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Abstract: Alternative splicing is one of the main regulation pathways in living cells beyond simple
changes in the level of protein expression. Most of the approaches proposed in proteomics for the
identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of
the sample under study, which is not always available, especially in the case of the re-analysis of
previously acquired data. Herein, we developed new algorithms for the identification and validation
of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples
under study. The bioinformatic approaches were tested on the results of proteome analysis of
human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass
spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied
was performed against the database generated from all known transcripts (RefSeq) and the one
composed of peptide sequences, which included all biologically possible combinations of exons. The
identifications were filtered using the prediction of both retention times and relative intensities of
fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to
the discovered alternative splicing events were additionally examined for artifacts. Selected splicing
events were further validated at the mRNA level by quantitative PCR.

Keywords: proteogenomics; cell lines; alternative splicing; melanoma; proteomics

1. Introduction

More than 90% of multiexon human genes undergo alternative splicing [1,2]. Moreover,
most of the genes give rise to more than two isoforms, and the current annotation of the
human transcriptome contains an average of four distinct products per gene [3]. Thus,
alternative splicing drastically expands the diversity and complexity of gene products
(mRNAs) to allow tissue and organ specificity [2,4]. This diversity could be one of the
reasons for mammalian complexity and play a crucial role in development and evolution [5].
Bound to its important role in cell biology, dysregulation of alternative splicing often leads
to complicated pathological conditions.

To date, a number of diseases, including different types of muscle atrophies and
cardiomyopathy, neurodegenerative diseases, and even aging [6], have been associated
with a change in the frequency of exon/intron inclusion (for a review, see [7,8]). Such
alterations can lead to changes in the translation process, as well as to the production of
proteins with different functions (or non-functional ones). Splicing dysregulation was
repeatedly reported in cancer cells, directly affecting cancer-related genes, as well genes
important for splicing process (splice factors and spliceosomal subunits) [9]. Moreover,
a number of those mis-spliced transcripts and their encoded proteins were shown to
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drive cancer progression or contribute to various cancer hallmarks [10]. Melanoma is an
aggressive skin cancer currently considered one of the most dangerous human malignant
tumors. In recent years, alternative splicing dysregulation has been shown to influence
the pathogenesis of melanoma [11–20] and is associated with the prognosis of patient
survival [18]. Despite the undoubted importance of alternative splicing regulation and the
crucial role of protein products from mis-spliced mRNAs, nowadays most of the studies
are still conducted on the transcript, rather than protein level.

The presence of numerous alternative transcript isoforms was repeatedly shown in
various tissues, organisms, and disease contexts [2,21–26]. However, the existence of protein
isoforms, e.g., the ones produced from alternatively spliced transcripts, is still an actively
debated question [10,27–31]. A number of earlier proteomic studies have demonstrated
the presence of multiple protein isoforms [32,33], supported further by mass spectrometry-
based analyses of proteomes of large varieties of tissues and organs [34]. However, recent
studies and re-analysis of the previously reported findings showed a surprisingly low level
of protein isoforms in normal human tissues [28,35], suggesting that the nervous and muscle
tissues express the highest (yet still low) number of tissue-specific protein isoforms [36].
There are a number of reasons for such dichotomy in mass spectrometry-based bottom-up
proteomics, including (i) low protein sequence coverage translating into a low probability
to detect splicing-specific peptides, (ii) a statistically increased probability of arginine or
lysine being encoded at exon boundaries [37], (iii) sample-specific alternative splicing, and
(iv) false discovery rate estimation and false positive identifications. The first challenge can
potentially be overcome by using targeted techniques, such as MRM/PRM [38], assuming
there is prior knowledge about proteins of interest or, to some extent, data-independent
acquisition (DIA) methods [27]. The latter is bound to the almost exclusive use of trypsin,
which cleaves sequences specifically after arginine and lysine residues and, therefore,
lowers the probability of producing peptides covering the splice junction. A number of
alternative proteases can be used to solve this problem [39]. Then, false identifications are
an intrinsic feature of the target-decoy approach (TDA) commonly used in proteomics [40].
Indeed, the TDA-based filtering implies a particular percentage (usually 1%) of false-
positive identifications, which can be neglected in the proteome-wide analysis. However,
when a particularly small subset of peptides is considered (e.g., peptides corresponding
to non-canonical isoforms), the percentage of false positives can reach 100%. Therefore,
group-specific filtering is needed to come up with reliable identification of splicing-related
peptides, which was the topic of recent intensive discussion in the literature [28,41–43].
The problem can be addressed by using sample-specific databases, although it would
require a parallel RNAseq analysis of all expressed transcripts and isoforms for the same
samples. This approach has many benefits, allowing the detection of novel protein isoforms
produced from mis-spliced sample-specific transcripts [38]. However, apart from the cost of
analyses for large sample cohorts, it cannot be used for the re-analyses of existing proteomic
datasets, samples available in limited amounts, as well as physiological liquids.

