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Abstract: Meniere’s disease (MD) is one of the most complicated diseases in the otologic clinic. The
complexity of MD is partially due to the multifactorial etiological mechanisms and the heterogenous
symptoms, including episodic vertigo, hearing loss, aural fullness and tinnitus. As a result, the diag-
nosis of MD and differentiating MD from other diseases with similar symptoms, such as vestibular
migraine (VM), is challenging. In addition, it is difficult to predict the progression of hearing loss
and the frequency of vertigo attacks. Detailed studies have revealed that functional markers, such as
pure tone audiometry (PTA), electrocochleography (ECochG), vestibular evoked myogenic potential
(VEMP), caloric test, video head impulse test (vHIT) and magnetic resonance imaging (MRI) could
help to evaluate MD with different hearing levels and frequency of vertigo attacks. Investigations
of molecular markers such as autoimmunity, inflammation, protein signatures, vasopressin and
circadian clock genes in MD are still underway. This review will summarize these functional and
molecular markers, address how these markers are associated with hearing loss and vertigo attacks
in MD, and analyze the results of the markers between MD and VM.

Keywords: Meniere’s disease; markers; pure tone audiometry; electrocochleography; vestibular
evoked myogenic potential; caloric test; video head impulse test; magnetic resonance imaging;
autoimmunity; vasopressin; circadian clock; vestibular migraine; hearing loss; vertigo attacks

1. Introduction

Meniere’s disease (MD) is a heterogeneous inner ear disorder with complex symptoms,
including episodic vertigo, sensorineural hearing loss and aural symptoms such as aural
fullness or tinnitus. The incidence and prevalence of MD are varied and range from 3.5 per
100,000 to 513 per 100,000 [1]. The most classic pathogenesis of MD is endolymphatic hy-
drops (EH). According to the published temporal bone finding from the histopathological
studies, EH of pars inferior structures was found in 98.8–100% of all confirmed cases [2–4].
Different pathogeneses of MD were claimed in recent decades, including anatomic or struc-
tural changes, vasopressin, autoimmune, allergy, migraine-related, genetic theories, and so
on [5–15]. In fact, it is a multifactorial disease with more than one etiology converging into
characteristic symptomatology [16].

The clinical heterogeneity makes the diagnosis of MD a challenge in the clinic since
we lack good objective markers and exact examination standards but only depend on
subjective symptoms and signs. In 2015, the American Academy of Otolaryngology–Head
and Neck Surgery Foundation (AAO-HNSF) revised the diagnostic criteria for two MD
categories: Definite MD and probable MD (Table 1) [17,18]. These diagnostic criteria are
important in diagnosing MD and distinguishing MD from other causes of vertigo with
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similar symptoms. However, because of the variable clinical presentation of MD, it needs
to take a period of time to observe the clinical manifestations to make an accurate diagnosis
of definite MD.

Table 1. Diagnostic criteria of MD according to 2015 AAO-HNS Equilibrium Committee [17].

Definite MD:
1. Two or more spontaneous attacks of vertigo, each lasting 20 min to 12 h
2. Audiometrically documented fluctuating low- to midfrequency sensorineural hearing loss in
the affected ear on at least 1 occasion before, during, or after 1 of the episodes of vertigo
3. Fluctuating aural symptoms (hearing loss, tinnitus, or fullness) in the affected ear
4. Other causes excluded by other tests
Probable MD:
1. At least 2 episodes of vertigo or dizziness lasting 20 min to 24 h
2. Fluctuating aural symptoms (hearing loss, tinnitus, or fullness) in the affected ear
3. Other causes excluded by other tests

Fluctuating low-tone hearing loss is the most characteristic finding in early MD. It
was hypothesized that the distention of basilar membranes in EH starts from the apex
and causes low-frequency hearing loss [19]. Therefore, the severity of cochlear EH can be
evaluated by the degree of hearing loss. Therefore, the most commonly used staging of
MD is based on the average of pure tone thresholds at 0.5, 1, 2 and 3 kHz of the audiogram:
stage I, less than 26 dB; stage II, 26–40 dB; stage III, 41 to 70 dB; stage IV, more than 70
dB [20]. In general, the history of hearing loss in MD is usually progressive but sometimes
inconsistent between different subtypes of MD patients [21,22]. In addition, the frequency
of vertigo attacks and vestibular hypofunction seem not able to predict the hearing outcome
of MD [22,23]. However, no specific markers could be used to correlate with the hearing
results of MD patients in the clinic.

The frequency of vertigo attacks is another concern for patients with MD since vertigo
episodes could affect the quality of life. Although environmental factors might precipitate
the attacks of MD, these factors are generally unspecific, and the factors that could induce
vertigo in one patient may not affect another one. Therefore, the investigation for markers
to predict vertigo attacks is essential for MD patients. On the other hand, clinicians need
available markers to differentiate MD from vestibular migraine (VM), a disease comprising
similar symptoms to MD. It is crucial since the prognosis and treatment strategies of MD
and VM are different.

