US and worldwide. Breast
cancer can be subdivided into molecular subtypes that vary by their gene expression, prog-
nosis, and treatment options. Triple-negative breast cancer (TNBC) is clinically challenging
because, despite its initial favorable response to standard chemotherapeutic regimens, it
often becomes resistant. This subtype of breast cancer, named for its lack of expression
of the estrogen receptor (ER), progesterone receptor (PR), and HER2, is not amenable to
targeted therapy directed at the ER and HER2, leaving patients to rely on chemotherapy
as the standard of care [2,3]. TNBC also has the lowest 5-year survival rate among all the
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subtypes, demonstrating a need for new therapeutic options for these patients. Although
patients initially respond well to chemotherapy, 50–80% of women with TNBC will relapse
or develop resistance to the chemotherapeutic agent, making this a major driver of breast
cancer mortality. Therefore, there is an immediate unmet need to identify and characterize
other molecular events and downstream pathways important for the initiation of TNBC,
resistance to chemotherapy, and recurrence. One aspect that may influence the develop-
ment of chemoresistance in TNBC is the interaction of secreted factors with the tumor cells
themselves or with the surrounding tumor microenvironment (TME).
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Previous reviews of the TNBC secretome have focused on the mechanisms of chemore-
sistance [4], extracellular vesicles [5], the induction of a pro-inflammatory microenviron-
ment [6], induction of metastatic spread [7], or a newly discovered autocrine loop involving
HMGA1 ([8] and reviewed in [9]). Secreted molecules include proteins and a variety of RNA
species (noncoding regulatory RNAs as well as protein-coding circular mRNAs). However,
secreted RNAs in the context of TNBC have been recently reviewed elsewhere [5,10]. In
this review, we intend to catalog the currently known proteins in the secretome of TNBC
tumors and correlate these secreted molecules with potential therapeutic opportunities to
facilitate translational research.

2. The TNBC Secretome
2.1. Cytokines and Growth Factors

Ziegler et al. (2016) used mass spectrometry to identify proteins secreted from three
TNBC cell lines (DT22, DT28, and MDA-MB-231) compared to a luminal-type cell line
with normal expression of the ER, PR, and HER2/Neu (MCF-7) and a non-tumor cell line.
Spectral counts were used as a proxy of protein expression level in conditioned medium
(CM). Using this measure, the authors found that the immune-modulating proteins SAA1,
thrombospondin (THBS1), and growth factor TGFβ1 were more highly expressed in TNBC
CM on average compared to MCF-7 CM [11]. This study identified many proteins enriched
in the TNBC secretome, and we will refer to the study again throughout this review.

Among the cytokines and growth factors secreted by TNBC (Table 1), a theme of blood
vessel regulation stands out. For example, BDNF is a growth factor that promotes tumor
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and endothelial cell migration [12,13]. SLIT3 regulates axon guidance in the brain but
also organizes angiogenic processes [14]. On the other hand, SLIT3 produced by CD36+

stromal fibroblasts was one of the primary secreted factors that suppressed the growth
of TNBC cells in vitro [15]. Other factors of the TNBC secretome, including PLGF, VEGF,
TXNIP, and CXCL1/GRO, also regulate angiogenesis [7,12]. END1 secreted by TNBC
regulates vasoconstriction [16]. Further, the expression of proteins involved in angiogenesis
(including FGF proteins and TGFβ) increased in TNBC cells when the anti-metastatic
protein EPAC1 was knocked down using siRNA [17].

Table 1. Cytokines and Growth Factors of the TNBC Secretome.

Cytokines

Protein Aliases Source Evidence Refs.

CCL2 Chemokine (C-C motif) ligand 2 Adipose-derived MSCs ADMSCs treated with TNBC CM [6]

CCL5 Chemokine (C-C motif) ligand 5,
RANTES Adipose-derived MSCs ADMSCs treated with TNBC CM [6]

COX2 Cyclooxygenase 2, Prostaglandin
synthase 2 Adipose-derived MSCs ADMSCs treated with TNBC CM [6]

CXCL1/
GRO

CXC motif chemokine ligand 1,
growth-related oncogene TNBC cells

Secretome profiling of CM; TNBC cells
cocultured with hBMECS; inhibition of
IRE1 in TNBC cells

[7,18,19]

GM-CSF Granulocyte-macrophage
colony-stimulating factor TNBC cells Inhibition of IRE1 in TNBC cells [19]

HIF-1α Hypoxia-inducible factor-1 subunit
alpha Adipose-derived MSCs ADMSCs treated with TNBC CM [6]

HMGA1 High-mobility group A1 TNBC cells and tumors TNBC tumors [20,21]

IL-1β Interleukin-1 beta
Macrophages,
adipose-derived MSCs,
TNBC cells

CM and patient serum in mouse model;
ADMSCs treated with TNBC CM; TNBC
cells in model of blood–brain barrier

[6,22,23]

IL-6 Interleukin-6 TNBC cells;
adipose-derived MSCs

Secretome profiling of CM; ADMSCs
treated with TNBC CM; Inhibition of
IRE1 in TNBC cells

[6,18,19]

IL-8 Interleukin-8 TNBC cells Secretome profiling of CM; Inhibition of
IRE1 in TNBC cells [18,19]

LCN2 Lipocalin-2 Stromal cells TNBC cells cocultured with four types
of stromal cells [24]

PD-L1 Programmed death ligand 1 Adipose-derived MSCs ADMSCs treated with TNBC CM [6]

PLAUR suPAR, soluble urokinase receptor TNBC cells TNBC cells (inducible silencing of
HMGA1) [25]

SAA1 Serum amyloid A1 TNBC cells MS analysis of CM [11]
SLIT3 Slit guidance ligand 3 Fibroblasts TNBC cells treated with CAF CM [15]
THBS1 Thrombospondin 1 TNBC cells MS analysis of CM [11]

Growth Factors

BDNF Brain-derived neurotrophic factor Fibroblasts Coculture of fibroblasts with TNBC cells [12,13]

END1 Endothelin-1 TNBC cells CM from TNBC cell lines depleted of
Syndecan-1 [16]

GRN Granulin TNBC cells TNBC cell line depleted of LRP-1 [26]

NODAL Nodal growth differentiation factor
(TGFβ superfamily) TNBC tumors IHC of human tumors [27]

PLGF Placental growth factor Fibroblasts Coculture of fibroblasts with TNBC cells [12]

TGFβ1 Transforming growth factor beta 1 TNBC cells TNBC cell line depleted of LRP-1; MS
analysis of CM [11,26]

TGFβ2 Transforming growth factor beta 2 TNBC cells Inhibition of IRE1 in TNBC cells [19]

VEGF-A Vascular endothelial growth factor A
TNBC cells and
xenograft tumors;
Adipose-derived MSCs

CM from TNBC cell lines depleted of
Syndecan-1; interstitial fluid of
xenograft tumors; ADMSCs treated with
TNBC CM

[6,16,28]
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Vascular endothelial growth factor (VEGF) itself was detected in the TNBC secretome
in at least three studies. The source of VEGF varied, including TNBC cells depleted of
Syndecan-1 [16], interstitial fluid of TNBC xenograft tumors in mice [28], and adipose-
derived mesenchymal stem cells treated with CM from TNBC cells [6]. The ubiquity of this
angiogenesis regulator in the TNBC secretome, as well as the presence of a constellation
of secreted factors that regulate its activity (discussed above), seems to indicate that it is
crucial in TNBC disease progression.