In this work, we developed an approach for the identification of sample-specific
splicing events at the proteome level without a priori transcriptional information. The
efficiency of the approach was evaluated by re-analyzing previously published proteomics
datasets acquired for melanoma samples [44]. First, we evaluated different properties
of peptide identifications, such as retention time, MS/MS spectra, among others, and
estimated their utility for the filtering of identifications corresponding to known non-
canonical isoforms. Then, the developed filtering was integrated with a proposed method
of transcriptome-free identification of novel protein isoforms based on the combinatorial
pairing of known exons.

2. Results

LC-MS/MS proteomic datasets obtained earlier for four melanoma cell lines, KIS,
KOR, P, and 82 from the previous study [44] were used to develop the method and test its
efficiency. These cell lines were selected based on the depth of respective proteome coverage
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and reproducibility between the biological replicates. On average, about 17,500 peptides
and 3500 proteins have been identified for each of the cell lines. Such sensitivity makes
it possible to count on the detection of splicing-specific peptides by classic “bottom-up”
proteomics methods without additional enrichment.

2.1. RefSeq-Based Identification

The first approach to the identification and validation of alternative splicing products
without having the sample-specific RNA sequencing data at hand was the use of a database
of all previously detected transcripts. To evaluate this approach, we used the RefSeq
human protein database (Genome-Build. GRCh38. https://www.ncbi.nlm.nih.gov/refseq/
(accessed on 14 May 2021); p. 13) containing 81,565 unique protein sequences, which is
approx. four times the number of unique sequences (20,324) in the SwissProt canonical
protein database.

For the studied cell lines, 252 (line KIS) to 348 (line P) unique peptides not correspond-
ing to canonical protein isoforms were identified. In order to increase the reliability of these
peptide identifications, we have developed the following filters (Figure 1):

1. Chromatographic (LC) filter: Deviation of experimentally measured retention time
for an identified peptide from the predicted one;

2. Fragmentation pattern filter: A Pearson correlation between fragment ion intensities
in measured tandem mass spectra and predicted fragmentation pattern for a peptide
ion in question.
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Figure 1. Two-step filtering of splicing peptide identifications was implemented as follows. DeepLC
retention time prediction model calibration using a randomly selected half of all peptide identifi-
cations; LC filtering based on a 2-sigma threshold; and Pearson correlation filtering based on the
prediction of the peptide ion fragmentation pattern using the MS2PIP tool [45]. The threshold value
for MS2PIP filtering was selected at the 5th percentile of the corresponding distribution.

Peptide retention time directly depends on the amino acid sequence and thus can be
used as an additional confirmation of identifications [46]. Retention times were predicted
using a recently introduced machine learning-based algorithm DeepLC [47]. To determine
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the LC filtering thresholds for the identification results, the prediction model was calibrated
using one-half of the identified peptides (randomly selected) for the particular analysis.
Figure 1 shows the correlation between predicted and experimental retention times for
one of the LC-MS/MS runs. On average, the prediction accuracy of the DeepLC model
was reasonably high, with a standard deviation of 3.7 to 4.1 min between experimental
and predicted RTs for 140 min gradients. However, we systematically found that the
predicted times differ significantly from the experimental ones for peptides with a modified
N-terminus and, therefore, we excluded these peptides from the LC filtering step. For all
other peptides, the distribution of prediction errors was calculated and approximated by a
normal distribution (Figure 1). All identified peptides with a prediction error of more than
2 standard deviations (or z-scores above 2) were considered false matches and filtered out.

