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Abstract: Background: A regimen of rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP) is the standard treatment for non-Hodgkin’s lymphoma. Brown adipose
tissue possesses anti-cancer potential. This study aimed to explore practical biomarkers for non-
Hodgkin’s lymphoma by analyzing the metabolic activity of adipose tissue. Methods: Twenty
patients who received R-CHOP for non-Hodgkin’s lymphoma were reviewed. Positron emission
tomography/computed tomography (PET/CT) images, lactate dehydrogenase (LDH) levels, and
body mass index (BMI) before and after treatment were collected. Regions with a high standardized
uptake value (SUV) in epicardial and orbital adipose tissue were selected and analyzed by a PET/CT
viewer. The initial measurements and changes in the high SUV of epicardial and orbital adipose
tissues, LDH levels, and BMI of treatment responders and non-responders, and complete and partial
responders, were compared. Results: The volumes of high-SUV epicardial and orbital adipose
tissues significantly increased in responders after R-CHOP (p = 0.03 and 0.002, respectively). There
were significant differences between changes in the high-SUV volumes of epicardial and orbital
adipose tissues (p = 0.03 and 0.001, respectively) and LDH levels (p = 0.03) between responders and
non-responders. The changes in high-SUV epicardial adipose tissue volumes were greater among
complete responders than partial responders (p = 0.04). Poorer treatment responses were observed
in patients with lower high-SUV epicardial adipose tissue volumes and higher LDH levels after
R-CHOP (p = 0.03 and 0.03, respectively). Conclusions: The preliminary results of greater changes
in high-SUV epicardial and orbital adipose tissue volumes among responders indicate that brown
adipose tissue could be considered a favorable prognostic biomarker.
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1. Introduction

Non-Hodgkin’s lymphoma (NHL) is the tenth most common cancer and the eleventh
leading cause of cancer-related deaths worldwide [1]. The standardized incidence of NHL
is 19.5% per 100,000 people in a year. The 5-year survival rate is 72%. The median age of
patients at diagnosis is 67 years [2]. NHL is a heterogeneous group of lymphoproliferative
disorders that originates from B- and T-lymphocytes. The major subtypes of NHL include
diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia/small lymphocytic
lymphoma (CLL/SLL), and follicular lymphoma (FL), with a prevalence of 32%, 19%, and
17%, respectively [3,4].

Rituximab is a chimeric mouse/human monoclonal antibody therapeutic agent with
binding specificity to CD20. CD20 is found on B cells, which are cancerous in NHL [5].
Rituximab-based chemoimmunotherapy is widely used in patients with previously un-
treated CD20-positive FL and DLBCL. A regimen including Rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP) may be the preferred treatment for
these patients. The overall response rate to R-CHOP in FL is over 90%, and the 10-year
survival rate without progression is approximately 50% [4,6]. For DLBCL, R-CHOP is the
mainstay of therapy and is associated with superior long-term outcomes compared to those
treated with chemotherapy alone [4,6].

There is a strong relationship between the response rates of R-CHOP and the survival
rates for NHL [7]. The survival rates for non-responders are inferior compared to those
of responders. However, there are no established prognostic markers for identifying
non-responders in NHL. If non-responders are predictively identified, timely changes in
diagnostic and adaptive second-line treatment may be considered.

White adipose tissue (WAT) is the most abundant tissue in the human body. It is an
energy source that can store and release energy in the form of lipids [8]. Orbital adipose
tissue (OAT) contains a steady volume of WAT, which fills the spaces between the eye
bulb, extraocular muscles, vessels, and nerves [9]. In contrast, brown adipose tissue (BAT)
consists of iron-rich mitochondria and several lipid droplets in the cytoplasm. It plays
an important role in uncoupled respiration via the uncoupling proteins (UCPs) in the
mitochondria [10]. Mitochondrial uncoupling protein 1 (UCP1) is responsible for non-
shivering thermogenesis in BAT and is related to energy expenditure and weight loss [11].
BAT promotes an anti-inflammatory phenotype and decreases insulin resistance [12,13]; it
also possesses anti-obesity and anti-cancer potential [11,14–17]. However, the association
of BAT activation with cancer progression, which is evident in rodent models, has not been
verified in clinical studies [18,19]. Functional BAT presents at limited sites, such as in the
interscapular, subscapular, cervical, epicardial, paravertebral, and perirenal tissues [20].
Epicardial adipose tissue (EAT) constitutes stable BAT. It is found in a limited space between
the myocardium and the visceral layer of the pericardium [21]. WAT, when exposed
to certain stimuli (e.g., cold, exercise, or adrenergic receptor activation), may undergo
morphologic and functional changes to transform into BAT [15]. This process is known as
browning or beiging [22]. Beige adipose tissue (bAT) resembles BAT, which has iron-rich
mitochondria and contains UCPs. However, bAT can lose UCP1 expression after the impact
of a stimulus, demonstrating that beiging is reversible [15,23]. In recent years, several
imaging strategies have been used in studies related to BAT [24]. To date, positron emission
tomography/computed tomography (PET/CT) using the tracer 18F-fluorodeoxyglucose
(18F-FDG) has been the most commonly used strategy [24,25]. It demonstrates information
about the distribution and metabolic activity of BAT [26–28].

