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Abstract: Canine mammary gland tumor (CMT) is the most frequently diagnosed neoplasm in intact
female dogs. As prognosis depends on the malignancy of tumors and metastasis levels, early and
accurate diagnosis are crucial for prolongation of life expectancy. The genetic similarity of dogs with
humans in addition to environmental and physiological similarities make them ideal models for the
study of cancer. In this study, we analyzed differentially expressed microRNAs followed by RNA-Seq
to investigate the alterations in mRNA levels based on the malignancy (benign, malignant) and the
biopsy locations (tumors, surrounding normal tissues). We identified multiple breast cancer-related
genes regardless of malignancy. We found cfa-miR-503 to be the only miRNA that showed altered
expression in response to malignancy in CMTs. Although further validation is needed, cfa-miR-503
could be used as a potential diagnostic biomarker as well as a potential RNA-based anti-tumor drug
in malignant CMTs.

Keywords: microRNA; canine; mammary gland; tumor; cancer; expression

1. Introduction

Cancer is the most common cause of death in dogs [1]. Among various cancers, canine
mammary gland tumor (CMT) is the most frequently occurring tumor in intact female
dogs [2–4]. Approximately 50% of the CMT cases lead to malignancy [5]; owing to its high
incidence and mortality rates, CMT is of significance in canine medicine. To date, several
studies have focused on CMT owing to its highly complex pathogenicity [2,6–9].

In addition to its clinical significance to dogs, studies on canine cancer are also applica-
ble to medical research targeting human diseases, as dogs have been considered to be ideal
animal models [1]. Dogs contract clinically similar diseases to humans; they also share
similar organ sizes with humans [10,11]. The fact that dogs share similar living spaces with
their human owners, minimizes gaps in environmental factors between the two [10,11].
Since dogs age faster than humans and usually experience minimal genetic variations
owing to breeding, they are valuable animal models of human disease [12]. The variety of
studies conducted on dogs to date have continuously proven the value of dogs as model
species connecting mice and humans.

Int. J. Mol. Sci. 2023, 24, 2618. https://doi.org/10.3390/ijms24032618 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032618
https://doi.org/10.3390/ijms24032618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9231-0150
https://orcid.org/0000-0003-1556-6480
https://orcid.org/0000-0001-7205-7741
https://orcid.org/0000-0002-5868-1297
https://doi.org/10.3390/ijms24032618
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032618?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 2618 2 of 15

Dogs have greater genetic similarity with humans than mice [11]. About half of the
hereditary diseases in dogs are remarkably similar to those in humans [11]. CMT in dogs
share similarities with breast cancer (BC) in humans: In dogs, diverse genes including
Tumor protein 53 (p53), Breast Cancer1 (BRCA1), Breast Cancer 2 (BRCA2), Phosphatase
and Tensin Homolog (PTEN), as well as E-cadherin and Serine/Threonine kinase11 (STK11)
are known contributors of CMT [13], which have also been attributed to human BC.

The microRNAs (miRNAs), also known as small non-coding RNA, are usually com-
posed of about 22 nucleotides. In addition, miRNAs play key roles in post-transcriptional
gene silencing by pairing with complementary messenger RNA in diverse animal clades [14].
Thanks to their functional characteristics, miRNA studies have been actively conducted to
gain new insights in human diseases. In BC, studies involving miRNA include using it as a
biomarker, profiling miRNA for cancer diagnosis, as well as developing miRNAs as tools
to understand disease prognosis, therapy response, and resistance mechanisms [15–17].

Mature canine miRNAs show high homology to those of humans, which opens possi-
bilities for comparative studies [18]. The importance of miRNA in canine cancer studies
has been identified to be of significance leading to a number of studies [19–22]. A miRNA
study on CMT, targeting 10 types of human oncomirs identified nine miRNAs (let-7f, miR-
15a, miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-155, miR-181b) which showed
expression patterns similar to miRNAs in human BC [23]. However, systemic miRNA
profiling of CMT is yet to be conducted.