Multiple studies found that TGFβ was secreted by TNBC cells. However, the role of
TGFβ in angiogenesis remains unclear (e.g., it reduces VEGF-A signaling [29] but actually
works with VEGF to modulate angiogenesis in a manner that is dependent on the TGFβ
receptor subclass [30]. Another member of the TGFβ superfamily, NODAL, was found
in the TNBC secretome [27]. NODAL is a fetal development protein that is reactivated
in multiple cancer types, where it stimulates the angiogenic activity of VEGF [31,32]. In
addition, NODAL was found to activate fibroblasts associated with cancer cells and further
alter the tumor microenvironment [27,33].

Another theme of the TNBC secretome is regulation of the immune system. A wide
assortment of immune-modulating proteins were detected in the TNBC secretome. For
example, the secretome of TNBC cells (MDA-MB-231) induced the expression of the pro-
inflammatory cytokines CCL2, CCL5, IL-1β, and IL-6 in adipose-derived mesenchymal
stem/stromal cells. The authors went on to show that the IL-6 secreted by the TNBC cells
was responsible for inducing chemotaxis [6]. In agreement with those findings, another
group showed that a combination of drugs that suppress both IL-6 and CCL5 signaling
reduced TNBC tumor growth and metastasis in a mouse xenograft model [34].

Logue et al. (2018) also showed an increase in cytokine release from MDA-MB-231 cells,
in particular IL-6, IL-8, CXCL1/GRO, GM-CSF, and TGFβ2, which were under the control
of IRE1. Of the cytokines in that study, CXCL1/GRO was the common factor secreted
by four different TNBC cell lines [19]. Suarez et al. (2022) found that the secretome of
MDA-MB-231 cells induced the expression of immune modulators COX2, HIF-1α, VEGF-A,
and PD-L1 in adipose-derived mesenchymal stem/stromal cells [6].

An interesting protein found in the TNBC secretome is HMGA1. HMGA1 is a chro-
matin structural protein that typically plays a role in regulating gene transcription. How-
ever, recently it was found to bind to the RAGE receptor, earning it a new role as an immune
modulator, joining the closely related protein HMGB1 [20,21].

Sayyad et al. (2019) performed a cytokine/chemokine array and showed that GRO-
α/CXCL1, ICAM-1, IL-6, IL-8, GM-CSF, and CCL5 were all differentially expressed in
MDA-MB-231 cells compared to syndecan-1 knockdown cells. The same study showed
that syndecan-1 contributes to TNBC cells’ ability to cross the blood–brain barrier and to
the brain metastasis of TNBC cells via cardiac injection in mice [35]. The authors further
attempted to disrupt the blood–brain barrier using only IL-6 and IL-8 at relevant concentra-
tions in the culture medium, but these cytokines alone were insufficient, suggesting that a
complex milieu of cytokines and other molecules may be needed for brain metastasis.

2.2. Extracellular Matrix Proteins

Extracellular matrix (ECM) proteins (Table 2) are an important contributor to the
tumor microenvironment. We found that while studies of TNBC-related ECM proteins
identified many proteins, different proteins were identified in different studies.

The Ziegler mass spec study found that a large number of ECM proteins (BGN, CD44,
CD109, DAG1, DCN, ECM1, EFEMP1, FMOD, IGFBP4, IGFBP7, LTBP1, L1CAM, LGALS1,
LGALS3BP, LOXL2, LTBP1, NRCAM, P4HB, PLOD1, PPIB, TGFBI, THBS1, TLN1, and TNC)
were more highly expressed in TNBC CM on average compared to in MCF-7 CM, although
DCN and TGFBI were also more highly expressed in non-tumor MCF-10A CM [11]. (See
above for discussion of TGFβ as a growth factor.)
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Table 2. Extracellular Matrix Proteins of the TNBC Secretome.

Protein Aliases Source Evidence Refs.

BGN Biglycan TNBC cells MS analysis of CM [11]

CD44 Cluster of differentiation 44 TNBC cells MS analysis of CM; CM and patient serum
in mouse model [11,22]

CD109 Cluster of differentiation 109 TNBC cells MS analysis of CM [11]
DAG1 Dystroglycan TNBC cells MS analysis of CM [11]
DCN Decorin TNBC cells MS analysis of CM [11]

ECM1 Extracellular matrix protein 1 TNBC cells MS analysis of CM; TNBC cell line
depleted of LRP-1 [11,26]

EFEMP1/
FBLN3

EGF-containing fibulin-like extracellular
matrix protein 1, Fibulin 3 TNBC cells MS analysis of CM [11]

FBLN1 Fibulin 1 CAFs TNBC cells treated with CAF CM [15]
FMOD Fibromodulin TNBC cells MS analysis of CM [11]

IGFBP4 Insulin-like growth factor-binding
protein 4 TNBC cells MS analysis of CM [11]

IGFBP7 Insulin-like growth factor-binding
protein 7 TNBC cells MS analysis of CM [11]

IGFBP10/
Cyr61/CCN1

Insulin-like growth factor-binding
protein 10, Cysteine-rich angiogenic
inducer 61, CCN1

TNBC cells
(exosomes)

Migration of TNBC cells decreased by
neutralizing antibodies [36]

L1CAM L1 cell adhesion molecule TNBC cells MS analysis of CM [11]
LGALS1 Galectin 1 TNBC cells MS analysis of CM [11]
LGALS3BP Galectin 3-binding protein TNBC cells MS analysis of CM [11]
LOXL2 Lysyl oxidase-like 2 TNBC cells MS analysis of CM [11]
LTBP1 Latent TGFβ-binding protein 1 TNBC cells MS analysis of CM [11]
NRCAM Neuronal cell adhesion molecule TNBC cells MS analysis of CM [11]