Multiple clinical prognostic indices have been developed for risk stratification in NHL,
such as the international prognostic index (IPI) for DLBCL [29], and the follicular lymphoma
international prognostic index (FLIPI) for FL [30]. Serum lactate dehydrogenase (LDH)
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levels can be used for the prognostic evaluation of NHL [31]. Several prospective studies
have investigated immunological biomarkers for NHL, including interleukin (IL)-6, IL-10,
tumor necrosis factor (TNF)-α, CXCL13, soluble CD23 (sCD23), sCD27, and sCD30 [32,33].
Some genomic and molecular biomarkers of NHL have also been investigated, including
MYC, BCL2, BCL6, and TP53 [32]. PET/CT is a sensitive and specific non-invasive imaging
modality recommended for staging and restaging NHL. 18F-FDG PET/CT for treatment
monitoring in NHL is established in current clinical practice and is not time- or labor-
consuming [34].

This study aims to qualify and quantify metabolically active adipose tissue using
PET/CT scans and verify this unique tissue as a prognostic biomarker for patients with
NHL treated with R-CHOP.

2. Results
2.1. Patient Characteristics

Table 1 summarizes the baseline characteristics and immunohistochemical (IHC)
profiles of the 20 patients. Of the 20 patients, complete response (CR) was noted in
10 patients, partial response (PR) in 7 patients, and progressive disease (PD) in 3 patients
according to the post-treatment PET/CT scans. IHC analysis was performed on lymph
node tissues removed during biopsy. All patients were CD20-positive in IHC profiles.

Table 1. Baseline characteristics and IHC profiles of the 20 patients.

Characteristics Responders (n = 17) Non-Responders (n = 3)

Diagnosis
FL 12 1

DLBCL 5 2
R-CHOP cycles

4 3 1
6 7 1
8 7 1

PS
0 13 2
1 4 1

Gender
Male 10 2

Female 7 1
Median age (years) 61 (range, 30–76) 67 (range, 67–75)

Stage
I 1 0
II 3 1
III 4 0
IV 9 2

Risk group 1

Low 3 0
Intermediate 10 3

High 4 0
LDH (U/L) 2 277.9 ± 50.3 377.7 ± 97.2

BMI (kg/m2) 2 24.7 ± 1.1 24.9 ± 3.1
IHC profiles

CD20 + 17 3
− 0 0

CD10 + 10 2
− 7 1

Bcl-6 + 9 3
− 8 0

Bcl-2 + 11 3
− 6 0

1 FL and DLBCL are risk-stratified by FLIPI and IPI, respectively. Five patients with DLBCL were responders.
There were 2, 1, and 2 patients in the low, low-intermediate, and high-intermediate groups, respectively. Two
patients with DLBCL were non-responders: one in the low-intermediate risk group and the other one in the
high-intermediate risk group. 2 Baseline LDH levels and BMI are expressed as mean ± standard deviation.
Abbreviations: IHC, immunohistochemical; FL, follicular lymphoma; DLBCL, diffuse large B-cell lymphoma;
R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; PS, performance status; LDH,
lactate dehydrogenase; BMI, body mass index; FLIPI, follicular lymphoma international prognostic index; IPI,
international prognostic index.
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2.2. Pre- vs. Post-Treatment SUV-H EAT and OAT Volume, Serum LDH Levels, and BMI

