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Abstract: The latest developments in the management of head and neck cancer show an increasing
trend in the implementation of novel approaches using artificial intelligence for better patient strat-
ification and treatment-related risk evaluation. Radiomics, or the extraction of data from various
imaging modalities, is a tool often used to evaluate specific features related to the tumour or normal
tissue that are not identifiable by the naked eye and which can add value to existing clinical data.
Furthermore, the assessment of feature variations from one time point to another based on subsequent
images, known as delta radiomics, was shown to have even higher value for treatment-outcome
prediction or patient stratification into risk categories. The information gathered from delta radiomics
can, further, be used for decision making regarding treatment adaptation or other interventions
found to be beneficial to the patient. The aim of this work is to collate the existing studies on delta
radiomics in head and neck cancer and evaluate its role in tumour response and normal-tissue
toxicity predictions alike. Moreover, this work also highlights the role of holomics, which brings
under the same umbrella clinical and radiomic features, for a more complex patient characterization
and treatment optimisation.

Keywords: radiomics; sequential imaging; radiotherapy; chemotherapy; adaptive treatment; outcome
prediction

1. Introduction

The clinical management of head and neck carcinomas (HNC) involves a number
of challenges, both regarding tumour control and normal tissue toxicity owing to the
particularities of head and neck anatomy and radiobiology. Resistance to radio- and/or
chemotherapy are common factors leading to treatment failure or loco-regional recur-
rence [1,2]. There are some key tumour characteristics, including hypoxia, proliferative
ability, the fraction of cancer stem cells, intrinsic radio-resistance, as well as the human
papillomavirus (HPV) status, which should be considered when treating HNC patients.
Biomarkers for the identification of the above tumour properties are available and can assist
with patient stratification to increase tumour control [3]. The detection of genes responsible
for chemo-resistance via pharmacogenetics has been gaining more attention recently, to
better personalise chemotherapy as a function of the patient’s genetic makeup [4].

Another important aspect of head and neck oncology concerns the preservation of
healthy structures. Given the anatomically challenging tumour sites in this patient group,
the surrounding normal tissue is often severely affected, particularly the salivary glands
which develop radiation-induced xerostomia. Therefore, monitoring both tumour response
and treatment-related side effects are critical factors impacting the therapeutic index and
patients’ quality of life.

Advances in molecular and functional imaging in head and neck oncology facilitate
more accurate diagnoses and therapeutic recommendations, which are, further, applied
for treatment-response monitoring and adaptation. Lately, the implementation of artificial
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intelligence (AI) in medical imaging allows for the identification of highly detailed and ro-
bust tumour-imaging features, providing radiomics—the quantitative approach to medical
images—with the status of a strategic field in radiology.

Medical images are fundamental tools for the establishment of diagnosis, response
to therapy and patient monitoring during and post therapy. Radiomic image analysis is
based on the idea that a medical image depends on the phenotype, genotype and molecular
characteristics of the imaged region, but some of the information is not observable with
the naked eye [5,6]. The advanced mathematical and statistical analysis of the features
extracted from the image has greatly enhanced clinical decision making, followed by the
employment of AI techniques to further improve accuracy in the detection, classification,
image segmentation and prognostication of treatment outcomes. While the predictive
power of radiomics in chemo-radiotherapy is still under scrutiny, the employment of
radiomics as a prognostic biomarker in head and neck cancer has been proposed [7].

Perhaps a more powerful tool in the evaluation and interpretation of image features
is the assessment of changes exhibited by these features over the course of therapy. The
change in quantitative features extracted from longitudinal images acquired at different time
points along the course of treatment and follow-up is known as delta radiomics. The delta-
radiomic analysis, through deep-learning techniques, of images taken at multiple time points
enables a more accurate clinical-outcome prediction than single-image radiomic analysis. This
comparative analysis of image features during treatment should be embraced particularly for
aggressive, radio-resistant tumours, to guide treatment and optimize the outcome.

The aim of this overview is to examine the current status of delta radiomics in the
management of head and neck cancer, assessing its role in both tumour response and
normal tissue toxicity predictions. The fact that most studies were published over the past
five years highlights the novelty of this field, and holds promise for future developments
in the optimisation of head and neck cancer treatment.