The objective of this study was to identify the expression patterns of miRNAs in CMT
tissues. Benign and malignant CMTs determined based on histopathology and metastasis
patterns would be compared with miRNA expression profiles of normal tissues. Similar
comparative analysis would also be performed between benign and malignant CMTs.
Differentially expressed miRNAs (DE-miRNAs) from the above comparative analyses
would be listed, and their functions and expression patterns in both dogs and humans
would be discussed based on the existing literature.

2. Results

DE-miRNAs based on microarray were identified using three comparisons: (1) BCMT-
T vs. BCMT-N, (2) MCMT-T vs. MCMT-N, and (3) MCMT-T vs. BCMT-T; T means tumor
and N means normal. The cut-off values are |fold change| ≥ 2, p-value < 0.05 (t-test), and
DABG p-value < 0.05. DABG p-value was computed based on the probability that the signal
intensity is part of the null distribution. It could be useful in the detection and removal
of low intensity signals. Eighteen upregulated miRNAs in BCMT-T vs. BCMT-N, twenty
upregulated miRNAs in MCMT-T vs. MCMT-N, and one upregulated miRNA in MCMT-T
vs. BCMT-T were identified. Downregulated miRNAs were not detected in all comparisons.
Figure 1 shows the volcano plot for identifying DE-miRNAs of each comparison based on
fold change and p-value.

We performed the pathway analysis from KEGG based on DE-miRNAs. Among the
various pathways in KEGG, we identified the role of miRNAs as “MicroRNAs in cancer”.
This category contains sub-pathways for nine different types of cancer. Among these nine
types, we focused on the breast cancer pathway. Since only one miRNA was detected in the
MCMT-T vs. BCMT-T, this comparison was excluded from the pathway analysis. Figure 2
shows the result of breast cancer pathway in “MicroRNAs in cancer” for the miRNAs of
BCMT-T vs. BCMT-N and MCMT-T vs. MCMT-N.

Among the 18 array-based DE-miRNAs of BCMT-T vs. BCMT-N, breast cancer re-
lated miRNAs were identified as cfa-miR-21, cfa-miR-129b, cfa-miR-155, and cfa-miR-222.
Among the 20 miRNA of MCMT-T vs. MCMT-N, breast cancer related miRNAs were
identified as cfa-miR-221 and cfa-miR-222. Moreover, we discovered the expression pattern
of target genes of breast cancer related miRNAs identified in the pathway at the mRNA
level. The target genes in the BCMT group were BAK1, CDKN1B, PDCD4, SERPINB5,
SOCS1, and TPM1, and the target gene in the MCMT group was CDKN1B. Table 1 shows
the fold change and p-value of target genes at the mRNA level. It was found that the
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target genes of miRNA were downregulated in the breast cancer pathway; the genes with
significant p-value under 0.05 at the mRNA level were downregulated (PDCD4, SOCS1,
and CDKN1B).
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Figure 1. Volcano plot in canine mammary gland tumor for array-based miRNA. Red dots indicate
upregulated miRNAs and grey dots indicate unsignificant miRNAs. Red and blue dotted line are
threshold of fold change and black dotted line is threshold of p-value. (A) BCMT-T vs. BCMT-N;
(B) MCMT-T vs. MCMT-N; (C) MCMT-T vs. BCMT-T (Figure 2).

Table 1. The mRNA expression profile of miRNA-target genes.

BCMT-T vs. BCMT-N

Gene Fold Change p-Value

BAK1 1.134 0.390
CDKN1B −1.256 0.167
PDCD4 −2.486 <0.001

SERPINB5 1.081 0.838
SOCS1 −2.183 0.005
TPM1 −1.249 0.177

MCMT-T vs. MCMT-N

Gene Fold Change p-Value

CDKN1B −1.612 0.025
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Figure 2. Pathway analysis in breast cancer. Red boxes indicate miRNAs detected in the pathway
among DE-miRNAs. (A) BCMT-T vs. BCMT-N; (B) MCMT-T vs. MCMT-N.