Pre- and post-treatment PET/CT images were compared (Figure 1). The SUV-H EAT
(high standardized uptake value epicardial adipose tissue) volume significantly increased
from 6.0 ± 1.8 mL to 20.8 ± 6.4 mL after treatment in responders (p = 0.03) but decreased
from 15.4 ± 6.5 mL to 6.8 ± 4.5 mL in non-responders (p = 0.32). The SUV-H OAT (high
standardized uptake value orbital adipose tissue) volume significantly increased from
3.4 ± 0.7 mL to 6.5 ± 1.0 mL in responders (p = 0.002) but decreased from 3.3 ± 1.8 mL to
2.3 ± 1.8 mL in non-responders (p = 0.19). LDH levels decreased from 277.9 ± 50.3 U/L
to 266.6 ± 49.3 U/L in responders (p = 0.86) but increased from 377.7 ± 97.2 U/L to
776.3 ± 232.7 U/L in non-responders (p = 0.11). Body mass index (BMI) decreased from
24.7 ± 1.0 kg/m2 to 24.0 ± 1.2 kg/m2 in responders (p = 0.30) and from 24.9 ± 3.1 kg/m2

to 22.6 ± 2.5 kg/m2 in non-responders (p = 0.29) (Figure 2). Each individual data point was
plotted in Supplementary Figure S1 to illustrate the patient-specific local changes in the
SUV-H EAT and SUV-H OAT volumes from pre- to post-treatment.
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(a) (b) 

Figure 1. Pre- and post-treatment SUV-H EAT and SUV-H OAT for patients with different treatment
responses, demonstrated by PET/CT viewer. (a) Pre-treatment and (b) post-treatment SUV-H EAT
are shown in blue for a patient with CR. (c) Pre-treatment and (d) post-treatment SUV-H OAT
are presented in orange for the same patient with CR. (e) Pre-treatment and (f) post-treatment
SUV-H EAT are shown in blue for a patient with PD. (g) Pre-treatment and (h) post-treatment
SUV-H OAT are presented in orange for the same patient with PD. SUV-H EAT, high standardized
uptake value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose
tissue; PET/CT, positron emission tomography/computed tomography; CR, complete response; PD,
progressive disease.

The pre- and post-treatment SUV-H EAT and SUV-H OAT volumes, LDH levels, and
BMI in complete and partial responders were also compared. Among complete responders,
the SUV-H EAT and SUV-H OAT volumes significantly increased from 6.3 ± 2.0 mL to
30.5 ± 9.7 mL and 4.7 ± 0.9 mL to 8.2 ± 1.1 mL, respectively, after treatment (p = 0.04 and
0.002, respectively). There were no significant differences in pre- and post-treatment SUV-H
EAT and SUV-H OAT volumes for partial responders (p = 0.27 and 0.19, respectively)
(Figure 3). Each individual data point was plotted in Supplementary Figure S2 to illustrate
the patient-specific local changes in SUV-H EAT and SUV-H OAT volumes from pre- to
post-treatment between complete and partial responders.
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Figure 2. Pre- and post-treatment SUV-H EAT, OAT volume, serum LDH levels, and BMI, according
to different treatment responses. (a) The SUV-H EAT volume significantly increased in responders
(p = 0.03) but decreased in non-responders (p = 0.32). (b) The SUV-H OAT volume significantly
increased in responders (p = 0.002) but decreased in non-responders (p = 0.19). (c,d) There were no
significant differences between pre- and post-treatment serum LDH levels or BMI among responders
versus non-responders. * Differences are significant at the 0.05 level (two-tailed). ** Differences are
significant at the 0.01 level (two-tailed). SUV-H EAT, high standardized uptake value epicardial
adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue; LDH, lactate
dehydrogenase; BMI, body mass index; CR, complete response; PR, partial response; PD, progres-
sive disease.
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Figure 3. Pre- and post-treatment SUV-H EAT, SUV-H OAT volumes, serum LDH levels, and BMI
in complete and partial responders. (a,b) The SUV-H EAT and OAT volume significantly increased
in complete responders (p = 0.04 and 0.002, respectively). There were no significant differences
in pre- and post-treatment SUV-H EAT and OAT volumes in partial responders (p = 0.27 and 0.19,
respectively). (c,d) No significant differences were found in pre- and post-treatment serum LDH levels
and BMI in complete and partial responders. * Differences are significant at the 0.05 level (two-tailed).
** Differences are significant at the 0.01 level (two-tailed). SUV-H EAT, high standardized uptake
value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue;
LDH, lactate dehydrogenase; BMI, body mass index; CR, complete response; PR, partial response.