P4HB Protein disulfide-isomerase, prolyl
4-hydroxylase beta TNBC cells MS analysis of CM [11]

PLOD1 Procollagen-lysine, 2-oxoglutarate
5-dioxygenase 1 TNBC cells MS analysis of CM [11]

PPIB Peptidyl-prolyl cis-trans isomerase B TNBC cells MS analysis of CM [11]
RELN Reelin TNBC cells TNBC cells (knockdown of integrin alpha3) [37]

TF Tissue factor TNBC cells CM from TNBC cell lines depleted of
Syndecan-1 [16]

TLN1 Talin 1 TNBC cells MS analysis of CM [11]
TNC Tenascin C TNBC cells MS analysis of CM [11]

Jang (2020) found that CD44 was the most differentially released protein in TNBC
cells. In addition, CD44 appeared to regulate the release of cytokines from the surrounding
macrophage population [22]. CD44 is a multifunctional surface glycoprotein involved in
cell adhesion and signaling. CD44 is frequently shed into the extracellular milieu, and
serum levels of CD44 have been proposed as a prognostic marker in breast cancer [38].
Another surface glycoprotein, carcinoembryonic antigen (CEA), was discovered to have a
complementary role with CD44 in cancer cell adhesion and metastatic potential [39]. Very
recently, promising nanoparticle drug delivery systems have been developed that target
CD44 and CEA in colorectal cancer cells and TNBC [40–44].

Another surface antigen, CD109, is a GPI-anchored coreceptor and negative regulator
of TGFβ [45]. The soluble form of CD109 also binds to TGFβ and inhibits TGFβ signal-
ing [46]. CD109 protein expression is much higher in TNBC than in non-TNBC, and CD109
expression correlates with a higher histological grade and poorer post-operative survival
in breast cancer patients [47]. Soluble CD109 shed from breast cancer cells also promoted
malignant growth in 3D organotypic culture [48].

Another TNBC secretome protein, ECM1 [11,26], was found to induce angiogene-
sis [49] and to promote tumor cell proliferation through EGFR signaling, which conferred
resistance to trastuzumab [50]. In breast tumors, high ECM1 expression is associated
with poor prognosis [51], and ECM1 confers endocrine resistance on ER+ tumors that
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may be mediated by SRC [52]. ECM1 was also discovered in the secretome of HER2-
overexpressing cell lines where it was found to promote endothelial network development
in 3D culture [53]. However, little is known about the specific effects of ECM1 on TNBC.

The glycoprotein fibulin 3 (EFEMP1/FBLN3) is an ECM1-interacting protein that
was discovered in the TNBC secretome [11]. Fibulin 3 is overexpressed in breast cancers
with low HER2 expression, including TNBC tumors [54]. Fibulin 3 has also been found to
promote tumor cell invasiveness in TNBC xenografts [55]. In contrast, inhibition of fibulin
3 by miR-9 in normal fibroblasts promoted their activation and pro-metastatic effects on
TNBC cells [56]. Thus, the role of fibulin 3 in the TNBC secretome is still unclear.

The closely related protein fibulin 1 (FBLN1) is a fibronectin (FN)-interacting protein
that was also found in the TNBC secretome [15]. Much of what we know about fibulin 1
with respect to breast cancer involves estrogen signaling. Estrogens upregulate expres-
sion of fibulin 1—especially that of the splice variant fibulin 1C [57,58]. Fibulin 1 was
inversely associated with cathepsin D expression in an immunohistochemical analysis of
breast tumors [59]. Interestingly, both fibulin 1 and cathepsin D were found in the TNBC
secretome [60]. Importantly, fibulin 1 may also confer resistance to doxorubicin treatment
on breast cancer cells [61].

Among the proteins discovered in the TNBC secretome are several insulin-like growth
factor-binding proteins (IGFBPs). Members of this family of proteins bind to and increase
the half-life of IGF [62]. However, these proteins have diverse functions. One family
member, Cyr61 (also called CCN1 and IGFBP10), is expressed in TNBC cells and tumors,
where it interacts with the urokinase plasminogen activator receptor (uPAR) [63]. Cyr61
has long been known to promote angiogenesis and tumor growth [64]. High levels of Cyr61
correlated with relapse in TNBC patients, and silencing of Cyr61 reduced the invasiveness
of TNBC cell lines and reduced tumor burden and microvascular density in xenograft
mouse TNBC tumors [65]. Another family member identified in the TNBC secretome,
IGFBP7, was implicated in angiogenesis in ovarian cancer independent of VEGF [66].

In addition to these specific ECM proteins, Lee (2014) found α2,3-sialylated
N-glycoproteins (ECM proteins that bind lectins) expressed in the conditioned medium of
TNBC cell lines [67]. In a study on sialic acid glycosylation in breast cancer, expression of
polysialic acid (preferentially expressed during fetal development) positively correlated
with an invasive phenotype of breast cancer cell lines and with TNM staging of patient
tumors. And in the same study, knockdown of sialyl transferase X (STX) reduced the
motility of MDA-MB-231 cells [68]. These studies serve to remind us that the identity of
proteins in the ECM is only part of the story, since many ECM proteins undergo extensive
post-translational modifications, which may also be targetable.

2.3. Proteases and Protease Inhibitors

The TNBC secretome contains many enzymes that activate, modify, or destroy other
proteins in the extracellular space. Here, we discuss a number of these proteases along with
their inhibitors (Table 3).

In the Ziegler study mentioned above, proteases CTSZ, GGH, and PCSK9 were more
highly expressed in TNBC CM on average compared to in MCF-7 CM. They also found
that the protease inhibitors APLP2, APP, PI3, SERPINE1, TIMP1, and TIMP2 were more
highly expressed in TNBC CM on average compared to in MCF-7 CM [11].

Cathepsin D (CTSD) is an aspartic protease typically found in the lysosome. However,
the unprocessed proenzyme of CTSD can be “derouted” into endosomes and subsequently
secreted. In the acidic tumor microenvironment, CTSD undergoes autoactivation. High
extracellular expression of CTSD is associated with metastasis in breast cancer [69]. The
pro-form of CTSD also binds to various proteins and has other cell signaling roles [70].
CTSD can stimulate cancer growth and progression not only by its catalytic activity on
inflammatory cytokines and ECM proteins, but also by its non-catalytic activity linked
to angiogenesis [71]. Therapeutic targeting of CTSD has been an area of intense study.
Anantaraju (2016) identified several small-molecule inhibitors that blocked CTSD activity
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and inhibited breast cancer cell growth [72]. Other inhibitors have been described as
well [73–75]. In addition, monoclonal antibody therapy against CTSD in TNBC xenograft
tumors showed promising results; the antibodies targeted the tumors, elicited an immune
response, and showed low toxicity [76].