Relative intensities of peptide fragments in tandem mass spectra (MS/MS) depend on
several parameters, such as peptide bond strength, neighboring amino acids, gas-phase
basicities of the corresponding oxonium ions, fragment size, etc. These parameters together
make the fragmentation pattern sequence-specific and, thus, the fragment ion intensities
can be used to validate identifications. In this work, we employ the MS2PIP tool based
on machine learning to predict fragment ion intensities for the identified spectra, [45] and
develop a filtering procedure utilizing the deviation between experimental and predicted
fragmentation patterns. In particular, for each identified peptide, the mass spectrum with
the highest hyperscore assigned by the proteomic search engine was selected; this spectrum
was then compared with the theoretical one and the Pearson correlation between these
spectra was calculated for predicted fragments. Figure 1 shows the distribution of the
obtained correlation R values for the peptides identified in one of the LC-MS/MS runs. The
threshold value was set at the 5th percentile of this distribution.

Furthermore, we considered only the peptides identified in all three replicates with
the match between the runs setting of the search engine, meaning that the corresponding
peptide-like feature was present in precursor (MS1) spectra. The use of the above filters
resulted in a decrease in the number of uniquely identified peptides from the RefSeq
database by 63–89%, depending on the cell line. Figure 2 shows the intersection of unique
splicing-related peptides between cell lines before and after the use of the above filtering.
The complete output of the searches and filtering is given in Supplementary Table S1.
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2.2. Combinatorial Database Identification

A combinatorial database (CombiDB) was constructed based on RefSeq reference
genome sequences and annotation (version GRCh38). The database was constructed as
an annotated list of novel peptides, rather than whole artificial proteins, for the sake of
computational performance. Each peptide would originate from a splicing event between
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two exons of the same gene, each represented in at least one transcript of that gene. The
possible pairs of exons were constrained based on the following criteria:

1. The exons must not overlap;
2. If an exon contains an untranslated region (UTR), it cannot be coupled with another

exon at the end where the UTR is located;
3. There must be no more than ten skipped (non-overlapping) exons between the two

exons in the pair.

For each pair of exons, their coding parts were concatenated and translated, then
tryptic peptides that span the junction and have a length between 7 and 50 amino acids
(with up to one missed cleavage site) were added to the database.

This procedure produced 886,795 tryptic peptides that were not found in the in silico
tryptic digest of the RefSeq protein database. Some of them, however, could still be found
in RefSeq proteins as non-tryptic peptides; the exclusion of those left 885,359 novel peptides.
For the purpose of this estimation, leucine and isoleucine were considered identical.

To validate the generation procedure, we assessed how many known junction-spanning
peptides were generated. To this end, we repeated the same procedure but only considered
pairs of consecutive exons from the same transcripts. This would produce peptides that
are coded by annotated transcripts and must be present in the RefSeq protein database.
We observed that of 449,708 peptides generated in this manner, 99.8% were present in the
protein database. The remaining 0.2% indicates the discrepancies between the genome
annotation and the protein database. On the other hand, 99.6% of RefSeq-derived peptides
were present in the combinatorial database, indicating that the generation approach is
comprehensive enough to cover most of the possible splicing events.

For the database search, we combined the tryptic digest of the whole RefSeq protein
database with novel combinatorial peptides and generated decoys. For decoy generation,
we reversed the peptide sequences, while keeping the N- and C-terminal residues in place.
If the resulting peptide coincided with a target peptide or a previously generated decoy,
the inner part of its sequence was shuffled (up to 20 attempts were made). Overall, the
search database contained 1,591,886 RefSeq peptides, 885,359 novel peptides and their
decoy versions. The total database size was 4,954,365 peptides: 2,477,245 targets and
2,477,120 decoys.

After the search against this database, all peptides corresponding to the RefSeq
database were excluded from the search results, while the remaining combinatorial pep-
tides corresponding to novel splicing were subject to the same three-step filtering procedure
described above for the RefSeq identifications. The results of filtering are summarized in
Figure 3; 68% to 94% of matches were filtered out depending on the cell line. Full search and
filtering results are given in Supplementary Table S2, including the genomic coordinates of
the novel junctions.
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2.3. PCR Validation of Target Splicing Events

PCR validation of novel splicing events was performed in two cell lines with the
highest quality proteomic data, 82, and KIS. Based on the search and filtering results,
the following targets were selected for validation using real-time polymerase chain reac-
tion (PCR): TLIINGLR peptide from SMPD4-encoded protein, KYADLLLK from TXLNG,
LGILGLFQK from NLGN4X, and TWDQVPFSVSVSQLR from PMEL. We also checked
these targets for artifacts using blastp. The peptide from TXLNG did not pass the blastp
check since it might have been a misassigned peptide from a different gene, and the three
remaining targets were considered for further validation.