We performed gene-level analysis of DE-miRNAs based on the miRNA-gene associa-
tions collected from microRNA target prediction database (miRDB). The miRDB contains
information regarding predicted target genes and predicted score for miRNAs. We fil-
tered associations with a predictive score of >90 for miRNA-gene relationships. Since the
same gene is associated with multiple miRNAs, the collected target genes were used after
de-duplication. Three hundred and seventy target genes in DE-miRNA of BCMT-T vs.
BCMT-N, six hundred and forty eight target genes in DE-miRNA of MCMT-T vs. MCMT-N,
and three target genes in DE-miRNA of BCMT-T vs. MCMT-T were collected. Functional
analysis was performed using clusterProfiler based on predicted genes. Among the various
biological functions, we focused on specific biological functions: Autophagy, response
to oxidative stress, and p53 signaling pathway. As few target genes were detected in
the MCMT-T vs. BCMT-T, this comparison was excluded from the enrichment analysis.
Figure 3 shows the results for the top 10 categories among Gene Ontology and KEGG
enrichment analysis.
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Figure 3. Enrichment analysis for GO_BP, GO_CC, GO_MF, and KEGG. GO_BP: Biological processing;
GO_CC: Cellular component; GO_MF: Molecular function of Gene Ontology; KEGG: Biological
pathway. (A) BCMT-T vs. BCMT-N; (B) MCMT-T vs. MCMT-N.

To evaluate the results of clusterProfiler, we collected disease related Gene Ontologies
from the Comparative Toxicogenomics Database (CTD) [24]. We used phenotype (GO)-
disease inference networks among various information in CTD, which contains a list of
diseases associated with Gene Ontology. We collected a list of GO categories associated with
breast cancer using the MESH ID (D001943). In addition, GOs that do not have information
on genes from the collected list were removed. We filtered 5282 categories in GO_BP, 560 in
GO_CC, and 1060 in GO_MF. We compared GOs with p-value < 0.05 among clusterProfiler
and filtered CTD (Figure 4).
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Figure 4. Venn diagrams showing GO_BP, GO_CC, and GO_MF of miRNAs. GO_BP: Biological
processing; GO_CC: Cellular component; GO_MF: Molecular function of Gene Ontology; (A) BCMT-T
vs. BCMT-N; (B) MCMT-T vs. MCMT-N.
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It was found that the common function of the array-based DE-miRNAs’ target genes
was similar to those associated with breast cancer. In particular, categories related to
angiogenesis were detected in the intersection. According to Nishida et al., the onset of
cancer is related to angiogenesis [25]. Moreover, it was identified that angiogenesis is
closely related to progression in breast cancer [25,26]. Significant pathways related breast
cancer, such as melanoma (p-value < 0.001), breast cancer (p-value = 0.009), and microRNAs
in cancer (p-value = 0.009) in the BCMT group, p53 signaling pathway (p-value < 0.001),
autophagy, and EGFR tyrosine kinase inhibitor resistance in MCMT group, were observed
from KEGG analysis results.

We extracted mRNA level DEG for a similar comparative analysis as performed using
miRNAs. The cut-off values were |fold change| ≥ 2 and p-value < 0.05. About 962 genes
(392 upregulated and 570 downregulated) in BCMT-T vs. BCMT-N, and 1541 genes
(856 upregulated and 685 downregulated) in MCMT-T vs. MCMT-N were identified.
Figure 5 shows the volcano plot for identifying DEGs of each comparison based on fold
change and p-value.
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Figure 5. Volcano plot in canine mammary gland tumor for mRNA. Red dots indicate upregulation,
blue dots indicate downregulation and grey dots indicate unsignificant miRNAs. Red and blue
dotted line are threshold of fold change and black dotted line is threshold of p-value. (A) BCMT-T vs.
BCMT-N; (B) MCMT-T vs. MCMT-N.

The relationship between identified DEGs and target genes of miRNA was analyzed.
Genes corresponding to protein coding were filtered from DEGs. Figure 6 shows the
DE-miRNA target gene and DEG of mRNA-based Venn diagram.
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The number of genes commonly appearing between miRNA and mRNA was 12 in
BCMT group and 54 in MCMT group. It was found that a small number of genes appeared
as intersections compared with the number of detected genes in the miRNA and mRNA
DEG analysis. To evaluate whether the genes corresponding to the intersection are breast
cancer related genes, we collected disease-gene associations from DisGeNet [27]. DisGeNet
is a database containing disease-gene associations for humans. Due to the lack of informa-
tion on disease related genes for dogs, DisGeNet was used to verify genes corresponding to
intersections. We identified 10 breast cancer related genes among 12 corresponding to the
intersection in BCMT-T vs. BCMT-N (83%), and 25 related genes among 54 corresponding
to the intersection in MCMT-T vs. MCMT-N (46%) (Table 2). We detected that the target
genes of miRNA showed a significant expression pattern even at the mRNA level. All of
the analyzed data are addressed in Supplementary Data S2.