The diagnosis of MD is based on the diagnostic criteria of MD. Although several
audiovestibular markers have been used to evaluate MD in the clinic, clinicians and patients
are frequently confused with the results. In addition, there is no consensus regarding the
role of molecular markers based on the etiological mechanisms of MD. In this review, we
will overview the recent studies about the markers of functional testing used in the clinic
and the recent development of magnetic resonance imaging (MRI) to evaluate MD. In
addition, the molecular markers investigated in recent years will be reviewed. We will
also focus on the functional and molecular markers in different hearing levels/staging and
vertigo attacks/remission. In addition, we will look at the articles to see whether these
markers could help to differentiate MD from VM.

2. Functional Markers for MD
2.1. Pure Tone Audiometry (PTA)

PTA is the most widely used hearing examination to identify hearing threshold levels
and to determine the hearing loss degree, type and configuration. According to current
AAO-HNS diagnostic criteria, one of the essential conditions of definite MD is the doc-
umented fluctuating low- to mid-frequency sensorineural hearing loss, which must be
examined by the PTA [17]. Therefore, PTA is a necessary examination for suspected MD
patients. In early MD presentation, hearing loss usually fluctuates or is subtle, making it
difficult to catch a positive finding using PTA, and the suspected patient always undergoes
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several PTAs. In addition, the reliability and accuracy of PTA results depend on the cooper-
ation of patients. However, PTA is still the basic test to accurately diagnose and determine
the stage of MD.

During the natural course of MD, the hearing loss pattern could shift from the early
stages of lower-frequency hearing loss to the late stage of high-frequency hearing loss,
showing a “flat type audiogram” in PTA [23]. Therefore, PTA could be used in predicting
the course of the disease. It was also observed that MD patients with middle- and high-
frequency hearing loss at the initial visit had a poor prognosis in relation to hearing loss [21].
On the other hand, patients with primary MD exhibit moderate-to-severe hearing loss
within 5–10 years, whereas patients with migraine-related MD or VM tend to recover and
fluctuate for a long time [21,24].

Although a fluctuating sensorineural hearing loss, which affects low frequencies, is the
major initial finding of PTA in MD, other similar diseases, such as acute low-tone hearing
loss (ALHL), also characterizes similar PTAs. In particular, recurrent hearing loss is not
uncommon in ALHL [25] and was previously thought to be “cochlear MD” [26]. Because
of the clinical similarity of recurrent low-tone hearing loss with MD, one may wonder
whether the recurrence of low-tone hearing loss is a sign of EH and whether it will progress
to definite MD. In a study conducted by Yamasoba et al., the author followed patients with
initial ALHL without vertigo for a minimum of 3 years, and only 11% developed clinical
MD [27]. In a later study by Junicho et al., they also found that not all ALHL suffered
from EH, even if they had a vertigo attack at the onset [28]. The reason is probably that
recurrent ALHL might be a common sign of several diseases, such as MD, sudden deafness,
and VM [29]. Recently, it was also observed that recurrent low-tone hearing loss possibly
occurred in patients with migraine without vertigo, which was proposed as the symptoms
of “cochlear migraine” [30]. Therefore, one cannot solely use PTA to diagnose MD, and
definite MD has to be confirmed according to the diagnosis criteria.

In terms of vertigo attacks, fluctuating hearing loss is not always related to vestibular
symptoms. Sometimes there is a time delay between hearing loss and vertigo [31]. During
the natural course of the disease, some studies assume that the frequency of vertigo
increases during the early stage of MD and may then keep stable or without vertigo attack
for several years [32,33]. However, it was also observed that some patients with long-term
MD still suffered from frequent vertigo attacks [34]. Compared to the progression of hearing
loss in typical MD, the frequency of vertigo attacks is difficult to predict. The relationship
between PTA and vertigo attacks during the course of MD needs further elucidation.