2. The Facets of Delta Radiomics in Head and Neck Cancer Management

Current applications of delta radiomics in head and neck oncology show various
trends, including:

Diagnostic accuracy;
Tumour response evaluation;
Prediction of normal tissue toxicity;
Potential tool for identification of features used for treatment adaptation.

The sections below summarise the published literature to date on delta-radiomic
studies, often presented in the literature under the terminology of the sequential-imaging-
based assessment of tumour/normal tissue effects.

2.1. Delta Radiomics in Diagnostic Accuracy

Most studies on delta radiomics fit into one of the aforementioned categories. Never-
theless, the evaluation of sequential image features can be applied for other purposes, such
as differentiating between benign and malignant entities in HNC [8]. In their PET/CT-based
study retrospectively undertaken on 56 patients with suspected or confirmed head and
neck malignancy, Pietrzak et al. employed sequential FDG-PET examinations to compare
the fluctuations in metabolic activity over time (60 and 90 min post injection) for staging
purposes [8]. Using the standardized uptake value and the retention index as parameters,
they showed that sequential FDG-PET/CT scanning increases specificity and provides
more accurate information to assist in differentiating between benign and malignant lymph
nodes in HNC.

2.2. Delta Radiomics in Tumour Response Evaluation

Various imaging techniques were employed for tumour-response evaluation via se-
quential image analysis or delta radiomics (Table 1). Quantitative evaluation of ultrasound
(US) images was undertaken by Tran et al. during the course of radiotherapy in 36 HNC pa-
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tients as part of a clinical trial (NCT03908684) having as its main objective the identification
of US-based parameters that can serve as early predictors of complete or partial response
to radiotherapy. Lymph-nodes images were acquired 24 h, 1 week and 4 weeks after the
start of radiotherapy [9]. Quantitative US spectral analysis was applied to compute US
parameters for texture features. The naïve-Bayes algorithm used for classification was
found to be the best predictor of tumour response to treatment for all time points, showing
the potential of US delta radiomics for the early assessment of response to radiotherapy,
with a prediction rate of 85% at 4 weeks after the start of treatment.

Table 1. Compilation of delta radiomics studies for evaluation/prediction of tumour response to therapy.

Study [Ref] Aim of Study Imaging Technique
for Delta Radiomics Outcome

Tran et al., 2020 [9]
36 HNC patients

Treatment-response
monitoring

Quantitative ultrasound
(spectral and

texture parameters)

The best prediction accuracy was
offered by single-feature
naïve-Bayes classification

(80% at 24 h; 86% at 1 week and
85% at 4 weeks after

commencement of RT).

Fatima et al., 2021 [10]
51 HNC patients Prediction of recurrence

Quantitative ultrasound
(spectral and

texture parameters)

The support vector machine
classifier showed the best

performance using delta radiomics
in terms of accuracy (80% at week 1

and 82% at week 4) and AUC
(0.75 at week 1 and 0.81 at week 4).

Morgan et al., 2021 [11]
90 HNC patients Prediction of local failure CT and intra-treatment CBCT

The highest (AUC = 0.871) at
predicting local failure was

achieved by the fused ensemble
model. The same model scored the
highest (AUC = 0.910) at predicting

local failure for HN nodes.

Sellami et al., 2022 [12]
93 HNC patients

Prediction of response
to radiotherapy CBCT

Coarseness was the most significant
radiomic feature, while

haemoglobin level was most
significant for the clinically relevant

features. The combined
clinical + radiomic model achieved

AUD = 0.99 for treatment-
response prediction.

Xi et al., 2022 [13]
272 HNC patients

(nasopharynx)

Prediction of
response to induction

chemo + chemoradiotherapy
Multi-parametric MRI

LASSO-based feature selection was
conducted: seven feature subsets

were identified for the
pre-treatment MRI radiomic model

and 12 subsets for the
delta-radiomics model. Both

models were able to predict tumour
response to therapy.

