Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications
Abstract
:1. Introduction
2. Results
2.1. Modular Barcode Layout
2.2. Trap Tag
2.3. Sequence Design and Specificity
2.4. NGS Barcode Recovery
2.5. Deletion Analysis
2.6. Substitution Analysis
3. Conclusions
4. Methods
4.1. Sequence Design
4.2. Primer Specificity and Sensitivity
4.3. Barcode Construction and Sequencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.; Verma, A. Inventory Management in Supply Chain. Mater. Today Proc. 2018, 5, 3867–3872. [Google Scholar] [CrossRef]
- Ringsberg, H. Bar Coding for Product Traceability. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Paunescu, D.; Stark, W.J.; Grass, R.N. Particles with an identity: Tracking and tracing in commodity products. Powder Technol. 2016, 291, 344–350. [Google Scholar] [CrossRef]
- Karamessini, D.; Simon-Yarza, T.; Poyer, S.; Konishcheva, E.; Charles, L.; Letourneur, D.; Lutz, J.-F. Abiotic Sequence-Coded Oligomers as Efficient In Vivo Taggants for the Identification of Implanted Materials. Angew. Chem. 2018, 130, 10734–10738. [Google Scholar] [CrossRef]
- Austin, M.J.; Rosales, A.M. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater. Sci. 2019, 7, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Gooch, J.; Koh, C.; Daniel, B.; Abbate, V.; Frascione, N. Establishing evidence of contact transfer in criminal investigation by a novel ‘peptide coding’ reagent. Talanta 2015, 144, 1065–1069. [Google Scholar] [CrossRef]
- Gooch, J.; Goh, H.; Daniel, B.; Abbate, V.; Frascione, N. Monitoring Criminal Activity through Invisible Fluorescent “Peptide Coding” Taggants. Anal. Chem. 2016, 88, 4456–4460. [Google Scholar] [CrossRef] [Green Version]
- Mikutis, G.; Deuber, C.A.; Schmid, L.; Kittilä, A.; Lobsiger, N.; Puddu, M.; Asgeirsson, D.O.; Grass, R.N.; Saar, M.O.; Stark, W.J. Silica-Encapsulated DNA-Based Tracers for Aquifer Characterization. Environ. Sci. Technol. 2018, 52, 12142–12152. [Google Scholar] [CrossRef]
- Kong, X.-Z.; Deuber, C.A.; Kittilä, A.; Somogyvári, M.; Mikutis, G.; Bayer, P.; Stark, W.J.; Saar, M.O. Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation. Environ. Sci. Technol. 2018, 52, 13681–13689. [Google Scholar] [CrossRef]
- Carr, P.A.; Church, G.M. Genome engineering. Nat. Biotechnol. 2009, 27, 1151–1162. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Ståhlberg, A.; Krzyzanowski, P.M.; Jackson, J.B.; Egyud, M.; Stein, L.; Godfrey, T.E. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016, 44, e105. [Google Scholar] [CrossRef] [PubMed]
- Glover, A.; Aziz, N.; Pillmoor, J.; McCallien, D.W.J.; Croud, V.B. Evaluation of DNA as a taggant for fuels. Fuel 2011, 90, 2142–2146. [Google Scholar] [CrossRef]
- Puddu, M.; Paunescu, D.; Stark, W.J.; Grass, R.N. Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags. ACS Nano 2014, 8, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.A.; Paunescu, D.; Grass, R.N.; Stark, W.J. Silica particles with encapsulated DNA as trophic tracers. Mol. Ecol. Resour. 2015, 15, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Sabir, I.H.; Torgersen, J.; Haldorsen, S.; Aleström, P. DNA tracers with information capacity and high detection sensitivity tested in groundwater studies. Hydrogeol. J. 1999, 7, 264–272. [Google Scholar] [CrossRef]
- Erlich, Y.; Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 2017, 355, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Church, G.M.; Gao, Y.; Kosuri, S. Next-Generation Digital Information Storage in DNA. Science 2012, 337, 1628. [Google Scholar] [CrossRef] [Green Version]
- Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 2013, 494, 77. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef]
- Kivioja, T.; Vähärautio, A.; Karlsson, K.; Bonke, M.; Enge, M.; Linnarsson, S.; Taipale, J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 2012, 9, 72–74. [Google Scholar] [CrossRef]