2.2. Electrocochleography (ECochG)

ECochG is an objective examination conducted to record the electrical potentials
generated in the inner ear and auditory nerve in response to sound stimulation in order to
detect the distortion of the basilar membrane due to EH [14]. Three main basic potentials in
ECochG are the action potential (AP), the cochlear microphonics (CM) and the summating
potential (SP). Since Gibson et al. proposed the abnormal findings of the ECochG in MD
decades ago [35], several other studies showed that the amplitude of the AP and SP ratio
could identify EH or MD. Although several researchers tried to use ECochG to diagnose
MD, a standardized cut-off value to confirm EH is lacking. A recent systemic review
revealed that the sensitivity of ECochG is about 66.7–85.7%, while the specificity is about
80–100% [36]. The problem of low sensitivity is possibly due to the fact that patients
with probable MD may not have developed cochlear changes that result in an abnormal
ECochG [37]. In addition, an elevated SP/AP ratio can be observed in other inner ear
diseases, such as superior semicircular canal dehiscence [36]. In addition, the SP/AP ratio
does not recover even if vertigo attacks disappear in MD [38]. Because the extratympanic
electrode to measure the SP and AP ratio provided low specificity and sensitivity [39,40],
transtympanic ECochG was developed to enhance the sensitivity [41,42]. Other methods to
increase sensitivity include the usage of tone burst stimuli [43,44] and the measurement of
the SP/AP area ratio [45], SP bias ratio [46], and graphic angle [47].
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Since a positive ECochG represents EH, the correlation between ECochG results and
the audiological symptoms of MD has been investigated. In the study conducted by
Hornibrrok et al., the “positive” ECochG group had a significantly higher proportion of
participants who showed asymmetrical hearing thresholds than the “negative” ECochG
group [42]. In fact, a significant association between an enlarged SP/AP ratio and the
degree of hearing loss was noted, showing that patients with advanced staging had a
higher possibility of an enlarged SP/AP ratio [48]. Another study by Takeda et al. found
that the incidence of an enhanced SP was increased in cases with MD with a pure-tone
average exceeding 31 dB [49]. Therefore, they concluded that ECochG is more likely to be
positive in patients with longer periods of cochlear and vestibular symptoms. However, in
their study, the elevated SP/AP ratio may persist even in glycerol-induced hearing gain.
This implied that even though ECochG might be used as the diagnostic tool in MD, the
usefulness of ECochG as the marker for hearing loss in MD needs further investigation.

Another important topic is whether ECochG could differentiate MD from VM. Since
EH is a distinct feature of MD, Mertines et al. observed a higher proportion of abnormal
ECochG in MD than in VM [50]. However, EH still possibly occurred in patients of VM,
which revealed a higher SP/AP [51]. Therefore, ECochG could not be used as the sole tool
to differentiate MD and VM.

2.3. Vestibular Evoked Myogenic Potential (VEMP)

VEMP is a vestibular function technique used to evaluate the function of the utricle
and saccule. Generally, VEMPs can be recorded from the contracted sternocleidomastoid
muscle (cervical VEMPs or cVEMPs) to assess saccule function, while the inferior oblique
muscle (ocular VEMPs or oVEMPs) to assess utricle function [52,53]. Air-conduction sound
(ACS) and bone-conduction vibration (BCV) are the most frequently applied in clinical
VEMP settings [54]. Compared to a healthy control, MD patients presented both cVEMP
and oVEMP larger amplitudes when using BCV than ACS and both lower response rates
when using ACS than BCV [55,56]. Another parameter of VEMP is the interaural amplitude
difference (IAD) ratio. The higher ratio may indicate lower vestibular function [57]. In
a meta-analysis, the sensitivity and specificity of cVEMP for identifying EH were 49%
and 95% [58]. In fact, the evidence is insufficient to determine whether VEMP is useful
for diagnosing MD. Therefore, VEMP might not be used as a reliable marker to diagnose
MD but could serve as an adjuvant measurement of vestibular dysfunction [59] or as a
component of the inner ear battery test for mapping the topographic involvement of EH in
MD [56].

In addition to evaluating the inner ear function in MD, there are some implications of
VEMP to help clinicians and MD patients. For example, since saccule is the second most
frequent site of EH, VEMP was also used to assess the stage of MD. In a study conducted
by Young et al., the IAD ratio of VEMP increased in the advanced stage of MD [57]. They
then concluded that VEMP might provide another aid for evaluating the staging of MD in
addition to the hearing test. Interestingly, because the saccule is spare in acute low-tone
hearing loss, VEMP test may also be used to differentiate acute low-tone hearing loss from
MD [60,61]. Additionally, the VEMP could also help predict vertigo attack frequency [62]
and identify asymptomatic EH in the unaffected ear for evolving bilateral MD [63]. Of
note, the result of VEMP could differ between quiescence and acute attack status [64].
Therefore, heterogeneous stages and disease status should be put into consideration during
the interpretation of VEMP in MD patients.

In recent years, several studies attempted to use VEMP to differentiate MD from VM.
Reduced click-evoked cVEMP and oVEMP amplitudes were observed in MD and VM
compared to the control group [65,66]. However, it was found that the MD group showed
reduced tone-evoked amplitudes for oVEMP [65] and a higher prevalence of increased IAD
ratios compared to the VM group [66]. Additionally, the affected ears of MD had higher
percentages of absent cVEMP and oVEMP responses [67]. Moreover, the IAD ratio in MD
patients appeared to increase or remain stable over time, whereas VM patients showed
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fluctuating or stable IAD ratios. These studies implied that VEMP might be a potential
functional marker for differentiating MD and VM, but more studies are needed to clarify
this.