The primer design criteria were as follows (Figure 4). For each target gene, one primer
corresponding to exon skipping was selected so that it spans the junction (∆n), while the
alternative primer was selected from the skipped exon; the corresponding reversed primer
was common for both isoforms. A pair of primers was also selected from the sequence
region shared between all known isoforms in order to generate a shared amplicon for
intensity normalization. Primer sequences are listed in Supplementary Table S3.
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Figure 4. Schematic of primer selection for qPCR. Primers and the corresponding amplicons are
shown in red and gray colors, respectively. ∆n corresponds to an isoform with skipped target exon n,
while +n means inclusion of the same exon. ‘com’ means the primer common for both isoform-specific
amplicons, while the primers corresponding to the shared amplicon (used for intensity normalization)
are designated as ‘sh’. F stands for forward primers and R for reversed ones.

The results of real-time PCR analyses are shown in Figure 5. For the NLGN4X gene,
the amount of amplicon with the skipped exon 4 was insignificant, while for the other
two targets, the presence of both splice isoforms was confirmed in both cell lines. This
observation suggests further that we deal with the novel splicing of these genes found at
the proteome level.
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3. Discussion

The size of the database used for a search in proteomics was discussed elsewhere [48].
It is trivial that you can only find what you have in the search database, yet the inflation
of the search space by adding more and more protein sequences competing for the spec-
tra may result in a decrease in sensitivity due to the increased number of false matches.
While some researchers use a full protein database with isoforms, such as human UniProt
for all searches, it may be suboptimal and further complicate the downstream analysis.
Many choose to stick with the sequences present only in the SwissProt database containing
“canonical” proteins; however, researchers may potentially lose the possible alternative
splicing events. Herein, we suggest using the RefSeq human protein database (Genome-
Build. GRCh38. https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 14 May 2021),
p. 13), in order to identify alternative splicing, containing 81,565 unique protein se-
quences, which is approx. four times the number of SwissProt sequences (20,324) (https:
//www.uniprot.org/proteomes/UP000005640 (accessed on 9 April 2021)). The intersection
of the protein sequences contained in these databases is shown in Supplementary Figure
S1a. Potentially, such an increase in the search space could lead to a decrease in the sensi-
tivity of a search. However, since bottom-up proteomics deals with peptides rather than
the proteins themselves, it is the size of the search space at the peptide level that matters
(Supplementary Figure S1b). At this level, the real search space increases only by ~10%,
which should not be a problem with sensitivity by all counts.

Supplementary Figure S2 shows the intersection between identified peptides using
the two databases described above (only peptides identified in all three biological repli-
cates). For all cell lines, searches against the RefSeq database resulted in the discovery
of more peptides compared to searches against the canonical database, supporting the
above conclusion that a marginal increase in the search space at the peptide level does
not result in a loss of sensitivity. Therefore, databases containing proteins corresponding
to all previously discovered transcripts can be effectively used for identification at the
peptide level in bottom-up proteomics in spite of their large size. Moreover, since peptides
found using only the RefSeq database (indicated as “unique” in Figure S2) correspond to
alternative protein isoforms, such a comparative analysis should allow the detection of
splice-specific peptides as well.

The combinatorial splicing database, on the other hand, introduces a more significant
expansion to the database, adding 885,359 novel peptides, which corresponds to an ap-
proximately 50% increase in the database size compared to RefSeq. Here, we performed a
study on how much this extension affects the identification of peptides corresponding to
alternative splicing from the RefSeq database. Supplementary Figure S3 shows the numbers
of RefSeq alternative splicing peptides identified in both RefSeq and combiDB searches
(intersection) and exclusively in the RefSeq one (lost). This shows that a 50% expansion of

https://www.ncbi.nlm.nih.gov/refseq/
https://www.uniprot.org/proteomes/UP000005640
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the peptide sequence database leads to a loss of up to 10% of identified peptides, which is
reasonable and does not undermine the approach based on a combinatorial database.