Table 2. Intersection and breast cancer related genes of miRNA and mRNA. Bold type indicates
breast cancer related gene.

Comparison Genes

BCMT-T vs. BCMT-N ACSM5, ALDH1A1, ANTXR2, F2RL2, FOS, KLF4, LEF1,
NOVA1, PDGFRB, RORA, SDK1, TRIM46

MCMT-T vs. MCMT-N

ALDH1A2, ANK2, APLN, B3GNT7, BEND6, CHEK1,
CHST1, CKAP4, DCBLD2, DCLK1, ECSCR, ELF5, ELL2,
FAM81A, FBXO5, FHL1, GJA1, GJC1, GPAM, HSPA4L,
HUNK, IGF1, JPH1, KCNQ5, KLHDC1, LONRF3,
MAP3K1, MEGF10, MMD, MMP13, MYBL1, NCKAP5,
NOVA1, NUAK2, PCOLCE2, PGAM1, PRUNE2, PTPRD,
RIMS3, RORA, RTKN2, SEC23A, SEMA6D, SEMA7A,
SESN1, SIMC1, SLC6A6, SLC7A11, ST6GALNAC3, TEF,
TMEM51, TMOD2, VGLL3, WASF3

3. Discussion

When comparing BCMT-N and BCMT-T, 18 miRNAs were classified as DE-miRNAs
with |fold change| ≥ 2 and p-value < 0.05. Moreover, cfa-miR-21 and cfa-miR-502
were already discovered for their overexpression in CMT and are diagnostic targets of
CMT [23,28,29]. In particular, cfa-miR-21 is related to the inhibition of tumor cell apoptosis
in dogs [23]. Human homolog genes of the five DE-miRNAs viz. hsa-miR-21, hsa-miR-185,
hsa-miR-125b, hsa-miR-500, and hsa-miR-502 are all related to human cancers, whereas all
of the miRNAs except for hsa-miR-500 are related to human BC [30–32].

Hsa-miR-21 is a well-known oncomir [19,33] that shows an increase in copy number
in human tumor tissues [34]; it is indicated in tumorigenesis, apoptosis, cell proliferation,
and cancer progression in human cancers [33]. Since hsa-miR-21 is the only miRNA
overexpressed in six types of human cancers, it qualifies as an important candidate for
cancer studies [30]. Furthermore, hsa-miR-21 contributes to the maintenance of malignant
phenotypes in certain cancers; therefore, it could be used as a biomarker for malignancy [35].
Most importantly, the role of hsa-miR-21 in BC has also been studied; it is correlated with
the presence and progression of BC, as it targets the tumor suppressor protein, Programmed
Cell Death 4 [36,37]. The overexpression of cfa-miR-21 is observed in both canine (CMT)
and human tissue (BC) [23]. In dogs, cfa-miR-21 is attributed to the inhibition of tumor
cell apoptosis [23]; it is quite natural that one of the top five DE-miRNAs was found to be
cfa-miR-21 in this study (Supplementary Data S1A). However, in contrast to hsa-miR-21
which is identified as a biomarker for tumor malignancy in humans, cfa-miR-21 was found
only in the DE-miRNA list of BCMT and not from the MCMT tissue (Data S1A,B).

The function of hsa-miR-185 as a tumor suppressor has been established by various
studies; it inhibits the proliferation of human colon cancer cell as well as the development of
glioma by inhibiting global DNA methylation [38,39]. The role of hsa-miR-185 in human BC
has also been identified as a tumor suppressor since it inhibits BC by regulating S100A8/A9,
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NF-κB/Snail signaling pathway, and programmed cell death. Although cfa-miR-185 was
found to be related to IL-7R expression in dogs [40], its association with tumors has not
yet been established. As observed in this study, BMGT individuals showed significantly
higher expression of cfa-miR-185 in tumor tissue than normal tissues, which is contrary to
the role of tumor suppression shown by hsa-miR-185 in humans.