Table 3. Proteases and Protease Inhibitors of the TNBC Secretome.

Protein Aliases Source Evidence Refs.

CTSD Cathepsin D TNBC cells TNBC cells treated with tocotrienols
(vitamin E) [60]

CTSZ Cathepsin Z TNBC cells MS analysis of CM [11]
GGH Gamma-glutamyl hydrolase TNBC cells MS analysis of CM [11]

PCSK9 Proprotein convertase subtilisin/kexin
type 9 TNBC cells MS analysis of CM [11]

PLAT Tissue plasminogen activator TNBC cells TNBC cell line depleted of LRP-1 [26]

PLAU uPA, urokinase plasminogen activators
TNBC cells;
xenograft
tumors

TNBC cells (inducible silencing of
HMGA1); interstitial fluid of xenograft
tumors

[25,28]

PLG Plasminogen TNBC cells TNBC cell line depleted of LRP-1 [26]
APLP2 Amyloid-beta precursor-like protein 2 TNBC cells MS analysis of CM [11]
APP Amyloid-beta precursor protein TNBC cells MS analysis of CM [11]
PI3 Elafin, peptidase inhibitor 3 TNBC cells MS analysis of CM [11]

SERPINE1 Serine protease inhibitor E1,
plasminogen activator inhibitor 1 (PAI1)

TNBC cells;
xenograft
tumors

MS analysis of CM; interstitial fluid of
xenograft tumors; TNBC cells (inducible
silencing of HMGA1); TNBC cells treated
with tocotrienols (vitamin E); TNBC cell
line depleted of LRP-1

[11,25,26,28,60]

TIMP1 Tissue inhibitor of metalloproteinases 1
TNBC cells;
xenograft
tumors

MS analysis of CM; interstitial fluid of
xenograft tumors [11,28]

TIMP2 Tissue inhibitor of metalloproteinases 2 TNBC cells MS analysis of CM [11]
TIMP1,
-2, -3 Tissue inhibitor of metalloproteinases TNBC cells TNBC cell line depleted of LRP-1 [26]

Cathepsin Z (CTSZ) is a cysteine protease that has been little-studied in breast cancer,
but its overexpression in hepatocellular carcinoma increased the EMT and the expression
of proteins involved in matrix remodeling. Expression of CTSZ also correlated with an
advanced clinical stage [77].

Several of the proteases found in the TNBC secretome are blood-clotting factors.
Thromboembolism associated with cancer (Trousseau syndrome) has been recognized since
the 19th century and is a leading cause of cancer mortality. It is most common in lung and
visceral tumors but can also occur in breast cancer patients [78–80]. The coagulation factors
plasminogen (PLG) [26], tissue plasminogen activator (PLAT) [26], urokinase plasminogen
activator (uPA/PLAU) [25] [28]), and tissue factor (TF) [16] (transmembrane glycoprotein)
are all secreted from TNBC cells or xenograft tumors. This is unsurprising since the
plasminogen–plasmin system has long been known to regulate angiogenesis in both normal
and disease states [81]. A soluble form of the urokinase receptor (suPAR/PLAUR) is also
secreted by TNBC cells and appears to act as a cytokine with a variety of functions [25].
In addition to its blood-clotting activity, TF has been associated with malignancy and
angiogenesis in various cancer types [82]. Indeed, several strategies to inhibit TF activity
in TNBC have already been investigated [83–85]. As described above, we found that the
plasminogen–plasmin system was implicated in at least four independent studies of the
TNBC secretome. Taken together, these data suggest a role for blood coagulation factors in
the progression and pathology of TNBC disease.

Amyloid-β precursor protein (APP) and amyloid-β precursor-like protein 2 (APLP2)
are related protease inhibitor proteins most closely associated with Alzheimer’s disease.
The secreted form of APP is also called protease nexin-2, and is cleaved by γ-secretase [86],



Int. J. Mol. Sci. 2023, 24, 2100 8 of 22

which is also being studied as a potential therapeutic target against breast cancers, in-
cluding TNBC [87–89]. Both proteins are deregulated or overexpressed in different types
of cancer [90,91]. Overexpression of APP was found to increase markers of the EMT in
breast cancer cells, while silencing of APP had the opposite effect [92]. Many papers in the
literature investigate the role of APP in regulating inflammation and angiogenesis in the
brain, but very little is known about the role of secreted APP or APLP2 in these processes
in the context of cancer, let alone TNBC. One clue may be the cross-reactivity of the RAGE
receptor, which binds to several ligands, including both APP and HMGA1 (see the earlier
section under “Cytokines and Growth Factors”) [93].

Five different labs reported a constituent of the TNBC secretome called serine pep-
tidase inhibitor E1 (SERPINE1), also known as plasminogen activator inhibitor 1 (PAI1).
Ziegler (2016) found SERPINE1 by mass spec analysis of conditioned media from TNBC
cells [11]. Dore-Savard (2016) discovered the same protein in the interstitial fluid of
xenograft tumors [28]. Other groups found SERPINE1 present in the secretome of TNBC
cell lines under specific conditions: when HMGA1 was silenced [25], when the cells were
treated with tocotrienols (vitamin E) [60], and when the cells were depleted of LRP-1 [26].
As the alternate name, PAI1, implies, this protein regulates the plasminogen–plasmin
system, connecting it to the blood-clotting proteins already discussed.

Small-molecule inhibitors of SERPINE1/PAI1 exist. Two such inhibitors induced
apoptosis and disrupted tumor vasculature in xenograft tumors [94]. One of these same
small molecules also reduced amyloid-β plaques in the hippocampus and cerebral cortex
in a mouse model of Alzheimer’s disease, which resulted in enhanced memory and learn-
ing [95]. It does not appear that either of these small molecules has been tested in breast
cancer. SERPINE1 plays multiple roles in promoting cancer, including inflammation, which
provide both opportunities and challenges in targeting it therapeutically [96].

Treatment of TNBC cells cocultured with endothelial cells with TGFβ was found to
stimulate release of the cytokine CCL5 from the endothelial cells and SERPINE1 from the
TNBC cells. This created a positive feedback loop that enhanced the metastatic abilities of
the tumor cells and that depended on the chemokine receptor CCR5 [97]. Importantly, we
note that all three of these proteins (SERPINE1/PAI1, CCL5, and TGFβ) were found in the
TNBC secretome.