2.4. Caloric Test/Video Head Impulse Test (vHIT)

The caloric test and vHIT are frequently used to evaluate the vestibular function
of the semicircular canal. In the caloric test, the horizontal semicircular canals can be
stimulated via warm and cool water or air and then the change in endolymph gravity
or thermal-induced pressure is expected [68,69] to reflect the low-frequency stimulation
of the horizontal semicircular canal. It was noted that about 47–67% of patients with
MD have unilateral canal weakness [70,71]. Caloric responses are usually diminished
during the attacks of MD [72], and the incidence of canal paresis in the caloric test is
higher in the advanced stage of MD [73]. In contrast, the abnormality rate of vHIT, a test
that uses high-frequency stimulation to evaluate the function of six semicircular canals,
varied between studies. The fluctuation of vestibulo–ocular reflex (VOR) function during
and between acute vertigo attacks might explain the inconsistent results of vHIT among
studies [72,74,75]. In addition, no differences in abnormal vHIT results between different
stages and duration of MD were observed [73,76]. In general, the caloric test can detect
vestibular abnormalities better than vHIT, and the discordance between the caloric test and
vHIT was thought to be a marker for MD [70,77].

Since MD and VM share similar clinical features of vestibular symptoms, both diseases
could exhibit abnormalities in the caloric test compared to healthy controls. However, the
incidences of an abnormal caloric test are higher in MD than in VM [66,78]. Although
horizontal VOR (hVOR) deficit could be found in VM patients, its incidence is lower than
in MD [78,79]. It was suggested that vestibular testing with the caloric test still seems more
sensitive for detecting hVOR pathology than vHIT when differentiating MD from VM [79].

2.5. MRI

Since EH is one of the most predominant histological demonstrations in MD, Nakashima
et al. first proffered the visualization of EH after the intratympanic injection of gadolinium
under MRI imaging in humans. MRI with three-dimensional fluid-attenuated inversion
recovery (3D-FLAIR) is considered one of the most straightforward tools to recognize the
EH directly in certain MD cases [80]. Later on, the same team demonstrated the EH in MD
after the intravenous administration of gadolinium [81–83]. Recently, new“HYDROPS”
(a hybrid of the reversed image of positive endolymph signal and native image of posi-
tive perilymph signal) and the advanced techniques after the intravenous administration
of single-dose gadodiamide were claimed to improve the contrast in the production of
a positive endolymph image and positive perilymph images [84]. Meanwhile, several
MRI grading systems were used to quantitatively calibrate the enlargement of the en-
dolymphatic spaces. For example, the three-stage system to record the perilymphatic
and vestibular space and the four-stage system to include cochlear EH to ameliorate MD
diagnosis [85,86] were proposed. Recently, significant correlations between the hearing
level and the EH degree when using MRI were shown [87–90]. On the other side, there was
no significant relationship between the extent or duration of vertigo and EH presentation
when using MRI [87,90]. Although EH in MRI was associated with vertigo attacks in
MD patients [87–89,91,92], the stability of EH was still observed during and after vertigo
attacks [93]. As a result, the specific MRI stage correlated to hearing level and vertigo
attacks in MD patients has not yet been well established but complemented MRI images
can provide additional information to evaluate EH in MD patients [88,90,94–98].
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Although the EH can be visualized in MRI and is considered a specific characteristic
in MD, some studies found that EH can also be present in some VM patients [99–103].
Particularly, EH shown in MRI often correlated with auditory symptoms both in MD
and VM [102]. However, a higher incidence of EH was observed in MD compared to
VM [102,103]. On the other hand, Leng et al. reported the significance of the anatomical
variations of these two diseases via non-contrast MRI, indicating that compared with the
VM patients, patients with unilateral MD exhibited a shorter distance between the vertical
part of the posterior semicircular canal and the posterior fossa with poorer vestibular
aqueducts visibility in MRI [104]. However, a low diagnostic value was noted using these
radiological variations. As such, the usage of MRI as a single functional image marker to
differentiate MD and VM remains insufficient and needs further evidence.

2.6. The Problems and Future Directions of Functional Markers for MD

Although traditional markers such as ECochG/caloric tests have been used in MD
diagnosis and evaluation for years, newer examinations such as VEMP/vHIT have recently
been largely investigated. However, the relatively low sensitivity of these tools (particularly
for the early stage of MD) is still a major problem for clinicians when using these tests as
markers for diagnosing MD. In particular, the fluctuating features of MD symptoms might
affect the results of functional markers. Therefore, the diagnosis of MD still needs to depend
on the clinical diagnosis criteria. Further studies are necessary to evaluate the results
according to different stages, duration of disease and vertigo attack phase to elucidate the
role of functional markers in MD. So far, these tests could still provide complementary
information to assess the vestibular function in MD patients in the clinic [105]. In recent
years, MRI has become a cutting-edge method for evaluating EH in MD. However, it should
be noted that EH could also occur in the healthy ear and various otological disorders. In
addition, not all types of EH can be visualized in MRI [95]. Moreover, the spatial resolution
of MRI could affect the interpretation. Advanced techniques and protocols to improve
image acquisition and interpretation in the future would be helpful for clinicians to use
MRI to predict EH in MD.