Moreover, cfa-miR-125b is attributed to host cell resistance against canine influenza
virus in [41] and to testicular retinoic acid induced spermatogenesis [42]. However, the
role of cfa-miR-125b in canine tumors has not yet been identified; this study is the first to
record the overexpression of cfa-miR-125b in MGMT dogs. On the contrary, hsa-miR-125b
has been known to act as both an oncogene and a tumor-suppressor gene. Hsa-miR-125b
contributes to the regulation of glycolysis, apoptosis, metastasis, and cancer stem cells [43].
Decreased hsa-miR-125b contributes to prostate tumorigenesis via tumor cell behavior
alteration as it works as a tumor suppressor [44]. Furthermore, hsa-miR-125b plays a role
in γ-irradiation sensitivity in BC; its increased expression results in enhanced apoptotic
activity and senescence after irradiation of BC cells [45].

In this study, tumor tissue of MCMT patients showed a significant upregulation of
cfa-miR-500 compared with the normal tissue (Data S1B). Since there are no existing reports
on the expression patterns or the function of cfa-miR-500 in dogs, the results obtained in this
study are of significance to CMT research. In humans, the expression pattern and function
of hsa-miR-500 have been studied extensively. Jiang et al. revealed that hsa-miR-500
suppresses the proliferation and metastasis of non-small cell lung cancer. However, most
of the studies show the function of the hsa-miR-500 as an oncomir, such as the cfa-miR-500
in this study [46]. Furthermore, hsa-miR-500 has been highly correlated with the malignant
progression of gastric cancer [47] and is found to be upregulated in human hepatocellular
carcinoma and prostate cancer tissues [48,49].

Hsa-miR-502 is known for its suppressive action on the proliferation of BC [50]. More-
over, it plays a role in inhibiting proliferation, tumor growth, invasion, and metastasis in
hepatocellular carcinoma [51]. On the other hand, hsa-miR-502 is observed to function as
an oncomir as it promotes cancer cell proliferation and inhibits apoptosis in esophageal
cancer [52]. According to Xiaoli et al., cfa-miR-502 is significantly upregulated in CMT
compared with normal tissue [29]. Since overexpression of cfa-miR-502 was detected in
this study, the role of cfa-miR-502 could be further explored in future studies (Data S1A).

In addition, hsa-miR-146a is associated with diverse tumors in humans, and it works
as tumor suppressor miRNA or oncomiR depending on the target gene [53]. Moreover,
hsa-miR-146a showed significantly lower expression than normal tissue in gastric cancer
tissue, which makes the miRNA an independent prognostic factor for cancer patients [54].
As a tumor suppressor gene, it plays an important role in the proliferation and oncogenic
transformation of myeloid cells; it is also found to be downregulated in hepatocellular
carcinoma tissue [55,56]. Furthermore, cfa-miR-146a in dogs is expressed in response
to a tumor (Data S1A,B) and inflammation similar to hsa-miR-146a in humans; it is one
of the overexpressed miRNAs in canine meningioma and is related to cell proliferation
and migration [57]. Significantly increased expression of cfa-miR-146a in tumor tissues
of MCMT was observed in this study (Data S1B); cfa-miR-146a also contributes to the
inflammatory response in canine meningioma and peri-implantitis, as similarly found in
humans [57,58].

Nevertheless, cfa-miR-23b has not been mentioned in officially published studies,
which makes its increased expression in tumor tissues of MCMT in this study the first
to be reported in dogs (Data S1B). However, hsa-miR-23b has been discussed in various
studies in relation to human disease; hsa-miR-23b is an oncomir in human BC [59], while it
exhibits decreased expression in pituitary adenoma as hsa-miR-23b inhibits proliferation
by cell cycle arrest [60]. In addition, hsa-miR-23b is more often identified as a tumor
suppressor in human biology and hsa-miR-23b is related to cell aggressiveness inhibition,
which indicates its potential use as a biomarker for diagnosis and prognosis of cancer [61].
Hsa-miR-23b inhibits cell proliferation and invasion in prostate cancer, thereby affecting
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the epithelial-mesenchymal transition process [62]. The downregulation of hsa-miR-23b is
related to the poor prognosis of colorectal cancer [63] and cervical cancer [64].