There are four tissue inhibitor of metalloproteinases (TIMP) family members (TIMP1-4)
with similar but overlapping binding partners. They broadly inhibit matrix metallopro-
teinases (MMPs) by reversible competitive inhibition. TIMPs have also been discovered to
play a role in lung branching morphogenesis, adipogenesis, and development of various
epithelial and connective tissues [98].

TIMP1 and TIMP2 were discovered in Ziegler et al.’s mass spec screen of TNBC
conditioned medium [11]. In addition, TIMP1 was found in the interstitial fluid of xenograft
tumors [28], and TIMP1, -2, and -3 were found in medium from TNBC cells depleted of
LRP-1 [26].

TIMP1 (also called collagenase inhibitor- and erythroid-potentiating activity) is a gly-
coprotein with a variety of functions besides inhibiting MMPs [99–101]. TIMP1 stimulates
the growth of TNBC cells via Akt and NFκB signaling pathways [102]. TIMP1 was also
found to induce the EMT via TWIST1 in MCF-10A breast epithelial cells by binding to the
Tetraspanin/CD63 receptor. Furthermore, interaction of TIMP1 with Tetraspanin/CD63
occurred even in mutant proteins lacking the MMP inhibitory domain [103]. TIMP1 was
also recently found to bind functionally to the invariant chain of MHC class II (CD74),
which is involved in various inflammatory diseases [104].

TIMP1 seems to play an important role in breast cancer. Cheng et al. (2016) performed
an analysis using the ONCOMINE microarray database and found that TIMP1 was more
highly expressed in invasive breast cancer and ductal breast cancer compared to normal
breast tissue. The same study found that TIMP1 mRNA and protein is more highly
expressed in TNBC cell lines than in non-TNBC cells or normal mammary cells. And TIMP1
levels were elevated in serum from TNBC patients and correlated with poor prognosis [102].
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TIMP1 could be a promising target for preventing metastasis; TIMP1 that was incor-
porated into extracellular vesicles was found to promote metastasis of colorectal cancer
to the liver [105], and TIMP1 gene expression was strongly associated with breast cancer
metastasis to lymph nodes [106].

The related protein TIMP2 is also important in breast cancer [107]. One study found
that suppression of TIMP2 by the protein EZH2 enhanced the invasiveness of TNBC cells
by increasing the activity of MMP-2 and MMP-9 [108]. Another study found that single-
nucleotide polymorphisms (SNPs) within the TIMP2 gene correlated significantly with
breast cancer risk in Han Chinese women [109]. When exogenous TIMP2 was administered
to a mouse model of TNBC, tumor growth and metastasis to the lung was reduced, and
markers of the EMT, angiogenesis, and pro-metastatic cell signaling were disrupted [110].

TIMP3 was also found in the secretome of TNBC. TIMP3 is downregulated in most
cancers and plays a tumor suppressor role in many cancer processes. It is also highly
regulated by microRNAs [111]. Intriguingly, TIMP3 KO mice expressing the PyMT or Neu
oncogenes under the control of the MMTV promoter exhibited delayed tumor onset or a
complete lack of tumor development, respectively [112]. This paradoxical finding is in line
with the fact that TIMP3 interacts with the ECM protein EFEMP1/FBLN3 [113] discussed
above, which also has pro- and anti-tumor properties.

2.4. Other Proteins
2.4.1. Membrane and Extracellular Vesicle Proteins

Extracellular vesicles (EVs) (Table 4) consist of three types of particles of different sizes,
including exosomes (30–150 nm diameter), microvesicles (500–2000 nm), and apoptotic
bodies (50–5000 nm) [114]. EVs may contain proteins, nucleic acids, and lipids [115].

Table 4. Other Proteins of the TNBC Secretome.

Membrane and Extracellular Vesicle Proteins

Protein Aliases Source Evidence Refs.

ANXA2 Annexin II, annexin A2 TNBC cells TNBC cell lines [116]
BCAP31 B cell receptor-associated protein 31 TNBC cells TNBC cell line treated with Palbociclib [117]
CD151 Cluster of differentiation 151 TNBC tumors Exosomes from TNBC patient serum [118]

IL-3Rα Interleukin-3 receptor subunit α TNBC tumors
and cells

TNBC tumor expression and modulation
of IL-3R-containing EVs [119]

ITGB4 Integrin β4 TNBC cells TNBC cells in coculture with CAFs;
exosomes from TNBC cells [120,121]

SPANXB1 Sperm protein associated with the
nucleus on the X chromosome B1 TNBC tumors Circulating EVs from TNBC patients [122]

TSPAN11 Tetraspanin 11 TNBC cells TNBC cell line treated with Palbociclib [117]

UCHL1 Ubiquitin carboxyl-terminal hydrolase
isozyme L1

TNBC tumors
and cells Exosomes, serum, and CM [123]

Peptide Hormones

FST Follistatin TNBC cells TNBC cell line depleted of LRP-1 [26]
PENK Proenkephalin CAFs TNBC cells treated with CAF CM [15]

Metabolic Proteins

ENO1 Alpha-enolase TNBC cells MS analysis of CM [11]

GAPDH Glyceraldehyde-3-phosphate
dehydrogenase TNBC cells MS analysis of CM [11]

LDHA Lactate dehydrogenase A TNBC cells MS analysis of CM [11]
LDHB Lactate dehydrogenase B TNBC cells MS analysis of CM [11]
LPA Lipoprotein A TNBC cells MS analysis of CM [11]
TXNIP Thioredoxin-interacting protein TNBC cells TNBC cells cocultured with hBMECS [7]
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Ziegler et al. (2016) found that putative exosomal proteins EEF1A1, ENO1, GAPDH,
HSPA8, LDHA, MSN, and SDCBP were more highly expressed in TNBC CM on average
compared to in MCF-7 CM. Other typical exosomal proteins found in the TNBC secretome
included the tetraspanins TSPAN11 and CD151, which are characterized by their four
transmembrane domains [117,118]. ITGβ4 was found in exosomes derived from TNBC
cells [120] and in a separate study in media from TNBC cells cocultured with CAFs [121].
Importantly, ITGβ4 helps direct the organotropic behavior of metastatic cells [121].

Dong et al. (2022) reviewed the role of EVs in various aspects of TNBC pathobiology,
diagnosis, and treatment. EV-associated proteins are involved in TNBC growth; regulation
of lymphocytes, macrophages, and fibroblasts in the microenvironment; drug resistance;
and metastasis. Specifically, cofilin-1, ITGβ4, ASPH, UCHL1, SPANXB1, and TGFβ1 were
found to be involved in TNBC metastasis [5].