2.3. Responders vs. Non-Responders

The differences in delta SUV-H EAT and SUV-H OAT volumes, LDH levels, and
BMI between responders and non-responders were examined using two-sample t-tests
(Table 2). The delta SUV-H EAT volume was 14.8 ± 6.5 mL in responders compared
to −8.6 ± 6.5 mL in non-responders (p = 0.03). The delta SUV-H OAT volume was
3.1 ± 0.8 mL in responders compared to −1.0 ± 0.4 mL in non-responders (p = 0.001).
The delta LDH level was −11.4 ± 66.5 U/L in responders compared to 398.7 ± 151.2 U/L
in non-responders (p = 0.03). The delta BMI was −0.7 ± 0.7 kg/m2 in responders compared



Int. J. Mol. Sci. 2023, 24, 2158 8 of 19

to −2.3 ± 1.6 kg/m2 in non-responders (p = 0.36). There were statistically significant differ-
ences in the delta SUV-H EAT and SUV-H OAT volumes and serum LDH levels between
responders and non-responders (Figure 4); however, there were no significant differences
in initial SUV-H EAT and SUV-H OAT volumes, LDH levels, or BMI between responders
and non-responders (Figure 5).
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Figure 4. Delta SUV-H EAT, OAT volumes, serum LDH levels, and BMI with different treatment
responses. (a) Greater delta SUV-H EAT volume was observed in responders than in non-responders
(p = 0.03). (b) There was significantly more delta SUV-H OAT volume detected in responders
than in non-responders (p = 0.001). (c) A significantly higher delta LDH level was noted in non-
responders than in responders (p = 0.03). (d) There was no significant difference in delta BMI between
responders and non-responders (p = 0.36). * Differences are significant at the 0.05 level (two-tailed).
** Differences are significant at the 0.01 level (two-tailed). SUV-H EAT, high standardized uptake
value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue;
LDH, lactate dehydrogenase; BMI, body mass index; CR, complete response; PR, partial response;
PD, progressive disease.
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Table 2. Delta SUV-H EAT and SUV-H OAT volumes, serum LDH levels, and BMI with different
treatment responses.

Responders
(n = 17)

Non-Responders
(n = 3)

M SD M SD p

SUV-H EAT (mL) 14.8 6.5 −8.6 6.5 0.03 1

SUV-H OAT (mL) 3.1 0.8 −1.0 0.4 0.001 2

LDH (U/L) −11.4 66.5 398.7 151.2 0.03 1

BMI (kg/m2) −0.7 0.7 −2.3 1.6 0.36
1 Differences are significant at the 0.05 level (two-tailed). 2 Differences are significant at the 0.01 level (two-
tailed). Abbreviations: SUV-H EAT, high standardized uptake value epicardial adipose tissue; SUV-H OAT, high
standardized uptake value orbital adipose tissue; LDH, lactate dehydrogenase; BMI, body mass index; M, mean;
SD, standard deviation.
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Figure 5. Initial SUV-H EAT and SUV-H OAT volumes, serum LDH levels, and BMI with different
treatment responses. There were no statistically significant differences in (a) SUV-H EAT volume,
(b) SUV-H OAT volume, (c) serum LDH levels, or (d) BMI between responders and non-responders
before treatment, with p values of 0.08, 0.94, 0.43, and 0.95, respectively. SUV-H EAT, high standard-
ized uptake value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital
adipose tissue; LDH, lactate dehydrogenase; BMI, body mass index; CR, complete response; PR,
partial response; PD, progressive disease.
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2.4. Complete Responders vs. Partial Responders

The results of two-sample t-tests for delta SUV-H EAT and SUV-H OAT volume, LDH
levels, and BMI in complete and partial responders are summarized in Table 3. Delta
SUV-H EAT volume was 24.2 ± 10.1 mL in complete responders and 1.3 ± 1.1 mL in partial
responders (p = 0.04). There were no statistically significant differences in the delta SUV-H
OAT volume, serum LDH levels, or delta BMI between complete and partial responders
(Figure 6). There were no significant differences in initial SUV-H EAT volume, LDH levels,
or BMI between complete and partial responders. Significantly greater initial SUV-H OAT
volumes were observed in complete responders compared to partial responders (p = 0.02)
(Figure 7).
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Figure 6. Delta SUV-H EAT and SUV-H OAT volumes, serum LDH levels, and BMI in complete
and partial responders. (a) Greater delta SUV-H EAT volume was observed in complete responders
than in partial responders (p = 0.04). (b–d) There were no statistically significant differences in the
delta SUV-H OAT volume, serum LDH levels, or BMI between complete and partial responders,
with p values of 0.55, 0.84, and 0.37, respectively. * Differences are significant at the 0.05 level (two-
tailed). SUV-H EAT, high standardized uptake value epicardial adipose tissue; SUV-H OAT, high
standardized uptake value orbital adipose tissue; LDH, lactate dehydrogenase; BMI, body mass
index; CR, complete response; PR, partial response.



Int. J. Mol. Sci. 2023, 24, 2158 11 of 19

Table 3. Delta SUV-H EAT and SUV-H OAT volumes, serum LDH levels, and BMI in complete and
partial responders.