3. Molecular Markers for MD
3.1. Immunological/Autoimmunity Markers

Many studies have revealed that some autoimmune diseases were associated with MD.
For instance, higher prevalences of systemic lupus erythematosus, ankylosing spondylitis
or rheumatoid arthritis were observed in MD groups than in the general population [10,106].
Therefore, autoimmunity was thought as one of the possible causes of MD and the en-
dolymphatic sac may play an important role in the immuno-mediated reaction. It has been
speculated that one-third of MD causes seem to be of an autoimmune origin [107].

Several immunological markers were investigated to see whether they could differen-
tiate MD patients from healthy controls. For example, heat shock proteins (HSPs) play an
essential role in chaperoning functions, protein folding and protecting cells from physiolog-
ical and ototoxic stresses [108]. The immunoglobulin G (IgG) antibodies to HSP70 (68-kD
protein) were elevated in 30% of the MD group compared to 5% in the control group [109].
However, the results were varied in other reports, showing that 7.7% to 27% of MD cases
were positive for HSP70 antibodies [110,111]. In fact, the detection of HSP70 antibodies in
diagnosing MD is controversial because of the high prevalence of antiHSP70 antibodies in
healthy subjects and the lack of association with disease activity [112].

Circulating immune complexes (CICs), the molecules comprising multiple antigens
and antibodies, can damage targeted organs or tissues via complement activation with or
without deposition to modulate the inflammation and immune reaction. In MD patients,
some studies found elevated serum CICs and postulated that endolymphatic sac function
was interfered with by CICs [113–117]. Additionally, increased total IgG, C3 and anti-type
II collagen antibodies were found in MD [114,118–120].
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Immunoglobulin E (IgE), induced by type I allergic reactions, is another immunological
marker investigated in MD. It was reported that elevated total serum IgE was observed in
patients in MD [116,121]. Interestingly, a recent study revealed that a high level of IgE was
noted in patients with acute low-tone sudden sensorineural hearing loss, and a higher IgE
level was correlated with an enhanced SP/AP ratio, which might be used as a predictor
for MD [122]. In addition, Zhang et al. observed that IgE was correlated to the grading of
EH, hearing stage and the functional level of MD patients [123], implying the association of
allergy with the clinical severity of MD.

3.2. Inflammatory Markers

Since the immune system could be involved in the pathogenesis of MD, inflammatory
responses may possibly occur in the inner ear [124]. As a result, several studies have inves-
tigated different cytokines and chemokines to see if they can be used as possible markers
for MD. For example, Frejo et al. revealed that MD patients had higher basal levels of IL-1β,
IL-1RA, IL-6 and TNF-α compared to healthy controls [125]. In addition, they observed the
bimodal distribution of IL-1β levels in two different subgroups of MD, suggesting that a
subset of MD patients have higher basal levels of proinflammatory cytokines. Later, they
observed that patients with MD or VM have different proinflammatory signatures and
concluded that the cytokine panel with IL- 1β, CCL3, CCL22,and CXCL1 levels might help
to differentiate MD from VM [126].

The association of immunological and inflammatory markers with hearing loss and the
stage of MD was recently investigated by Zhang et al. [127]. They checked CIC, HSP70 and
TNF-α in the serum in MD patients with different hearing levels and staging. In addition
to the increased concentration of these markers in MD, they observed that the phase of
the pure tone average was positively associated with the concentration of CIC, HSP70 and
TNF-α. In addition, the concentration of these markers was also increased in the group
with severe EH compared to mild and moderate EH, implying that these immunological
and inflammatory markers have the potential to reflect the EH severity and staging of MD.

3.3. Protein Signatures

The development of proteomics and protein array analysis in recent years has made
it possible to survey possible protein markers in diseases. Kim et al. used Protoarray to
investigate the proteins in sera from MD patients and controls. They observed higher signals
of immunoglobulin heavy constant gamma 1 (IGHG1), the regulator of G-protein signaling
10 (RGS10), transcript variant 2, chromosome 2 open reading frame 34 (C2orf34), and
SH3-domain GRB2-like endophilin B1 (SH3GLB1) with 80% sensitivity and specificity [128].
The authors imply that multiple antibodies or antigens might cause autoimmune reactions
in the inner ear of MD.