Having said that, we believe that using the combiDB gives insights into some novel
alternative splicing. For instance, a peptide corresponding to novel splicing in melanocyte-
specific transmembrane glycoprotein (PMEL, also known as gp100L) was identified in cell
line 82, and the presence of the corresponding transcript was further confirmed by qPCR
in both 82 and KIS cell lines. The annotated mass spectrum of the corresponding peptide
and the mapping of this novel isoform in comparison with known isoforms of the PMEL
gene are shown in Supplementary Figure S4. This protein is involved in amyloid formation
and plays a critical role in the transition of melanosomes from stage I to stage II [49,50].
PMEL expression level was proposed to be a negative prognostic marker in Skin Cutaneous
Melanoma (SKCM) [51]. Moreover, this protein has been used as a target antigen in some
variants of adaptive T-cell therapy for melanoma [52]. The identified alternative splicing
corresponds to a deletion of exon 5 (genomic coordinates chr12:55,957,921-55,958,085),
which represents the main part of the amyloidogenic unit [53]. Such deletion would also
affect two antigenic peptides (G9-154 and G9-209), which reportedly stimulate an anti-
tumor immune response [54], and G9-154 (154-162 epitope) was used in the clinical trial
of the T-cell therapy for metastatic melanoma [trial NCI-07-C-0174 and NCI-07-C-0175,
www.ClinicalTrials.gov]. The identified novel splicing may play a crucial role in therapy, as
well as in the early detection of melanoma. Further study is needed to assess the functional
role of the identified isoform, as well as its presence in vivo. Thus, the proposed approach
with proper validation can lead to the discovery of biologically significant novel alternative
splicing, even in the absence of personalized transcriptome information.

It should be also noted that the studies on cell lines are just the first step toward the
establishment of any kind of biomarker, while for clinical samples more issues may arise,
for instance, from tumor heterogeneity [55,56]. Those issues have to be addressed at the
corresponding stages of research.

4. Materials and Methods

The dataset of LC-MS/MS analyses of human melanoma cell lines on the Orbitrap Q
Exactive mass spectrometer from an earlier study was used (available at ProteomeXchange
with the dataset identifier PXD007662).

The searches for alternative splicing events at the proteome level were performed
using FragPipe software based on the MSFragger search algorithm [57] with the match
between runs option. This option was chosen to improve the reproducibility of biological
replicate analyses. All results were filtered to a 1% false discovery rate.

The combinatorial database was constructed based on RefSeq reference genome se-
quences and annotations (version GRCh38) as an annotated list of novel peptides rather
than whole artificial proteins, for reasons of computational performance. Each peptide
would originate from a splicing event between two exons of the same gene, each repre-
sented in at least one transcript of that gene. Below is the pseudocode illustrating the
database generation procedure:

- For each gene's exon set:

0. total # of exons := N.
1. for exon ei, i = 1 . . . N−1.

- For j in 1 . . . 10.
- If the frame of exon ej+i corresponds to the end of ei.
- Generate junction from exons ei and ei+j.
- Apply the trypsin cleavage rule to the generated junction sequence and make peptides

with up to one missed cleavage.
- Add junction-containing tryptic peptides with lengths of 7 to 50 amino acid residues

to the peptide database.

www.ClinicalTrials.gov
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For the database search, we combined the tryptic digest of the whole RefSeq protein
database with novel combinatorial peptides and generated decoys. For decoy generation,
we reversed the peptide sequences, while keeping the N- and C-terminal residues in place.
If the resulting peptide coincided with a target peptide or a previously generated decoy,
the inner part of its sequences was shuffled (up to 20 attempts were made).

All identified noncanonical peptides from RefSeq and combinatorial databases were
validated using retention time and fragment intensity prediction by DeepLC [47] and
MS2PIP [35] algorithms, respectively. Only peptides with non-zero intensity in all three
replicates were considered.

Identified novel junction peptides selected as targets for PCR-based validation were
additionally checked using BLAST to rule out other possible explanations for observing
them. For each identified peptide, all its possible “isoforms” resulting from I/L replacement
were generated and written into a FASTA file. Then, this file was searched using blastp
(https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 1 April 2022)) against all human
proteins. Some of the peptides identified in modified form had BLAST hits differing by a
single amino acid and were deemed unreliable.