2.4.2. Peptide Hormones

Two hormones were found in the TNBC secretome: Follistatin (FST) and Proenkephalin
(PENK) (Table 4). FST was first described as an ovarian hormone that binds activin and
regulates FSH release from the anterior pituitary. FST is now known to be secreted by many
tissues of the body. It also binds to some members of the TGFβ superfamily and modulates
the inflammatory response [124]. FST expression is lower in breast cancer compared to
normal breast tissue [125], and low expression predicts poor prognosis in TNBC [126].

PENK is the precursor protein for at least two opioid peptide hormones: Leu-enkephalin
and Met-enkephalin (opioid growth factor, OGF). OGF treatment inhibited growth of TNBC
cells in culture, while protecting them from paclitaxel-induced cell death [127]. PENK itself
has been proposed as part of a screening panel for early detection of breast cancer [128].

2.4.3. Metabolic Proteins

It has long been observed that tumor cells are more metabolically dependent on
anaerobic glycolysis than normal cells. It is not a surprise, then, that glycolytic enzymes are
overexpressed in TNBC cells, and tumors as well (Table 4). Ziegler et al. (2016) found that
11 glycolytic proteins were expressed at higher levels in CM from at least 1 TNBC cell line
compared to normal cells. Of these, ENO1, GAPDH, LDHA, and LDHB were more highly
expressed in TNBC CM on average compared to in MCF-7 CM [11]. Glycolytic and other
metabolic enzymes are common in EVs, which mediate angiogenesis, immune evasion,
drug resistance, and activation of macrophages and fibroblasts, leading to invasion and
metastasis [129].

In addition to the direct mediators of glycolysis, at least one regulator of glucose
metabolism was found in the TNBC secretome. TXNIP belongs to the α-arrestin protein
family and interacts with glucose transporters and regulates cellular uptake of glucose [130],
although it regulates a variety of other processes as well. A study utilizing TNBC cells
cocultured with hBMECS suggested that TXNIP may help brain-seeking TNBC cells disrupt
the blood–brain barrier via its blood-vessel-modulating activity [7].

Other metabolic regulators may be important in the TNBC secretome. Lipoprotein
A (LPA) was enriched in the conditioned medium of TNBC cells compared to in MCF-7
cells [11]. Normally expressed only in the liver, LPA is closely related to low-density
lipoprotein (LDL) and bears some structural similarity to plasminogen (PLG) [131]. In fact,
LPA inhibits the activation of plasminogen [132]. LPA is a target of proteolytic cleavage,
regulates the plasminogen–plasmin system, and is a regulator of angiogenesis [133,134],
reflecting several themes we have already observed in the TNBC secretome.

2.5. Drug-Induced Changes

Due to the lack of expression of the estrogen receptor (ER), the progesterone recep-
tor (PR), and amplification of the HER2 protein, chemotherapy has remained the main-
stay treatment for TNBC. Chemotherapy is known to alter the secretome, which may
in turn promote tumor relapse or resistance to chemotherapy ([19] and reviewed in [4]).
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While chemotherapy can be effective at killing tumor cells, some cells are resistant to
chemotherapy, and chemotherapy can induce “therapeutic induced senescent” (TIS) cells.
Interestingly, TIS cells have been found to secrete increased numbers of EVs, which con-
tain activators of proliferation, integrins, and Rab proteins, amongst others, for a total of
142 proteins [135]. While senescent cells are unable to proliferate, they remain metabolically
active, allowing for the secretion of proteins and extracellular vesicles, which suggests
that senescent cells can impact surrounding cells. The secretions from senescent cells
have been studied and collectively termed the senescence-associated secretory phenotype
(SASP). There is contradictory information about whether the SASP, which is the secretion
of inflammatory cytokines, immune modulators, growth factors, extracellular vesicles, and
proteases, induces a pro- or anti-tumorigenic environment. For example, the SASP has
been shown to induce cell proliferation and migration of tumor cells, as well as rendering
them resistant to chemotherapy. Alternatively, SASP factors may also be responsible for the
recruitment of tumor-clearing immune cells, lending to the anti-tumorigenic functions of
the SASP [4,136]. In addition to chemotherapy, Palbociclib, which is a targeted therapy used
to inhibit CDK4/6, also induces senescence and changes the secretome in TNBC cells [117].
Secreted factors include proteins involved in tumor cell proliferation, drug response,
and stemness.

Paclitaxel is another chemotherapeutic agent used in the treatment of TNBC. It is
a member of the drug family microtubule-targeting agents (MTAs), which are further
subclassified into microtubule-stabilizing and microtubule-destabilizing agents. Treatment
with paclitaxel has been shown to induce secretion of IL-8 and enhance the expansion of
the cancer stem cell population [137]. Inositol-requiring enzyme 1 alpha (IRE1), which has
RNase and kinase activities, has been associated with tumor progression and recently was
found to regulate the production of cytokines such as IL-6 and IL-8 after treatment with
paclitaxel [19]. The use of a small-molecule inhibitor, MKC8866, that targets the RNase
activity of IRE1 results in a decreased production of paclitaxel-induced pro-tumorigenic cy-
tokines. Furthermore, the combination of MKC8866 and paclitaxel resulted in an enhanced
response to paclitaxel. These studies suggest that targeting IRE1 may be a therapeutic
intervention suitable for reducing the pro-tumorigenic secretome induced by TNBC cells
and is further exacerbated by treatment with the chemotherapeutic agent paclitaxel.

Other studies using eribulin, another MTA that is approved for metastatic breast
cancer, have shown a post-treatment increase in the secretion of stress-associated proteins,
such as growth differentiation factor 15 (GDF15), originally called macrophage inhibitory
cytokine-1 (MIC-1) [138]. Increased secretion of GDF15 caused drug resistance in the cells,
and blocking GDF15 resensitized the cells to eribulin. In addition to GDF15 induction by
eribulin, secreted proteins fell into three STRING pathways post-treatment. One of these
networks contained proteins related to cytoskeleton–vesicle trafficking, another contained
translation machinery protein, and the third contained proteins linked to cellular stress.
All three of these could offer insight into potential biomarkers and therapeutic targets
for drug resistance in TNBC. Not surprisingly, these studies further showed that drugs
with a similar mechanism of action (eribulin and vinorelbine) induced secretions of similar
proteins, as opposed to drugs with different mechanisms of action (i.e., paclitaxel).