In another study using proteomics to analyze the plasma from 15 MD patients and
12 healthy controls, upregulated complement factor-B and H, fibrinogen α-chain, β-actin,
pigment epithelium-derived factor and fibrinogen γ-chain were found in MD, while vi-
tamin D-binding protein, apolipoprotein A-1 and β-2-glycoprotein were downregulated
compared to the control group [129]. They further used Western blotting to investigate
plasma protein expression in different stages of MD patients [130]. They observed increased
fibrinogen α- and γ-chain expression in stage III and decreased β-2-glycoprotein expression
in stage IV patients. Stage I individuals have a higher expression of complement factor H
and B proteins. They concluded that a set of plasma proteins might be used as a tool for a
biomarker-oriented diagnosis and MD staging.
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3.4. Vasopressin

Vasopressin, also known as antidiuretic hormone (ADH) or arginine vasopressin
(AVP), is a nonapeptide that acts on water metabolism via vasopressin receptors. It was
hypothesized that plasma vasopressin elevation and subsequent vasopressin type-2 recep-
tor (V2R)-cyclic AMP (cAMP)-protein kinase A (PKA) activation in the endolymphatic sac
might lead to the intracellular translocation of aquaporin-2 (AQP2) from the luminal side
to the basolateral side with endosomal trapping, resulting in EH in the inner ear [131].

In previous decades, vasopressin has probably been the most investigated marker in
MD. Takeda et al. first compared plasma vasopressin levels in patients with MD with other
types of vertigo. They observed that vasopressin levels were higher in MD patients. In
addition, vasopressin was significantly higher in the acute phase than remission phase [132].
Later on, Aoki et al. also showed increased vasopressin levels, osmolality and stress scores
in the acute phase of MD [133,134]. However, there is no significant correlation between
vasopressin levels, osmolality and stress score. Particularly, the patients with abnormally
high vasopressin in the acute phase were resistant to conservative treatments for vertigo
attacks [135]. They thus thought that the elevation of vasopressin in MD might be related
to the pathogenesis of MD attacks.

In contrast, there are some studies showing conflicting results. Lim et al. compared
the vasopressin levels of unilateral MD patients within one week of acute vertigo with 31
healthy volunteers, and they did not find statistical differences [136]. Similarly, Hornibrook
et al. evaluated vasopressin levels in 80 patients with MD who were diagnosed using con-
ventional symptoms and ECochG [137]. They still could not find the differences between
the MD subjects and the normal controls. In addition, vasopressin levels did not correlate to
the stage of MD. A recent meta-analysis revealed that the discrepancy of vasopressin levels
between previous studies might be due to a couple of selection biases and confounding fac-
tors: unilateral vs. bilateral MD, acute vs. remission phase, the sensitivity of measurement
and psychological stress might affect the levels of vasopressin [138].

Although there is no consensus regarding the usage of vasopressin as a diagnostic
marker for MD, most publications agree that vasopressin might reflect the status of MD
attack in MD patients [8], probably because the overexpression and hyperactivity of V2R in
the endolymphatic sac of MD patients develop EH and vertigo attacks after vasopressin
elevation [139]. A pilot study from Kitahara et al. observed that interventions to decrease
vasopressin levels by adequate water intake, tympanic ventilation tube insertion and
sleeping in darkness are useful to control MD [140]. Interestingly, the authors also found
that in patients with intractable MD, vasopressin levels were reduced after endolymphatic
sac surgery, and long-lasting plasma low vasopressin levels were associated with good
surgical outcomes. Their findings implied that plasma vasopressin levels might be a feasible
marker to reflect the disease status of MD [131].

3.5. Circadian Clock Genes

The circadian clock is present in eukaryotes with a 24 h cycle, and daily rhythmic
changes can be observed in many physiological processes. In mammals, the circadian clock
genes regulate circadian rhythms through transcriptional-translational feedback loops.
Once the circadian clock is dysregulated or disrupted due to light changes, the expression
of circadian clock genes is altered [141]. Evidence shows that circadian disruption is
associated with an increased risk of several diseases, and altered circadian clock gene
expression was frequently observed in patients with these disorders [142,143].

Previous studies have proven that circadian clock genes have time-dependent variation
patterns in the peripheral blood leukocytes of healthy subjects [142,144]. Because the
precipitating factors for vertigo attacks in MD, such as a high-salt diet, caffeine and stress,
might affect the circadian clock [145], we recently investigated the expression of circadian
clock genes from the peripheral blood leukocytes of unilateral MD patients with recent
vertigo attacks within one week to reflect the gene expression in the active status of
MD [146]. We observed significantly decreased PER1 and increased CLOCK gene expression
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in the MD group compared to a healthy control group using real-time quantitative reverse
transcriptase-polymerase chain reaction (qRT-PCR) analysis. Particularly, the area under
the receiver operating characteristic (ROC) curve (AUC) is higher in the PER1 gene to
predict the diagnosis of MD (Figure 1). Further immunocytochemical analysis for PER1 in
PB leukocytes also revealed the lower percentage of PER1-positive cells in the peripheral
blood of MD patients [146]. These results implied that the expression of PER1 might be a
potential marker of MD.
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Another implication of PER1 as a marker of MD is to see if PER1 expression is as-
sociated with disease severity. In the subgroup analyses of the circadian clock genes in
groups with different dizziness handicaps and hearing levels, the expression of PER1 was
not different between the patients with mild-to-moderate and severe dizziness handicaps
but is significantly lower in patients with stage 3 and 4 than with stage 1 and 2 [146]. The
down expression of PER1 was also significantly correlated to the pure tone average and
speech reception threshold of the affected ear, implying that PER1 might also be a potential
marker for evaluating the hearing levels of MD patients.