Corino et al., 2022 [14]
50 HNC patients

(sinonasal)

Prediction of response to
induction chemotherapy Multi-parametric MRI

Three mono-modality
delta-radiomics signatures

determined for T1-weighted
(AUC = 0.79), T2-weighted
(AUC = 0.76) and apparent
diffusion coefficient maps

(AUC = 0.93). Fused signature for
all features was 0.89.

Abbreviations: MRI = magnetic resonance imaging; CT = computed tomography; FDG-PET = fluorodeoxyglucose-
positron emission tomography; CBCT = cone beam computed tomography; RT = radiotherapy; AUC = area under
the curve; SUV = standardized uptake value.



Int. J. Mol. Sci. 2023, 24, 2214 4 of 11

A study originating from the same clinical trial as above (NCT03908684) reported
by Fatima et al. aimed to investigate the role of quantitative US during radiotherapy
as a predictive biomarker of tumour recurrence in 51 HNC patients with node-positive
carcinomas [10]. Quantitative US images acquired at 1 and 4 weeks after the commencement
of radiotherapy were assessed for spectral and textural features and compared (delta
features). Of three machine-learning classifiers employed for the radiomics model, Fisher’s
linear discriminant, k nearest neighbours, and support vector machine, the latter showed
the best performance, with an accuracy of 80% at the 1-week time point (using the baseline
image as reference) and 82% at the 4-week time point.

One of the advantages of US imaging compared to CT or PET is the lack of patients’
exposure to ionizing radiation, an aspect that receives more attention in today’s oncology
in order to minimize the risks of radiation-induced effects. Furthermore, US devices are
less expensive and more convenient due to their portable versions, another important
factor that should be considered when monitoring HNC patients. The accrual of a larger
number of patients in the above studies would strengthen their prediction power and shed
more light on the role of US delta radiomics for the early prediction of treatment-response
monitoring and/or recurrence, allowing clinicians to intervene with treatment adjustments
for a further optimized outcome.

The study by Morgan et al. employed machine-learning techniques in the attempt to
stratify patients at risk of treatment failure using delta-radiomic analysis between baseline
CT images and cone-beam CT (CBCT) scans taken during therapy [11]. There were at
least three sets of images available for each of the 90 patients included in the study: the
baseline CT and two CBCTs—one prior to the first dose fraction and one prior to fraction
21. The explainable boosting machine classifier was used as a machine-learning model.
The novelty of the study consisted of the development of a fused ensemble model for the
parallel analysis of primary and nodal HNC structures within the same patient, enabling a
high discriminatory ability to predict early local failure. The most common delta features
included in the study were shape features, particularly the change in sphericity and in
maximum 3D diameter, which were in direct correlation with tumour shrinkage. While the
model needs validation on a larger cohort, these preliminary results could support early
decision for treatment adaptation in patients at high risk of local failure [11].

The use of CBCT in image-guided HNC therapy was exploited by others, through
the analysis of radiomic signature changes between baseline CBCT and subsequent CBCT
images acquired during treatment [12]. The study aimed to gather longitudinal information
of radiomic features and to evaluate treatment-induced changes in these features for the pre-
diction of outcome in combination with clinical factors. Patients having at least four CBCT
image acquisitions (including the baseline) were considered eligible for the study. Single
time-point feature selection was conducted based on the receiver operating characteristic
(ROC) curves, conditioned by an AUC > 0.65. For the longitudinal features selection, the
95% confidence interval was determined for the smallest detectable change, with relevant
features being considered those that underwent a detectable change during therapy for at
least 5% of patients [12]. Of the three developed models (clinical-based, radiomics-based
and combined), the combined model showed the highest accuracy in identifying poor
responders. The coarseness (measure of the difference between the central voxel and its
neighbourhood) was identified as the most significant radiomic parameter undergoing
longitudinal change, while among clinical parameters the change in haemoglobin levels
correlated the best with outcome. Radiomic features extracted from the 4th-week CBCT
already showed prognostic power for treatment response.