3. Secreted Factors Outside of the Primary Tumor

While the above section catalogs the secreted factors from TNBC cells, this section will
discuss the influence of proteins secreted from the tumor cells on the surrounding cells or
tumor microenvironment (TME) and the influence of stromal secretions on the primary
tumors. While it is well established that crosstalk between the tumor cells and the TME
occurs and can influence the tumorigenic properties, newer information demonstrates that
secreted proteins are at least partially responsible for this interaction.
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3.1. Influence of TNBC on Surrounding Cells

The secretome of TNBC cells may influence the gene expression and secretome of
many surrounding tissues. This could be advantageous for the tumors, as it may impact
the ability of the tumors to grow and metastasize, leading to the aggressive nature of
TNBC. Previous studies have demonstrated changes in the secretome of the ER+ breast
cancer cell line, MCF-7, compared to the TNBC cell line, MDA-MB-231. In addition to
the subtype specificity, secreted factors of the MDA-MB-231 cells were able to activate
mesenchymal stromal cells (MSCs) and further induce activation of macrophages [139].
These data suggest a more aggressive, metastatic, and vascularized tumor environment
surrounding the TNBC cells compared to ER+ cells. Interestingly, additional separation was
designated using sublines of cells isolated from organ-specific metastases in the MDA-MB-
231 model (bone, brain, and lung). The secretome from the lung-, bone-, and brain-specific
MDA-MB-231 cells showed organ-specific changes in protein expression, which suggests
that a niche may be established for organ-specific metastatic spread [139].

In a study by Hamester et al., the secretomes of three breast cancer cell lines were
compared to determine how tumor cells influence the blood–brain barrier (BBB). Using the
ER+ cell line (MCF7), the TNBC cell line (MDA-MB-231), and the brain-metastatic-specific
derivative of the TNBC line (MDA-MB-231BR) as mentioned above, the authors were able
to show that secreted factors from TNBC cells have a greater ability to alter the BBB and
aid in breast cancer brain metastatic development [7]. Changes in IL-10 signaling and
expression of chemokine receptors were observed after exposure to secreted factors from
TNBC cells compared to the ER+ MCF-7 cells, suggesting that this is a specific effect of
the TNBC subtype of breast cancer. In addition, secretion of pro-inflammatory molecules
from the TNBC cells can prime the endothelium for tumor cell attachment. The impact of
the endothelium is also seen in an increase in chemokine secretion from the endothelial
cells, which may be working in a paracrine fashion on the tumor cells or in an autocrine
fashion on the endothelial cells. Importantly, a difference also exists between the brain-
specific MDA-MB-231BR cells and the MDA-MB-231 cells, with the secreted factors from
the BR-specific cells inducing IL-6 and IL-7 signaling, as well as increased gap junction
assembly [7].

In another example of tumor cell–stroma interaction, Jang et al., demonstrated a posi-
tive feedback loop between CD44 and IL-1β. CD44 is secreted specifically from TNBC cells,
as MDA-MB-231 and MDA-MB-468 cells but not the ER+ MCF-7 cells, showed secretion
of CD44 [22]. Secretion of CD44 from TNBC induces activation of the inflammasome and
secretion of IL-1β from surrounding macrophages. To complete the feedback pathway, the
IL-1β from the macrophages continues to induce CD44 production from the TNBC cells.
Upon blocking CD44 from the TNBC cells, tumor growth is inhibited, suggesting that this
feedback mechanism could provide a therapeutic target in the future [22].

3.2. Proteins Secreted from the TME

The TME comprises many cell types, including adipocytes, endothelial cells, peri-
cytes, immune cells, fibroblasts, MSCs, osteoblasts, chondrocytes, and components of the
extracellular matrix. Some groups will segregate the stromal compartments into various
groups (fibroblasts, macrophages, lymphatic endothelial cells, and blood microvascular
endothelial cells), while others use broader classifications [24]. Regardless, these cell types
have all been shown to influence tumor cells, from primary tumor cell proliferation to
metastatic colonization in another organ. It has been long appreciated that secretion of
TGF-beta from fibroblasts can activate or inhibit tumor growth, and that cancer-associated
fibroblasts (CAFs) secrete specific factors that are distinct from normal fibroblasts (reviewed
in [140]). These cells are also able to regulate the accessibility of or responsiveness to
chemotherapeutic agents based on the expression of proteins that may be involved in
drug metabolism.
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Much effort has been devoted to identifying the secreted factors from adipose cells
that activate the epithelial-to-mesenchymal transition (EMT) in TNBC cells. In particular,
the secretome from mature adipocytes can induce invasive potential and phosphorylation
of the transcription factor, STAT3, in MDA-MB-231 cells. The increased phosphorylation
of STAT3 provides a potential therapeutic target ([141] and reviewed in [142]), as multiple
STAT3 inhibitors have been used in clinical trials for cancer treatment. While some of this
interaction is hormone-related (i.e., increased production of leptin and estrogen), adipocytes
are also able to secrete cytokines such as IL-6 and IL-8, which are known to increase both
tumor initiation and metastatic spread [143,144]. IL-6 can also be produced by the tumor
cells and secreted to interact with the IL-6 receptor on lymphatic endothelial cells (LECs)
inducing production of the chemokine CCL-5. Upon secretion of CCL-5 from the LECs,
tumor cells expressing the receptor for CCL-5 (CCR-5) will be recruited to the LECs and
presumably integrated into the lymphatic system for further metastatic colonization [34].
Inhibition of either the CCR-5 or IL-6 receptor resulted in decreased tumor growth and
metastatic spread [34], suggesting that there are three points of potential therapeutic
intervention in this pathway (STAT3, IL-6, or CCR-5) for TNBC.

A study performed cytokine array analysis of four different TNBC cell lines treated
with CM from four different stromal cell populations (lymphatic endothelial cells (LECs),
microvascular endothelial cells (MECs), fibroblasts, and macrophages) [24]. In addition
to the cytokines involved in the EMT, cell proliferation, and metabolism, a major factor
identified as being secreted from the stromal cells was lipocalin 2 (LCN2), which is involved
in tumor progression and metastasis. Further studies demonstrated that blocking LCN2
secretion from the stromal cells resulted in decreased TNBC cell proliferation and in vitro
metastasis potential [24], and LCN2 inhibitors have been investigated recently as potential
targeted therapies [145].

Finally, expression of PIK3C-delta by fibroblasts has also been shown to enhance TNBC
progression [12], and inhibition of PIK3C-delta decreases TNBC cell invasion. In addition,
expression of PIK3C-delta altered the fibroblast secretome, including PLGF and BDNF,
which regulate tumor cell expression of the transcription factor NR4A1, and advanced the
aggressiveness of the TNBC population [12].