- Smith, T.; Heger, A.; Sudbery, I. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017, 27, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.G.; Storey, J.D. subSeq: Determining appropriate sequencing depth through efficient read subsampling. Bioinformatics 2014, 30, 3424–3426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.J.; Reid-Bayliss, K.S.; Emond, M.J.; Loeb, L.A. Accuracy of Next Generation Sequencing Platforms. Next Gener. Seq. Appl. 2014, 1, 1000106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, F.; Gröber, C.; Blank, M.; Händler, K.; Beyer, M.; Schultze, J.L.; Mayer, G. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci. Rep. 2018, 8, 10950. [Google Scholar] [CrossRef] [Green Version]
- Stuart, J.D.; Hartman, D.A.; Gray, L.I.; Jones, A.A.; Wickenkamp, N.R.; Hirt, C.; Safira, A.; Regas, A.R.; Kondash, T.M.; Yates, M.L.; et al. Mosquito Tagging Using DNA-Barcoded Nanoporous Protein Microcrystals. PNAS Nexus 2022, 1, pgac190. [Google Scholar] [CrossRef]
- Stothard, P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [Green Version]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. 526 Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
Number of Blocks | Variants per Block | Number of Variable Nucleotides per Block | Minimum Hamming Distance between Variants | Total Number of Oligos Required | Total Number of Barcodes Allowed | |
---|---|---|---|---|---|---|
Gen_1 | 4 | 4 | 6 | 3 | 32 | 256 |
Gen_2 | 3 | 8 | 12 | 7 | 48 | 512 |
Gen_1 Library | Gen_2 Library | |||
---|---|---|---|---|
Primer Sequence (5′–3′) | Design Source | Primer Sequence (5′–3′) | Design Source | |
Forward | CCAGTCCTCAACAAGCTG | Primer3 | AGTGCGTGCAGTGAAAGC | Primer3 |
Reverse | GTTGAAGCCGGTTACCAC | Primer3 | ATGGCGTTGCAAAGTCGG | Primer3 |
Trap Tag | TTCTGGGTTCCTCATCGC | Primer3 | CGCCTTGATTTCAACTCGGCTCTCCGCTGAACA | NUPACK |
Perfect Barcode Recovered (%) | Deletion Variants (%) | 1-nt Substitution Variants (%) | |
---|---|---|---|
Gen_1 | 80 | 3 | 5 |
Gen_2 | 26 | 1 | 3 |
Gen_1 Variable Region Sequences | Gen_2 Variable Region Sequences | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 |
TGCGGC | GGCGTC | AGCGGG | CGCTCC | ATCGACTGCGAG | ATGACGAGTGCT | TGTCTCGAGTCT |
GCTAGCACTGAG | GAGATCTGCAGT | GCGCTGCTACTG | ||||
GCGGGC | CCCGGC | GCGGAA | ACTCGT | GTGTGCGCTAGC | CTATCGCGACGT | CACTCAGATGTG |
TGCTCTAGTAGC | CATGCTGTCAGC | GATGTGCAGAGA | ||||
TGGGCG | CCTACC | GCTGCC | ACGCGG | CGATACGAGATC | CGACGTCTATCG | TCTCGTCGTATG |
ACTGAGTGTCTC | GAGTCTACGTCG | CAGCAGTCTCGT | ||||
CGCCGG | GCACAG | GCGGGC | CCTTTG | TGCAGTGACTAG | GTCGCAGTACAG | CAGAGACAGCAG |
AGCGTGACGCGT | ACAGTGATCGAC | ATAGCGCACTCA |
Primer Set # | Forward Primer (5′ – 3′) | Reverse Primer (5′ – 3′) |
---|---|---|
1 | ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCAGTCCTCAACAAGCTG | GTTGAAGCCGGTTACCAC |
2 | ACACTCTTTCCCTACACGACGCTCTTCCGATCT | TTCTGGGTTCCTCATCGCNNNNNNNNGTTGAAGCCGGTTACCAC |
3 | ACACTCTTTCCCTACACGACGCTCTTCCGATCT | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTCTGGGTTCCTCATCGC |
4 | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT | CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNATATTCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuart, J.D.; Wickenkamp, N.R.; Davis, K.A.; Meyer, C.; Kading, R.C.; Snow, C.D. Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications. Int. J. Mol. Sci. 2023, 24, 2549. https://doi.org/10.3390/ijms24032549
Stuart JD, Wickenkamp NR, Davis KA, Meyer C, Kading RC, Snow CD. Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications. International Journal of Molecular Sciences. 2023; 24(3):2549. https://doi.org/10.3390/ijms24032549
Chicago/Turabian StyleStuart, Julius D., Natalie R. Wickenkamp, Kaleb A. Davis, Camden Meyer, Rebekah C. Kading, and Christopher D. Snow. 2023. "Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications" International Journal of Molecular Sciences 24, no. 3: 2549. https://doi.org/10.3390/ijms24032549
APA StyleStuart, J. D., Wickenkamp, N. R., Davis, K. A., Meyer, C., Kading, R. C., & Snow, C. D. (2023). Scalable Combinatorial Assembly of Synthetic DNA for Tracking Applications. International Journal of Molecular Sciences, 24(3), 2549. https://doi.org/10.3390/ijms24032549