Next to ultrasound and CBCT-based delta radiomics, the role of MRI features was also
investigated in radiomics settings. Xi et al. performed pre-treatment MRI radiomics on a
large patient lot, with the aim to extract the most optimal features for treatment-response
prediction and to compare the radiomics model with the delta radiomics based on MRI
images (sequential MRI of axial-fat-suppressed T2-weighted image (FS T2WI) followed by
axial-fat-suppressed contrast-enhanced T1-weighted image (FS CE-T1WI)) acquired within
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2 weeks before and after chemo-radiotherapy [13]. Both the single time point (radiomics)
(AUC = 0.865) and delta-radiomics model (AUC = 0.941) showed good predictive power
for tumour response to chemo-radiotherapy in nasopharyngeal cancer patients using MR
imaging, potentially allowing for early treatment adaptation and optimisation.

Another multi-parametric MRI study undertaken on 50 patients with sinonasal cancers
investigated the value for treatment outcome prediction after induction chemotherapy.
The investigation included both mono-modality delta-radiomics signatures as well as
fused signature for T1-weighted, T2-weighted, and apparent diffusion coefficient (ADC)
maps [14]. The addition of ADC map information to either T1- or T2-weighted features
improved the AUC values, confirming the importance of ADC maps for the predictive
model. The study showed that early prediction of response to induction chemotherapy in
this patient group using radiomics signature is superior to RECIST (Response Evaluation
Criteria in Solid Tumours)-based radiological predictions. The clinical use of the radiomic
model leads to the possibility of early treatment adjustments for non-responsive patients
after induction chemotherapy, avoiding unnecessary toxicities. The conclusions of this
study are in line with similar reports showing that delta-radiomics models are preferred to
single time-point models in predicting tumour response to therapy [14].

2.3. Delta Radiomics in Normal Tissue Toxicity Evaluation

Patients undergoing radiotherapy for HNC often develop severe and debilitating
side effects. One of the most common normal tissue toxicities affects the functionality
of the parotid glands, leading to xerostomia. Therefore, it is not surprising that most
studies involving delta radiomics developed such models to analyse their predictive power
for acute or late xerostomia, allowing for interventions during treatment to reduce the
magnitude of side effects (Table 2).

Table 2. Compilation of delta-radiomics studies for normal tissue toxicity evaluation.

Study [Ref] Aim of Study Imaging Technique for
Delta Radiomics Outcome

van Dijk et al., 2017, 2019 [15,16]
107 HNC patients (2017)
68 HNC patients (2019)

Prediction of
radiation-induced late

xerostomia
CT

The most predictive feature
was the change in the

contralateral parotid-gland
surface, which showed

significant correlation with
late xerostomia.

Wu et al., 2018 [17]
59 HNC patients

Early prediction of acute
xerostomia during RT CT

Combined changes in CT
histogram features

(mean CT number, parotid
volume) correlated with

acute xerostomia.

Rosen et al., 2018 [18]
119 HNC patients

Prediction of chronic
xerostomia after RT CBCT

The addition of delta
radiomics to doses/clinical

models improves the
prediction of

chronic xerostomia.

Liu Y. et al., 2019 [19]
35 HNC patients
(nasopharynx)

Early prediction of acute
xerostomia during RT CT

Saliva amount changes during
radiotherapy and NFV as well

as changes in NFV between
fractions 0 and 10 of RT

provide the best prediction of
acute xerostomia.
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Table 2. Cont.

Study [Ref] Aim of Study Imaging Technique for
Delta Radiomics Outcome

Berger et al., 2022 [20]
117 HNC patients

Prediction of
radiation-induced xerostomia CT

Delta-radiomics model
outperformed the clinical

model at predicting
xerostomia at 6-, 12- and

24-months post-radiotherapy.
Abbreviations: CT = computed tomography; CBCT = cone-beam computed tomography; RT = radiotherapy;
AUC = area under the curve; NFV = normalized feature values.