4. Conclusions

By reviewing the current literature on the TNBC secretome, we encountered nearly
80 proteins preferentially expressed by TNBC tumors or cell lines. These molecules en-
compass a broad spectrum of protein functions, including cytokines, growth factors, ECM
proteins, secreted proteases (and their regulators), membrane proteins (either shed from the
cell surface or incorporated into extracellular vesicles), peptide hormones, and proteins typ-
ically involved in cellular metabolism (Figure 1). In addition, the proteins we encountered
are known to be involved in wide-ranging cancer-promoting processes, including tumor
growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development
of the premetastatic niche (Figure 2).

Some of the proteins listed in the tables in this review have already been targeted
for therapy, and some even have approved treatments. Our goal was to bring together in
one paper all the known targetable proteins within the TNBC secretome and point out the
opportunities available for novel therapies against TNBC.

Several themes stand out from this review of TNBC secretome proteins. One strong
theme is blood vessel regulation, and especially angiogenesis. The crucial angiogenic
protein VEGF seems particularly important in TNBC, although the TGF superfamily seems
important, too, though its role with angiogenesis is less clear. Anti-VEGF antibody and
small-molecule drugs are already available and will most certainly need to be part of the
treatment strategy for TNBC [146], although caution should be taken regarding targeting
angiogenesis exclusively since at least one study suggested this may cause rebound tumor
progression upon cessation of treatment [147].
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Another common theme is immune modulation. A bevy of chemokines, pro-
inflammatory proteins, and other cytokines that modulate the immune response were
found in the TNBC secretome. These molecules may alter the behavior of endothelial cells
to permit metastasis through intra- and extravasation of tumor cells. This was especially
evident in the cytokines TXNIP, CXCL1/GRO, IL-1, and others downstream of syndecan-1
that are responsible for TNBC cells crossing the blood–brain barrier (BBB) [7,23,35]. Our
review encountered many cytokines, some of which have overlapping functions. Therefore,
therapeutic strategies involving inhibition of one or two cytokines may prove insufficient.
We recommend a strategy that combines inhibitors or monoclonal antibody treatments
against several targets at once. For example, combining immune checkpoint inhibitors with
other standard treatments, including antiangiogenic treatments, has been suggested as a
winning strategy against TNBC [148,149].

ECM proteins in the TNBC secretome are quite diverse. In addition to their structural
and adhesive properties, many ECM proteins have been proven to have unexpected roles
in cell signaling and immune system regulation. Some affect processes already discussed
above, and some, such as fibulin 1, may alter the response of TNBC to chemotherapy [61]).
We are constantly learning about novel functions of ECM proteins and the potential ways
they may affect cancer progression.

Many enzymes are present in the TNBC secretome. These proteases are responsible for
remodeling the ECM and for activating multiple ECM components. One standout theme in
our review is the plasminogen–plasmin system. A number of identified TNBC secreted
proteins play some role in activating or regulating this signaling system, which touches on
both the inflammatory response and blood vessel dynamics.

Along with the proteases in the TNBC secretome come inhibitors of these enzymes.
TIMPs, and other proteins that modify MMPs are well represented among the secreted
factors. These proteins likely play a role in regulating tumor invasion.

EVs may be important in TNBC progression as well. EVs are known to be filled
with signaling proteins as well as nucleic acids that may alter the behavior of other tumor
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cells and stromal cells such as fibroblasts, macrophages, and adipocytes [150]. Metabolic
regulators and enzymes have an enigmatic role in EVs, though some have been shown to
be important in signaling. The EVs in TNBC are reviewed in more detail by Dong et al. [5].

The TNBC secretome can be modified by treatment with drugs including eribulin,
paclitaxel, palbociclib, and probably others. Drug treatment may induce a senescence
phenotype with an associated change in protein secretions. This phenotype is capable of
stimulating tumor cell proliferation, migration, and resistance to chemotherapy.

TNBC cells have an influence on surrounding cells as well, including a role in the
activation of mesenchymal stromal cells and macrophages. These changes lead to changes in
the tumor microenvironment (TME) that encourage invasion and metastasis. Furthermore,
they may even affect the ability of TNBC cells to extravasate into various metastatic sites,
including crossing the BBB.

Proteins secreted from the TME outside of the TNBC cells themselves also play a role
in tumor progression. Secreted factors from adipocytes, fibroblasts, macrophages, and
endothelial cells have been investigated. In addition to cytokines IL-6, IL-8, and CCL5,
LCN2 was identified as a common cytokine factor secreted by stromal cells [24].

Some drugs and biologicals have already been created to target specific proteins
secreted by TNBC. Future treatments may require a multi-pronged approach that blocks
several secreted proteins or cancer processes at once. It is our hope that this review will
spur the development of innovative approaches to treating this aggressive disease that take
advantage of the various protein factors found in the TNBC secretome.
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Abbreviations

APP amyloid-β precursor protein
APLP2 amyloid-β precursor-like protein 2
BBB blood–brain barrier
CAF cancer-associated fibroblasts
CM conditioned media
CTSD cathepsin D
CTSZ cathepsin Z
ECM extracellular matrix
EFEMP1/FBLN3 fibulin 3
EMT epithelial–mesenchymal transition
ER estrogen receptor
EV extracellular vesicle
FBLN1 fibulin 1
FN fibronectin
FST follistatin
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GDF15 growth differentiation factor 15
IGFBP insulin-like growth factor-binding protein
IRE1 inositol-requiring enzyme 1 alpha
LCN2 lipocalin 2
LDL low-density lipoprotein
LEC lymphatic endothelial cells
LPA lipoprotein A
MEC microvascular endothelial cells
MIC-1 macrophage inhibitory cytokine-1
MMP matrix metalloproteinase
MSC mesenchymal stromal cell
MTA microtubule-targeting agents
OGF opioid growth factor
PAI1 plasminogen activator inhibitor 1
PENK proenkephalin
PLAT tissue plasminogen activator
PLG plasminogen
PR progesterone receptor
SASP senescence-associated secretory phenotype
SERPINE1 serine peptidase inhibitor E1
SNPs single-nucleotide polymorphisms
STX sialyl transferase X
suPAR/PLAUR soluble form of the urokinase receptor
TF tissue factor
THBS1 thrombospondin
TIMP tissue inhibitor of metalloproteinases
TIS therapeutic-induced senescent
TME tumor microenvironment
TNBC triple-negative breast cancer
TSPAN11 tetraspanin 11
uPA/PLAU urokinase plasminogen activator
uPAR urokinase plasminogen activator receptor
VEGF vascular endothelial growth factor
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