Complete Responders
(n = 10)

Partial Responders
(n = 7)

M SD M SD p

SUV-H EAT (mL) 24.2 10.1 1.3 1.1 0.04 1

SUV-H OAT (mL) 3.5 0.8 2.4 1.7 0.55
LDH (U/L) −23.0 49.2 5.3 153.2 0.84

BMI (kg/m2) −0.2 0.6 −1.4 1.3 0.37
1 Differences are significant at the 0.05 level (two-tailed). Abbreviations: SUV-H EAT, high standardized uptake
value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue; LDH, lactate
dehydrogenase; BMI, body mass index; M, mean; SD, standard deviation.
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Figure 7. Initial SUV-H EAT and SUV-H OAT volumes, serum LDH levels, and BMI in complete and
partial responders. There were no significant differences in (a) the SUV-H EAT volume, (c) serum
LDH levels, or (d) BMI between complete and partial responders before treatment, with p values
of 0.86, 0.18, and 0.64, respectively. (b) Greater initial SUV-H OAT volume is observed in complete
responders than in partial responders (p = 0.02). * Differences are significant at the 0.05 level (two-
tailed). SUV-H EAT, high standardized uptake value epicardial adipose tissue; SUV-H OAT, high
standardized uptake value orbital adipose tissue; LDH, lactate dehydrogenase; BMI, body mass
index; CR, complete response; PR, partial response.
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2.5. Correlation Analysis

Pearson’s correlation analyses were performed to analyze the correlations among
delta and initial SUV-H EAT, SUV-H OAT volumes, LDH levels, and BMI, respectively.
The correlation coefficients (r) are shown in Tables 4 and 5. A strong negative correlation
between the delta SUV-H OAT volume and delta LDH levels was detected (r = −0.70,
p = 0.002), and a significant positive correlation between delta SUV-H EAT and OAT volume
was noted (r = 0.50, p = 0.03). A significant negative correlation between the initial SUV-H
OAT volume and initial LDH levels was observed (r = −0.55, p = 0.02). No other significant
correlations were shown in the correlation analyses.

Table 4. Pearson’s correlation analysis of delta SUV-H EAT and OAT volumes, LDH levels, and BMI.

SUV-H EAT SUV-H OAT LDH BMI

SUV-H EAT 1.00 0.50 1 −0.06 0.23
SUV-H OAT 1.00 −0.70 2 0.23

LDH 1.00 −0.01
BMI 1.00

1 Correlation is significant at the 0.05 level (two-tailed). 2 Correlation is significant at the 0.01 level (two-
tailed). Abbreviations: SUV-H EAT, high standardized uptake value epicardial adipose tissue; SUV-H OAT, high
standardized uptake value orbital adipose tissue; LDH, lactate dehydrogenase; BMI, body mass index.

Table 5. Pearson’s correlation analysis of initial SUV-H EAT and OAT volumes, LDH levels, and BMI.

SUV-H EAT SUV-H OAT LDH BMI

SUV-H EAT 1.00 0.07 0.38 −0.11
SUV-H OAT 1.00 −0.55 1 0.06

LDH 1.00 −0.11
BMI 1.00

1 Correlation is significant at the 0.05 level (two-tailed). Abbreviations: SUV-H EAT, high standardized uptake
value epicardial adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue; LDH, lactate
dehydrogenase; BMI, body mass index.

2.6. Logistic Regression Analysis

Logistic regression analyses were performed to analyze the possible indicators of
treatment responders, and the results are summarized in Table 6. Among these indicators,
delta SUV-H EAT volume and delta LDH levels were significantly correlated with the
treatment responses [odds ratio (OR): 32.00, 95% confidence interval (CI) 1.39–737.46,
p = 0.03; OR: 32.00, 95% CI 1.39–737.46, p = 0.03, respectively], which suggested that less
delta SUV-H EAT volume and higher delta LDH levels after R-CHOP were associated with
poorer treatment responses. No other significant correlations were shown in the logistic
regression analyses.

Table 6. Logistic regression analysis for possible indicators of responders.