Hsa-miR-221 and hsa-miR-222 miRNAs affect proliferation, differentiation, and in-
vasion of cancer cells, and are upregulated in human BC, multiple myeloma, malignant
melanoma, glioma, colorectal cancer, etc. [65–67]. The abnormal expression of hsa-miR-221
and hsa-miR-222 is attributed to the development of malignant tumors [67]. Their functions
have been studied in detail in human BC. Hsa-miR-221 and hsa-miR-222 affect cancer
development and progression as they are related to the telomerase activity, apoptosis,
angiogenesis, proliferation, autophagy, and epithelial-mesenchymal transition; they also
affect anticancer drug resistance in BC [65,68]. However, in contrast to humans, only a
limited number of studies were conducted with cfa-miR-221 and cfa-miR-222. These miR-
NAs are upregulated in canine prostate cancer, contribute to cell proliferation, and exhibit
increased expression in the pituitary when exposed to chronic stress stimulation [62,69]. To
date, no study has been conducted in relation to CMT, and the significant upregulation of
cfa-miR-221 and cfa-miR-222 in MCMT observed in this study is the first one to be recorded
(Data S1B).

A comparison of malignant and benign tumor tissues (MCMT-T vs. BCMT-T) identi-
fied cfa-miR-503 as the only DE-miRNA (Figure 1C and Data S1C). In the previous studies,
cfa-miR-503 has been found to contribute to follicular growth and oocyte maturation in
dogs [70], and to the doxorubicin sensitivity in tumor tissue [71]. On the other hand, in hu-
mans, hsa-miR-503 is indicated as a tumor suppressor and oncogenic miRNA. Hsa-miR-503
inhibits tumorigenesis, progression, proliferation, metastasis in hepatocellular carcinoma,
lung cancer, BC, colorectal cancer, ovarian cancer, cervical cancer, etc., and functions as a
tumor suppressor [72–74]. However, these characteristics are not yet studied in dogs.

In summary, among the miRNAs discussed here, we first reported that cfa-miR-503
was related to the malignancy. Although not evaluated in this study, cfa-miR-503 could
not only be a novel short RNA-based drug for canine malignant CMTs that functions as
a tumor suppressor with anti-metastasis activity, but could also be a novel biomarker for
malignancy diagnostic methods in CMT, while the histopathological assessments are vague.
Nevertheless, further studies on the mechanism of action should be conducted for the
evaluation and validation of cfa-miR-503; this miRNA may be a promising candidate both
for a novel drug and a biomarker.

4. Materials and Methods
4.1. Tissue Sample Collection

Tissue samples were collected from dogs at Seoul National University Veterinary
Medical Teaching Hospital as well as from over 10 other local animal hospitals in the
Republic of Korea during 2020–2021. CMT diagnosis and malignancy classification were
carried out based on both histopathological examination (IDEXX, Seongnam-si, Republic of
Korea) and metastasis status. Eight normal tissues and twelve benign CMT (BCMT) tissues
were collected from twelve dogs with BCMT (Table 3). Similarly, four normal tissues and
eight malignant CMT (MCMT) tissues were collected from eight dogs with MCMT (Table 3).
Blood tests were performed for all animals to rule out other medical issues. Normal,
unaffected tissues were also collected adjacent to the CMT mass. All samples for miRNA-
seq and RNA-Seq were preserved in RNAlater (Thermofisher, Waltham, MA, USA) and
stored frozen at −80 ◦C until further analysis. Samples were collected only after receiving
consent from the dog owners. This study was approved by the Seoul National University
Institutional Animal Care and Use Committee (approval number: SNU-200217-3-2).