Van Dijk et al. aimed to identify a biomarker for late xerostomia (12 months post
radiotherapy) based on CT imaging data acquired after treatment completion [15,16]. This
was achieved in a cohort of 107 HNC patients by quantifying the differences in parotid-
gland surface reduction before and 6 weeks after radiotherapy. The geometric difference
between the contralateral parotid gland surface was shown to be the most predictive factor
of late xerostomia (AUC = 0.90). A non-linear relationship was found between the mean
dose received by the parotids and the change in the parotids’ surface, with an increase in
the parotid surface reduction with increasing doses (up to 40 Gy); however, at higher doses,
the reduction in gland surface decreased. This observation suggests different reactions of
the parotid to higher doses owing to necrosis-caused inflammatory enlargement, rather
than apoptotic cell death [15]. A sister study enrolling 68 patients was conducted by the
same group with similar goals, though with a different delta-radiomic approach, based
on pre-treatment and weekly CT images acquired during radiotherapy [16]. The main
features extracted from the CT images were intensity, texture and geometric characteristics
(gland surface) of the parotid glands. The most significant delta feature was the change
in the parotid surface, which is associated with late xerostomia (12 months post-therapy).
While this correlation was achieved for CT delta radiomics applied for all treatment weeks
(p < 0.04), the highest significance, with the largest regression coefficient, was achieved in
week 3 (p < 0.001). Therefore, the mid-treatment CT assessment of parotid surface changes
as compared to baseline CT (pre-treatment) could potentially identify patients at risk of
developing late xerostomia, allowing for timely treatment adaptation. While the results are
highly promising, they are required to be externally validated before clinical implementation.

Daily CT images were employed for delta-radiomics analysis of 59 HNC patients in
order to identify possible correlations between the severity of acute xerostomia and changes
in CT-histogram texture features [17]. Among all parameters investigated, the changes in
mean CT number and in the parotid volume were correlated with xerostomia grades when
combined in the same predictive model (r = 0.71, p < 0.00001). The highest precision of acute
xerostomia severity was predicted by the 5th-week delta radiomics. In a study conducted
on 35 nasopharyngeal cancer patients, the changes in the amount of saliva were found to
be an important predictor of acute xerostomia, next to changes in normalized feature values
assessed on CT images between fraction 0 and fraction 10 of radiotherapy [19].

The risk of chronic xerostomia after HNC radiotherapy was evaluated using CBCT-based
delta radiomics in a retrospective study of 119 patients [18]. Delta radiomics consisted of
average weekly changes in the assessment of mean Hounsfield unit intensity and parotid
volume, using week-1 CBCT images as baseline. A significant correlation was found between
mid-treatment volume change and mean parotid dose. The predictive value of the radiomics
model was compared with clinical and dose-volume histogram models by means of AUC.
The delta-radiomics model showed slightly higher prediction value for grade-1 xerostomia
as compared to the clinical model (AUC = 0.719 vs. 0.709), while the addition of delta-
radiomic features (changes in contralateral parotid volume) to the clinical model improved
the predictive performance for higher grade toxicities from AUC = 0.692 to 0.776 [18].

Another study that aimed to compare the statistical power of delta-radiomics model
to predict xerostomia compared to dose-volume parameters (clinical model) analysed



Int. J. Mol. Sci. 2023, 24, 2214 7 of 11

radiomics data and their variations from daily megavoltage CT images from 117 HNC
patients [20]. Early- and mid-treatment radiomics data were found to be the most predictive
for xerostomia symptoms at 6 months. The conclusion of this work is in line with that of
Rosen et al., showing a better model performance when radiomics (textural) features are
added to traditional clinical data.

An interesting study looking at the temporal evolution of radiomic features rather
than at changes between different time points (delta radiomics) was recently reported
by Barua et al. [21]. The focus of the study was the risk evaluation of osteoradionecrosis
in the mandibular bone of oropharyngeal cancer patients, using temporal trajectories of
radiomic features that were derived from serial contrast-enhanced CT images acquired at
three different time points: pre-treatment, 2 months, and 6 months post-radiotherapy. Their
aim was to develop a predictive model using multivariate functional principal component
analysis to assess temporal (kinetic) CT changes in mandibular subvolumes of patient at
high risk for osteoradionecrosis. AUC-based model evaluation showed superiority over
the radiomic kinetics model when compared to clinical or even delta radiomics, opening
new avenues for image analysis through novel statistical approaches [21].