Indicators OR 95% CI p

Delta SUV-H EAT volume (mL) ≥0 1
<0 32.00 1.39–737.46 0.03 1

Delta SUV-H OAT volume (mL) ≥−0.2 1
<−0.2 8.00 0.35–184.36 0.19

Delta LDH (U/L) <200 1
≥200 32.00 1.39–737.46 0.03 1

Delta BMI (kg/m2) ≥−0.2 1
<−0.2 2.86 0.22–37.99 0.43

Gender Female 1
Male 1.40 0.11–18.62 0.79

Performance status ECOG = 0 2 1
ECOG = 1 2 1.63 0.12–22.98 0.72

Stage I and II 1
III and IV 1.63 0.12–22.98 0.72

Age (y) <70 1
≥70 8.00 0.35–184.36 0.19

1 Correlation is significant at the 0.05 level (two-tailed). 2 The performance status is graded with the ECOG score,
in which grade 0 indicates fully active and grade 1 indicates able to perform light work. Abbreviations: OR,
odds ratio; CI, confidence interval; SUV-H EAT, high standardized uptake value epicardial adipose tissue; SUV-H
OAT, high standardized uptake value orbital adipose tissue; LDH, lactate dehydrogenase; BMI, body mass index;
ECOG, Eastern Cooperative Oncology Group.
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3. Discussion

In this study of NHL patients, the volume of SUV-H EAT and SUV-H OAT signif-
icantly increased in responders after four to eight cycles of R-CHOP. The differences in
the delta SUV-H EAT and SUV-H OAT volumes and LDH levels between responders
and non-responders were statistically significant. Greater delta SUV-H EAT and OAT
volumes were observed in responders, whereas greater delta LDH levels were noted in
non-responders. There was a significantly greater delta SUV-H EAT volume among com-
plete responders compared to partial responders. Logistic regression analyses indicated
that higher delta SUV-H EAT volumes and lower delta LDH levels were associated with
better treatment responses.

The PET/CT scan has been an important diagnostic tool in cancer staging and restag-
ing. 18F-FDG localizes at regions with increased metabolic activity. However, both phys-
iologic and pathologic processes, such as inflammation, were associated with increased
18F-FDG uptake [35]. Human BAT has been commonly assessed through 18F-FDG PET/CT
using several quantification criteria. Uniform criteria, named the Brown Adipose Re-
porting Criteria in Imaging STudies (BARCIST 1.0), were published and recommended
in 2016 [36,37]. Tissues with relatively but not significantly high SUV, which have been
regarded as indicating false-positive uptake, may be considered to be BAT depending on
the location and characteristics of adipose tissue in the CT scan. EAT consists of abundant,
small UCP1-expressing adipocytes in a limited space and is scarcely involved in cancer [21].
OAT is a type of WAT but differs from the other WAT of the body due to its embryonic
origin, functions, and structure. OAT forms smaller lobes and has larger volumes of colla-
gen, endothelial cells, and mast cells than subcutaneous fat [9]. Malignant orbital tumors
are unusual. This study did not evaluate the overall BAT status of all patients because the
metabolic activity of BAT in PET/CT is easily affected by cancer and inflammation. EAT
and OAT share similarities, in that are both rarely affected by malignancies and are remote
from sites of cancer treatments. Therefore, we choose EAT and OAT for evaluation.

The adipose tissue with high SUV may indicate BAT or bAT. The volumes of SUV-H
EAT and SUV-H OAT significantly increased in responders, and delta SUV-H EAT and
SUV-H OAT volumes were significantly greater in responders than in non-responders.
These findings imply that browning after R-CHOP and a higher volume of induced bAT
portend a good treatment response. The prognostic power of LDH was verified by the
significantly greater delta LDH levels present in non-responders compared to responders.
A strong negative correlation was found between the delta SUV-H OAT volume and delta
serum LDH levels. These findings may suggest that browning in EAT and OAT are strongly
associated with good response and prognosis in patients with NHL after R-CHOP.

EAT and OAT might play a role in the immune system. We previously demonstrated
that EAT may serve as a biomarker of survival outcomes in patients with esophageal
cancer receiving neoadjuvant chemoradiation therapy [38]. EAT is composed of adipocytes,
nerve cells, inflammatory cells (mainly macrophages and mast cells), stromal cells, vas-
cular cells, and immune cells [21,39], and functions as BAT with the expression of UCP1,
brown adipocyte differentiation transcription factor PR-domain-missing 16 and peroxisome-
proliferator-activated receptor γ co-activator-1α [40]. In patients with coronary artery
disease, the local expression of chemokine (monocyte chemotactic protein 1 (MCP1)) and
inflammatory cytokines (IL-1β, IL-6, and TNF-α) was observed with significant changes
in MCP1, IL-1β, IL-6, TNF-α mRNA, and protein in the epicardial adipose stores [41,42].
Philipp et al. have developed a mouse model to study Graves’ orbitopathy (GO) and
found early infiltration of macrophages in the orbital region, the induction of anti-thyroid
stimulating hormone receptor antibodies, the aggregation of CD8+ T cells, and BAT in-
crease during GO onset [43]. R-CHOP may influence EAT and OAT to induce local or
systemic inflammation or immune responses, which could be related to treatment responses
for NHL.