4.2. Total RNA Extraction and Quality Check

Total RNA was extracted from each tissue sample using Easy-Spin Total RNA Extrac-
tion kit (Intron Biotechnology, Seoul, Republic of Korea) according to the manufacturer’s
protocol. RNA purity and integrity were evaluated using ND-2000 Spectrophotometer



Int. J. Mol. Sci. 2023, 24, 2618 10 of 15

(NanoDrop, Wilmington, DE, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA), respectively.

Table 3. Animals used for sample collection.

Tumor
Classification ID Breed Sex Age (Years) Histopathological Features Normal Tissue

Benign CMT

BCMT-1 Shih-tzu F * 7 Benign mixed mammary tumor Y

BCMT-2 Alaskan
malamute F 6 Benign mammary complex adenoma Y

BCMT-3 Shih-tzu FS ** 11 Benign mixed mammary tumor Y
BCMT-4 Toy poodle FS 12 Mammary adenoma Y
BCMT-5 Maltese F 10 Simple adenoma Y

BCMT-6 Bichon fries F 6 Benign mammary lobular
hyperplasia Y

BCMT-7 Dachshund F 11 Complex mammary adenoma Y
BCMT-8 Mixed FS 16 Benign mammary adenoma Y
BCMT-9 Maltese FS 11 Complex mammary adenoma N

BCMT-10 Cocker spaniel F 10 Complex mammary tubular
adenoma N

BCMT-11 Maltese FS 14 Benign mammary complex adenoma N
BCMT-12 Poodle FS 11 Benign mammary complex adenoma N

Malignant CMT
MCMT-1 Pomeranian F 12 Mammary ductular adenocarcinoma,

low grade (grade 1) Y

MCMT-2 Maltese F 12 Mammary adenocarcinoma, high
grade Y

MCMT-3 Shih-tzu FS 11 Tubulopapillary mammary gland
carcinoma, low grade (grade 1) Y

MCMT-4 Beagle FS 11 Mammary ductular adenocarcinoma,
low grade (grade 1) N

MCMT-5 Mixed F 8 Multinodular mammary gland
adenocarcinoma Y

MCMT-6 Poodle FS 11 Mammary ductular adenocarcinoma,
low grade (grade 1) N

MCMT-7 Poodle FS 13 Mammary adenocarcinoma, high
grade N

MCMT-8 Shih-tzu F 11 Mammary carcinoma, complex type
(grade 1) N

* F: Female; ** FS: Spayed Female; Y: Collected; N: Not Collected.

4.3. Microarray Hybridization and Scanning for miRNA

Microarray hybridization was performed using the Affymetrix GeneChip miRNA 4.0
Array (Thermofisher, MA, USA) according to the manufacturer’s protocol. Total RNA sam-
ples were labeled using FlashTag™ Biotin RNA Labeling Kit (Genisphere, PA, USA). The
labeled RNA samples were then quantified, fractionated, and hybridized to the microarray
according to the manufacturer’s protocol. RNA-array hybridization was performed on an
Affymetrix® 450 Fluidics Station (Thermofisher, MA, USA). The arrays were stained using
a GeneChip Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA) and scanned using an
Affymetrix GCS 3000 scanner (Affymetrix, Santa Clara, CA, USA). The miRNA-mRNA hy-
bridization signals were analyzed using the Affymetrix® GeneChip™ Command Console.

4.4. Raw Data Preparation and Statistical Analysis

Raw data were extracted automatically through the Affymetrix data extraction proto-
col using the Affymetrix GeneChip® Command Console® Software (AGCC) version 6.1
(ThermoFisher, MA, USA). The CEL files import, miRNA level RMA + DABG-All analyses
and results were exported using Affymetrix® Power Tools (APT) Software version 2.11.4
(ThermoFisher, MA, USA). Array data were filtered using probes of annotated species.