2.4. Delta Radiomics as a Potential Tool for Treatment Adaptation

Imaging plays an essential role in monitoring the treatment response of oncological
patients. While the evaluation of post-treatment and follow-up images offer important
information regarding treatment success, image analysis during the course of therapy
can potentially assist with treatment adaptation, thus contributing to a more customized
therapy. A number of recent studies using sequential PET/CT images acquired during
treatment confirmed that changes in tumour dynamics based on hybrid image-feature
variations call for treatment adjustments to improve patient outcome [22,23].

Given that tumour hypoxia is associated with resistance to therapy and cancer re-
currence, Lazzeroni et al. investigated the association between the dynamic nature of
hypoxia during chemo-radiotherapy in head and neck cancer patients and outcome pre-
diction by analysing sequential PET/CT image features. The study employed 18FMISO
(18F-fluoromisonidazole) as an imaging agent, which is a PET radiotracer with selective
uptake in hypoxic cells. Oxygen partial-pressure maps were then evaluated and compared
through the progression and severity of hypoxic sub-volumes within the tumour, which
revealed good correlations between the hypoxic areas and treatment outcome. PET/CT
image features derived from the first two weeks of chemo-radiotherapy demonstrated the
predictive power of delta radiomics in radio-resistant head and neck cancer patients [23].
Another study undertaken in head and neck cancer patients with hypoxic tumours, in
line with the above-presented findings, reported that radiomic features of hypoxia-specific
PET/CT images, but also variations in these features during chemo-radiotherapy, predict
survival in this patient group. The study revealed that a higher homogeneity of tumour
hypoxia during therapy is associated with a better treatment outcome [22].

Tumour proliferation during therapy is another common feature of HNC which can
hinder treatment success. In view of this, 18F-FLT PET (3′-deoxy-3′-(18)F-fluorothymidine),
a proliferation-specific tracer, was employed to monitor early tumour response to treatment
and to identify possible correlations between PET parameters and outcome [24]. The
study involved 48 HNC patients who underwent sequential 18F-FLT PET scans before and
during the 2nd and 4th weeks of radio/chemotherapy. A decline in SUVmax higher than
45%, and of the PET-segmented gross tumour volumes using visual delineation (GTVVIS)
greater than the median, during the first 2 weeks of therapy correlated with superior 3-year
disease-free survival. A further decrease in the GTVVIS in the 4th week of treatment also
correlated with better 3-year loco-regional control (100% vs. 68%, p = 0.021), showing that a
change in 18F-FLT uptake early during treatment is a strong predictor of clinical outcome
and could serve as a biomarker for treatment personalisation and adaptation [24,25].

An important aspect that often needs intervention and adaptation of the treatment plan
in HNC radiotherapy is tumour volume alteration due to weight loss, tumour shrinkage or
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variations in tumour position and shape [26]. Changes in tumour volume over the course
of therapy impact not only the tumour dosage but also on the surrounding healthy organs
that could receive an overdose, leading to side effects. To predict early volumetric changes,
Illiadou et al. developed a delta-radiomic model based on weekly CBCT images in a
cohort of 40 HNC patients, focusing on parameters related to the clinical target volume and
the parotid glands [27]. A recursive-feature elimination with correlation bias (RFE-CBR)
feature-selection procedure combined with support vector machine (SVM) classifiers was
employed to predict anatomical changes in the initial tumour volume. A 0.90 prediction
accuracy was achieved (AUD = 0.91) with the selected radiomic features (13 features for the
tumour volume and 6 for the parotids). Delta radiomics of weekly CBCT images during
HNC radiotherapy using week 1 CBCT as a baseline was shown to provide important
information on volume changes from the first week of therapy, which could identify the
need for and guide treatment adaptation.