In this study, the delta volumes of SUV-H EAT and SUV-H OAT, serum LDH levels,
and BMI before and after R-CHOP were recorded. The bias from individualized variation
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was reduced by comparing changes at more than one time point. There were significantly
greater delta SUV-H EAT and OAT volumes, decreased delta serum LDH levels observed
among responders compared to non-responders, and greater delta SUV-H EAT volumes
detected among complete responders compared to partial responders. However, there
were no statistically significant differences in delta serum LDH levels between complete
and partial responders. This may imply that SUV-H EAT volume has better prognostic
power than serum LDH levels in differentiating the treatment responses to R-CHOP for
patients with NHL.

There were several limitations to our study. First, a causal relationship between
browning and good treatment response to R-CHOP in patients with NHL (implied by
greater delta volumes of SUV-H EAT and SUV-H OAT and lower delta serum LDH levels
in responders compared to non-responders) cannot be determined through this method
and may require further investigation. Second, the number of patients in our retrospective
study with PET/CT and serum LDH profiles was too small to draw a firm conclusion. This
fact could be generating some bias in the results. For example, in some cases, such as risk
stratification, there were no non-responders in each of the risk groups. Our preliminary
findings of greater changes in SUV-H EAT and OAT volumes among responders have
provided critical information for conducting further prospective studies with more enrolled
patients. Third, there was a lack of standardized methods for measuring the volume of
functional BAT and bAT despite how well PET/CT was able to detect the metabolically
active tissues. A precise and universally accepted standardized protocol would be required
for a large-scale study. Fourth, the SUV of BAT was relatively but not significantly high.
If the BAT was collocated with vigorous cancer cells or in regions of severe inflammation,
artifacts might be recorded as BAT. Fifth, the impact of CHOP should be examined. Finally,
other possible etiologies that caused SUV-H adipose tissue should be examined in future
studies. In the present study, greater delta SUV-H EAT and OAT volumes were detected
among responders compared to non-responders, and the SUV-H EAT and OAT volume
significantly increased in responders. These results imply that the results may be applied
to responders. Because only three non-responders were included in this study, the present
results, obtained using this small sample size, are not viable for drawing conclusions among
non-responders.

This investigation is the first study in which R-CHOP-induced browning in EAT and
OAT with prognostic effects in NHL has been verified by PET/CT scans. Our data show
that R-CHOP moderately impacts the SUV-H EAT and SUV-H OAT volumes and serum
LDH levels of patients with NHL. These novel findings provide critical information for
prognostication. The development of a new imaging biomarker may be feasible. Clinical
studies and experimental animal models are needed for further validation.

4. Materials and Methods

All patients included in our study were over 18 years of age, with newly diagnosed,
biopsy-proven NHL. The patients were required to have a World Health Organization
performance status of 0–2. Twenty patients, diagnosed between February 2017 and July
2020, who received four to eight cycles of R-CHOP therapy at our institution, were retro-
spectively reviewed. Pre- and post-treatment PET/CT scans, serum LDH levels, and BMI
values were collected for analysis. Medical records were reviewed, and clinical information,
including age, performance status, LDH level, stage, hemoglobin, and the number of nodal
and extranodal areas involved, were collected for risk stratification with prognostic indices.
FLIPI and IPI were used for FL and DLBCL, respectively. The IHC profiles in biopsies were
also recorded.

A whole body PET/CT scan (GE Discovery, GE Healthcare, Milwaukee, WI, USA)
was performed after blood glucose measurement, with a constant temperature of 22 ◦C
regardless of the season. Patients were asked to fast for at least 6 h before the examination,
and 18F-FDG was injected only if blood glucose was less than 200 mg/dL. Then, the
patients rested during the uptake time for 60 min in an air-conditioned waiting room with
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a constant temperature of 22 ◦C. CT was obtained in the mid-expiratory phase without
intravenous contrast (slice thickness, 5 mm; tube voltage, 120 kVp; tube current, 40 mAs;
field of view, 50 cm), and PET images were reconstructed. The CT used in this study was
examined according to the American Association of Physicists in Medicine (AAPM) and
American College of Radiology (ACR) guidelines (AAPM report #74 and #96 and ACR
CT QC manual), and standard quality assurance measures were performed. All included
patients had no metabolic diseases, such as hypertension or diabetes mellitus. No patients
received therapies related to beta-adrenergic receptors. No cancer cachexia was observed
in these patients, and no significant BMI changes were reported during the treatment or
follow-up periods. The clinical characteristics of each patient, including gender, age, and
BMI, were recorded in Table 1.