4.5. RNA-Seq Library Construction and Sequencing

Total RNA concentration was calculated using Quant-IT RiboGreen (Invitrogen, Ther-
moFisher, MA, USA, #R11490). To assess the integrity of the total RNA, samples were carried
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out on the TapeStation RNA ScreenTape (Agilent Technologies, CA, USA, #5067-5576). Only
high-quality RNA preparations with RNA integrity number (RIN) > 7.0 were used for RNA
library construction. A library was independently prepared with 1 µg total RNA of each
sample using the Illumina TruSeq Stranded mRNA Sample Prep Kit (RS-122-2101, Illumina,
Inc., San Diego, CA, USA). The first step in the workflow involved purifying the poly-A
containing mRNA molecules using poly-T-attached magnetic beads. Following purification,
the mRNA samples were fragmented into small pieces using divalent cations under an ele-
vated temperature. The cleaved RNA fragments were then used as templates to generate first
strand cDNA using SuperScript II reverse transcriptase (Invitrogen, MA, USA)) with random
primers. This was followed by second strand cDNA synthesis using DNA Polymerase I,
RNase H, and dUTP. Next, the generated double stranded cDNA fragments were subjected
to an end repair process involving adenylation followed by adapter ligation. Thereafter, the
products were purified and enriched with PCR to create the final cDNA library. The libraries
were quantified using KAPA Library Quantification kits for Illumina Sequencing platforms
according to the qPCR Quantification Protocol Guide (KAPA BIOSYSTEMS, Wilmington, DE,
USA) and qualified using the TapeStation D1000 ScreenTape (Agilent Technologies, CA, USA).
Finally, indexed libraries were submitted to Illumina NovaSeq (Illumina, Inc., San Diego, CA,
USA) to perform paired-end (2 × 100 bp) sequencing.

4.6. Data Analysis

At the miRNA level, raw data were extracted automatically in Affymetrix data extrac-
tion protocol using the software provided by Affymetrix GeneChip® Command Console®

Software (AGCC). The CEL files import, miRNA level RMA + DABG-All analyses and
results were exported using Affymetrix® Power Tools (APT) Software. Array data were
filtered using probes of annotated species.

At the mRNA level, we preprocessed the raw reads from the sequencer to remove
low quality and adapter sequences before analysis and aligned the processed reads to the
Canis lupus familiaris (CanFam3.1) database using HISAT v2.1.0 [75]. HISAT utilizes two
types of indexes for alignment (a global, whole-genome index and tens of thousands of
small local indexes). These two types of indexes are constructed using the same Burrows–
Wheeler transform (BWT), which is a graph FM index (GFM), such as Bowtie2. Due to
its use in efficient data structures and algorithms, HISAT generates spliced alignments
several times faster than Bowtie and BWA. The reference genome sequence of Canis lupus
familiaris (CanFam3.1) and annotation data were downloaded from the NCBI database.
Then, the transcript assembly of known transcripts was processed by StringTie v2.1.3b [76].
Based on the results, expression abundance of transcripts was calculated as read count or
Fragments Per Kilobase of exon per Million fragments mapped (FPKM value) per sample.
The expression profiles were used for additional analysis, such as differentially expressed
genes (DEGs). In groups with different conditions, DEGs or transcripts can be filtered
through statistical hypothesis testing.

A comparative analysis between test and control samples was carried out using
independent t-test and fold change with the null hypothesis, which indicates that no
difference exists among groups. False discovery rate (FDR) was controlled by adjusting
p-value using Benjamini-Hochberg algorithm. All statistical tests and visualization of DEGs
were conducted using R statistical language (v3.3.2).

KEGG Mapper [77] and clusterProfiler v3.18.1 [78] in R were used to perform the
functional analysis of miRNAs and genes. Based on KEGG Mapper, the roles of miRNAs
and genes were discovered. Biological functions of DEGs were analyzed based on clus-
terProfiler. We collected miRNA-gene associations from miRDB [79] and performed gene
level analysis based on miRNA targets. Moreover, DEGs were identified by comparisons at
the mRNA level; additional analysis was performed between the miRNA target genes and
DEGs at mRNA levels.
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5. Conclusions

In this study, we identified multiple BC-related DEGs in CMT samples. Although
several miRNAs were significantly altered by tumorigenesis, only cfa-miR-503 was differen-
tially expressed by malignancy. Along with our results, we conclude that cfa-miR-503 could
be used as a potential biomarker for diagnosis and prognostic evaluation of malignant
CMTs. Moreover, it could be suggested as a novel RNA-based drug to alleviate metastasis
and proliferation of malignant CMTs.
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