Primers were designed using Unipro UGENE [58] and Primer-BLAST [59]. Oligonu-
cleotides were purchased from Evrogen (Evrogen, Moscow, Russia). All primers were
checked for the formation of secondary structures, homo-, and hetero-dimers using the
IDT OligoAnalyzer (http://scitools.idtdna.com/analyzer/Applications/OligoAnalyzer/
(accessed on 1 May 2022)). Primer sequences are presented in Supplementary Table S3.

Melanoma cells were cultivated the same way as in an earlier study [44]. Cell lines
82 and KIS were derived in 2005−2008 from excised tissues of stage IV metastatic malignant
skin melanomas, as described elsewhere [60,61], and stored frozen in liquid nitrogen in
the biobank of the Institute of Gene Biology, Russian Academy of Sciences. All cell lines
were defrosted and cultured. The KIS cell line was cultured in the RPMI-1640 medium
supplemented by 10% (v/v) fetal calf serum, 2 mM L-glutamine, 100 U/mL penicillin, and
100 mg/mL streptomycin. Cell line 82 was cultured in the DME/F-12 medium supple-
mented by 10% (v/v) fetal calf serum, 2 mM L-glutamine, 100 U/mL penicillin, 100 mg/mL
streptomycin, and 15 mM HEPES. Cells were incubated at 37 ◦C and 5% (v/v) CO2, and
the media were refreshed every 3 days. Those adherent cell lines were subcultured upon
reaching 70−90% confluence. To this end, the medium was withdrawn from Petri dishes
with cells. The dishes were washed with warm Dulbecco’s phosphate-buffered saline (PBS)
with depleted Ca2+ and Mg2+; then, a 0.05% (w/v) trypsin solution containing 0.2 g/L
EDTA was added. Dishes were incubated at 37 ◦C for 5−10 min until cells were detached
from the plastic. Equal volumes of fresh media were then added to the dishes, media
were resuspended, and cells were planted out in a 1:3 to 1:5 ratio. All reagents for cell
culture were purchased from GE Healthcare Life Sciences (HyClone brand, Marlborough,
MA, USA). For storage before analysis, detached cells were precipitated by centrifuga-
tion, washed three times with PBS, and stored at −80 ◦C. For the qPCR analysis, three
independent batches of each cell line were grown, each containing at least 1 million cells.

RNA was isolated from 106 cells using an RNeasy Mini Kit (Qiagen), according to the
manufacturer’s instructions. Quantity and integrity of all used RNA stocks were controlled
using a Qubit Fluorometer (Thermo Fisher Scientific) and non-denaturing agarose gel elec-
trophoresis. Total RNA (1 µg) was reverse transcribed using MMLV Reverse transcriptase
(Evrogen, Moscow, Russia) with random (dN)10–primer.

Quantitative PCR of cDNA samples was performed at least in triplicate with a Bio-Rad
CFX96 Touch Real-Time PCR Machine (Bio-Rad). In a total, a volume of 25 µL was added
to the cDNA, 5 µL of 5x qPCRmix-HS SYBR Mastermix (Evrogen, Moscow, Russia), and
200 nM of each primer. For amplification, 40 cycles were performed with the following
steps: denaturation at 95 ◦C for 20 s, annealing for 15 s, and elongation at 72 ◦C for 15 s.
Different annealing temperatures were used for different genes: PMEL and NLGN4X at
57.5 ◦C, and SMPD4 at 58.0 ◦C.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://scitools.idtdna.com/analyzer/Applications/OligoAnalyzer/
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The identity of the amplicons in each sample was controlled by melting curve analysis.
For melting curve analysis, stained products after the last amplification cycle were kept at
65 ◦C for 30 s and melted by raising the temperature by 0.5 ◦C per second up to 95 ◦C.

5. Conclusions

An approach for the discovery of novel alternative splicing events in proteomics data
based on the combinatorial peptide database combiDB was proposed. Some of the results
obtained by the approach have been validated by orthogonal methods, further advocating
for the feasibility of its use for the search of novel splicing events at the proteome level in
cases when the information about transcriptome is unavailable. Specifically, we found novel
splicing in melanocyte-specific transmembrane glycoprotein (PMEL) in the melanoma cell
lines, which was further confirmed by qPCR and may be crucial for cancer proliferation
and, thus, be targeted by novel therapeutic approaches.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms24032466/s1.
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