Lugano classification criteria were introduced for response assessment using PET/CT
scans according to a 5-point scale. A score of 1 meant no abnormal 18F-FDG uptake, while
a score of 2 indicated uptake less than that by the mediastinum. A score of 3 represented
uptake greater than that by the mediastinum but less than that by the liver, while scores
of 4 and 5 denoted uptake greater than that by the liver and by the liver with new sites
of disease, respectively. Scores of 1 to 3 were widely considered to be PET negative and
a CR. A score of 4 when restaging could be considered a PR if the 18F-FDG uptake had
declined after initial staging, while a score of 5 stood for PD [44]. Patients with CR or PR
were regarded as responders, whereas patients with PD were regarded as non-responders.

Qualitative and quantitative evaluations of adipose tissues with high SUV and specific
Hounsfield unit (HU) were performed on PET/CT images. According to the recommen-
dation of BARCIST 1.0, typical HU values for adipose tissues were −190 to −10 HU, and
metabolically active adipose tissue had a threshold of SUV ≥ 1.5. The regions of adipose
tissue with SUV ≥ 1.5 and HU between −190 and −10 were defined as high SUV adipose
tissue in this study [36]. SUV-H EAT and OAT were selected to evaluate the influence of
R-CHOP on metabolically active adipose tissues in patients with NHL. Analyses were
performed using a radiation therapy planning system (Eclipse Treatment Planning System
v.13, Varian Medical Systems Inc., Palo Alto, CA, USA) with PET/CT viewer (Figure 8).
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5. Conclusion 

Greater changes in SUV-H EAT and SUV-H OAT volume, which may represent more 

browning in EAT and OAT after R-CHOP therapy in responders than in non-responders, 

indicate that BAT could be regarded as a favorable prognostic biomarker. This observa-

tion is supported by PET/CT scans and serum LDH profiles. This may imply that patients 

with elevated SUV-H EAT and SUV-H OAT volumes will respond to R-CHOP, but this 

hypothesis requires more investigation. The study results may be applied to responders, 

but the clinical application to non-responders needs further examination. However, 

Figure 8. Image analyses of SUV-H EAT and SUV-H OAT. (a) EAT, with a specific HU between −190
and −10, is shown in green in the CT images. (b) SUV ≥ 1.5 is defined as a high SUV. Regions of
SUV ≥ 1.5 are contoured with black lines in the PET images. (c) The intersection of (a,b) is defined as
SUV-H EAT and is demonstrated in blue. (d) OAT with a HU between −190 and −10 is outlined in
pink. (e) Regions of SUV ≥ 1.5 are contoured with black lines. (f) The intersection of (d,e) is defined
as SUV-H OAT and is outlined in orange. SUV-H EAT, high standardized uptake value epicardial
adipose tissue; SUV-H OAT, high standardized uptake value orbital adipose tissue; PET/CT, positron
emission tomography/computed tomography; HU, Hounsfield unit.

Statistical analysis was performed using SigmaPlot version 12.0 (Systat Software, Inc.,
Point Richmond, CA, USA). Numerical data were expressed as mean ± standard deviation.
Paired t-tests were applied for the volumes of SUV-H EAT, OAT, serum LDH levels, and
BMI, which were measured before and after treatment using image analyses and medical
records. Two-sample t-tests were used to test the differences between initial and delta
SUV-H EAT and SUV-H OAT volumes, LDH levels, and BMI, between responders and
non-responders, as well as between complete and partial responders. Delta represented
the difference between the two values. Pearson’s correlation analyses were performed to
analyze the correlations among SUV-H EAT, SUV-H OAT volume, LDH levels, and BMI,
and correlation coefficients (r) were recorded. Logistic regression analyses were used to
estimate the ORs with CIs of 95% for possible indicators of responders. Differences were
considered significant if p < 0.05 in a two-tailed test.
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5. Conclusions

Greater changes in SUV-H EAT and SUV-H OAT volume, which may represent more
browning in EAT and OAT after R-CHOP therapy in responders than in non-responders,
indicate that BAT could be regarded as a favorable prognostic biomarker. This observation
is supported by PET/CT scans and serum LDH profiles. This may imply that patients
with elevated SUV-H EAT and SUV-H OAT volumes will respond to R-CHOP, but this
hypothesis requires more investigation. The study results may be applied to responders, but
the clinical application to non-responders needs further examination. However, considering
the small number of cases reviewed, a larger prospective study is required for future work.
Further clinical investigations and experimental animal models to validate our findings
are warranted.
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