The mechanism of altered PER1 in the pathogenesis of MD and its effects on hearing
levels still need further investigation. We hypothesized that since PER1 in PB leukocytes
may reflect the human circadian system [144], its dysregulation might affect cellular glu-
tathione peroxidase-related reactive oxygen species fluctuation and augment oxidative
stress in the hair cells [147]. In addition, our data were evaluated using MD patients in the
acute phase, which was deemed to be a consequence of precipitating factors; it is reasonable
to speculate that PER1 expression may be different between the patients in acute and
remission phases. Future exploration is necessary to evaluate the role of circadian clock
genes as markers of MD.

3.6. The Problems and Future Directions of Molecular Markers for MD

Although the aforementioned molecular markers have been investigated based on the
possible mechanisms of MD, such as autoimmunity, inflammation, hormone and circadian
clock alteration, the design of most studies is cross-sectional. The reason is probably that the
diagnosis of definite MD needs long-term follow-up, and longitudinal studies to evaluate
the potential molecular markers are difficult. In addition, the expression of the molecular
markers might be confounded by environmental factors. For example, plasma vasopressin
levels might change due to stress and the circadian clock. Furthermore, different disease
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statuses, such as active vs. remission phase, unilateral MD vs. bilateral MD and the severity
of EH and hearing loss might affect the results of these molecular markers. Therefore, a
longitudinal design to evaluate targeted molecular markers and appropriately analyze the
results by subgrouping MD patients would be mandatory to develop suitable molecular
markers for MD. Last, since the specificity of the molecular markers from the peripheral
blood may be limited by environmental factors, it would be more valuable to check the
expression of targeted markers in the inner ear fluid (during the endolymphatic sac surgery)
to accurately understand the role of these markers in the etiopathogenesis of MD [128].

In recent years, there has been a growing theory about the connection between mi-
graine and MD. It was hypothesized that because of similar clinical manifestations, epi-
demiological factors and pathophysiological considerations [148], MD and migraine may be
different regional manifestations of the same pathology. Another researcher also proposed
that MD might be a “cochleovestibular migraine”, which resembles a combination of symp-
toms from cochlear and vestibular migraine [12]. If the hypothesis is true, the molecular
markers for migraine and MD might be similar if the samples were gathered from the
peripheral blood. Indeed, migraineurs had higher levels of serum inflammatory markers
such as proinflammatory cytokines [149,150]. Increased plasma vasopressin levels are
observed in migraine patients during an attack [151,152]. However, it is not clear whether
the migraine biomarkers such as glutamate, calcitonin gene-related peptide (CGRP) and
pituitary adenylate cyclase-activating peptide-38 (PACAP-38) are also markers of MD or
can be used to differentiate migraine from MD [153]. The comparison of MD and migraine
markers between the patients with MD and VM will help to elucidate the interplay between
migraine and MD. In addition, since the diagnosis of MD and VM is based on the clinical
diagnostic criteria, the development of a useful molecular marker to tell MD from VM
would be a new direction toward the precise diagnosis of MD.

4. Conclusions and Future Perspectives

MD is a disease that is difficult to diagnose, particularly in the early stage wherein
not all of the typical symptoms are present. The diagnosis of MD is based on the clinical
diagnostic criteria. However, the development of functional and molecular markers for
MD is important for helping clinicians diagnose MD correctly and evaluate inner ear status.
Table 2 summarizes the markers for MD based on different aspects. For functional markers,
ECochG and MRI have a relatively high sensitivity. Therefore, these tests could be used
to confirm the EH in MD in ambiguous cases and those with atypical symptoms. The
incidence of abnormalities in PTA, ECochG, VEMP, caloric test and MRI are higher in
patients with high levels of hearing loss. Therefore, the positive results in these tests could
reflect the advanced stages of MD. However, we shall keep in mind that the results of VEMP,
caloric test and vHIT may be different in active and quiescence status. As a result, the
abnormalities of these tests may reflect recent vertigo attacks. All functional markers might
help clinicians to differentiate between MD and VM. For molecular markers, the majority
of them might differentiate MD and healthy control as well as correlate to the hearing stage.
However, further investigation is necessary to elucidate their expression between and
during vertigo attacks and to know whether they are helpful in differentiating MD and VM.
Looking ahead, although we have numerous papers to investigate the role of functional and
molecular markers in MD, the duplication and verification of these markers are mandatory
for proof of future usefulness in the clinic. There is still a long way to go to obtain ideal
markers for MD right now, but we could still combine several markers to help diagnose and
evaluate MD status. For instance, the combination of function markers, molecular markers,
and 3D-FLAIR MRI may be a better strategy for helping in the diagnosis and evaluation of
MD. However, before a perfect protocol of markers is developed, clinicians shall keep in
mind that it is still essential to diagnose MD using the latest diagnostic criteria.
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Table 2. Summary of functional and molecular markers for MD.