3. Holomic Approach in Head and Neck Oncology towards Personalised Therapy

A complex characterization of patient- and tumour-related landscapes requires a
holistic methodology which includes both imaging (radiomics) as well as non-imaging data.
While placing radiological imaging at the centre of diagnostics and treatment monitoring,
supplemental information such as blood markers, immunohistochemistry data, patient
characteristics (age, body mass index, lifestyle-derived factors) constitute satellite data
which enriches the radiomics information extracted purely from imaging. This ensemble of
data represents a more rounded characterization of the patient, used as input for artificial-
intelligence models for classification and prediction.

This holistic multi-omics field, which encompasses both radiomics and non-imaging
data to define patient characteristics, is referred to as holomics. The holomic approach
does not require major structural changes in the use of AI within the management of HNC.
Feeding the holomic data into AI models which were modified to accept these inputs will
generate better patient-characterization outputs than radiomics analysis alone, taking us
closer to personalized integrative therapy (Figure 1) [28].
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Figure 1. Schematic illustration of the equation of personalised therapy in oncology.

The potential of survival prediction using clinical parameters combined with multi-
imaging radiomics based on MRI and 18F-FDG-PET was examined by Martens et al. on a
cohort of 70 HNC patients. The aim of the study was to evaluate the correlations between a
set of MRI parameters (diffusion-weighted, intravoxel incoherent motion, dynamic contrast-
enhanced MRI) and PET/CT features regarding tumour characteristics and to further assess
their predictive value of various clinical endpoints when combined with clinical information
(i.e., satellite features) in patients undergoing chemo-radiotherapy [29]. Parameters such
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as HPV status, tumour volume, permeability, and extravascular extracellular space on
dynamic contrast-enhanced MRI were predictive for loco-regional recurrence and overall
survival. Other combined imaging parameters added complementary value to tumour-
feature analysis, showing that cellularity on the apparent diffusion coefficient map (MRI)
and the metabolic rates (standardized uptake value, PET) offered additional predictive
value for overall survival.

The study reported by Sellami et al. [12] (Table 1) analysed the combined radiomic
(CBCT-based) features with clinical characteristics undertaking delta-radiomic analysis of
the combined model. Of the clinical characteristics, the following were included: age, gen-
der, performance status, smoking habit, tumour stage, anatomic location, body mass index,
haemoglobin value, radiation dose, concomitant chemotherapy, and treatment interruption.
The study revealed that the radiomic feature with the largest change among consecutive
CBCT images is coarseness, while the haemoglobin level was the most representative
clinical parameter that correlated with outcome [12]. This addition of a clinical param-
eter to delta-radiomic analysis is another example of a delta-holomic approach towards
treatment-outcome prediction.

Rosen et al. demonstrated the added value of clinical data to delta radiomics in
predicting chronic xerostomia in HNC patients undergoing radiotherapy [18]. Next to
radiomics features, clinical data extracted from dose-volume histograms increase the
predictive power of the delta-radiomics model, encouraging the use of combined data for a
holomic approach to treatment.

4. Challenges and Prospects of Delta Radiomics

There are limitations to delta radiomics. Radiomic features are strongly depen-
dent on image acquisition and reconstruction settings, causing large differences between
datasets [30,31]. Furthermore, differences in image processing and segmentation-method
variability in textural analysis are other causes of biased data interpretation [32]. The field
of radiomics is still lacking standardization; thus, harmonization guidelines are a funda-
mental requirement for further progress [33–36]. In a recent work, Welch et al. established
a set of safeguards aimed to support radiomic models through a comprehensive analysis of
the radiomic signature [37]. Furthermore, non-standardized image parameters [38] and
differences in fusion algorithms for hybrid imaging [39] make it challenging to compile a
standardized dataset.

One non-technical but, nevertheless, important challenge in implementing delta radiomics
is patient adherence to imaging timelines. Patient non-compliance with follow-up protocols can
lead to a lack of the necessary information for adequate delta-radiomic analysis [40].

While radiomics features provide useful information from diagnostic through treat-
ment and follow-up, the definition of exact values for these features is difficult due to
inter-patient differences in radiomic signatures. Delta radiomics provides a valuable
service in allowing the analysis of data for one particular patient in time, eliminating
inter-patient variability. The possibility of following a set of features for the particular
patient over time is a critical step in achieving true personalized treatment.
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