Differentiate MD
From Healthy
Controls

Differentiate Hearing
Levels and Stages of MD

Differentiate Vertigo
Attacks with
Remission in MD

Differentiate MD
from VM

Functional
markers

PTA

Documented
audiometry is
mandatory to diagnose
definite MD

Stages of MD are defined
by the hearing levels of the
affected ear

The fluctuated hearing
loss is not always
related to vertigo
attacks [31]

Typical MD exhibits
low-tone hearing loss
with progression. VM
usually could recover
from low-tone hearing
loss [22,25].

ECochG
Sensitivity: 66.7–85.7%
Specificity: 80–100%
[36]

Increased SP/AP ratio in
patients with higher levels
of hearing loss [42,48,49]
and longer duration of the
disease [38]

SP/AP ratio does not
recover even if vertigo
attacks disappear [38]

A higher proportion of
abnormal ECochG in
MD than VM [50]

VEMP
Sensitivity: 49%
Specificity: 95%
[58]

IAD ratio of VEMP
increased in the advanced
stage of MD [57]

Differ between
quiescence and acute
attack status [64]

MD group showed a
reduction in
tone-evoked
amplitudes for oVEMP
[65] and the prevalence
of a higher IAD ratio
compared to the VM
group [66]

Caloric test/vHIT

47–67% of patients with
MD have unilateral
canal weakness [70,71].
The incidence of vHIT
abnormality is lower
than the caloric test [78]

The incidence of canal
paresis in the caloric test is
higher in the advanced
stage of MD [73].
No differences in abnormal
vHIT results between
different stages of MD
[73,76].

Caloric responses are
usually diminished
during the attacks of
MD [72]
vHIT results may differ
during and between
acute vertigo attacks
[72,74,75]

Incidences of abnormal
caloric test and vHIT
are higher in MD than
in VM [78]

MRI
sensitivity: 79.5–84.6%
specificity: 92.3–93.6%
[85]

MRI EH degree has a
positive correlation
between the hearing level
and the vestibular EH
degree [87–90]

The grade of EH is not
correlated with the
extent of vertigo [87,89].
EH is stable during and
after vertigo attacks
[93].

A higher incidence of
EH was observed in
MD compared to VM
[102,103]

Molecular
markers

Immunological/
autoimmunity
markers

Increased HSP70
antibodies [109], CICs
[117] and IgE [123] in
MD

The phase of pure tone
average was positively
associated with HSP70 and
CIC [127]
IgE was correlated to the
hearing stage [123]

Not determined Not determined
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Table 2. Cont.

Differentiate MD
From Healthy
Controls

Differentiate Hearing
Levels and Stages of MD

Differentiate Vertigo
Attacks with
Remission in MD

Differentiate MD
from VM

Molecular
markers

Inflammatory
markers

MD patients had higher
basal level of IL-1β,
IL-1RA, IL-6 and
TNF-α compaed to
healthy controls [125]

The phase of pure tone
average was positively
associated with TNF-α
[127]

Not determined

Cytokine panel with IL-
1β, CCL3, CCL22, and
CXCL1 levels may help
to differentiate the MD
from VM [126].

Protein signatures
Higher several protein
signatures in MD
[128–130]

Increased fibrinogen α-
and γ-chain expression in
stage III and decreased
β-2-glycoprotein
expression in stage IV
patients. Stage I
individuals have a higher
expression of complement
factor H and B proteins
[130]

Not determined Not determined

Vasopressin

Vasopressin levels were
higher in MD patients
[132–135] or no
difference between MD
and controls [136,137]

Vasopressin levels did not
correlate with the disease
stage of MD [137]

Vasopressin levels were
significantly higher in
the acute phase than
remission phase [132]

Not determined

Circadian clock
genes

Decreased PER1 and
increased CLOCK gene
expression in the MD
group compared to a
healthy control group
[146]

PER1 is significantly lower
in patients with stage 3 and
4 compared to stage 1 and
2 [146]
Down expression of PER1
was significantly correlated
to the pure tone average
and speech reception
threshold of the affected
ear [146]

Not determined Not determined

MD: Meniere’s disease; VM: vestibular migraine; IAD: interaural amplitude difference; ECochG: electrocochleog-
raphy; VEMP: vestibular evoked myogenic potential; vHIT: video head impulse test; MRI: magnetic resonance
imaging; HSP: heat shock protein; CIC: circulating immune complex.
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