New Insights in the Synthesis of High-Molecular-Weight Aromatic Polyamides-Improved Synthesis of Rod-like PPTA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Polyamidation Reaction
2.2. Theoretical and NMR Study of PPTA Synthesis
3. Materials and Methods
3.1. Characterization
3.2. Synthesis of Poly (p-Phenylene Terephthalamide) (PPTA) Using the Yamazaki–Higashi Method
3.3. Synthesis of Poly (p-Phenylene Terephthalamide) (PPTA) Using the Classical Methodology between TC and PPD
3.4. Synthesis of Poly (p-Phenylene Terephthalamide) (PPTA) Using the In Situ Silylation Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jassal, M.; Ghosh, S. Aramid fibres—An overview. Indian J. Fibre Text. Res. 2002, 27, 290–306. [Google Scholar]
- Ruiz, J.A.R.; Trigo-López, M.; García, F.C.; García, J.M. Functional Aromatic Polyamides. Polymers 2017, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- García, J.M.; García, F.C.; Serna, F.; de la Peña, J.L. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35, 623–686. [Google Scholar] [CrossRef]
- De Abajo, J.; de la Campa, J.G.; Lozano, A.E.; Alvarez, J.C. Thermally stable polymers: Novel aromatic polyamides. Adv. Mater. 1995, 7, 148–151. [Google Scholar] [CrossRef]
- Cao, K.; Liu, Y.; Yuan, F.; Yang, Y.; Wang, J.; Song, Z.; Li, Z.; Wu, W.; Jiang, M.; Yang, J. Preparation and properties of an aromatic polyamide fibre derived from a bio-based furan acid chloride. High Perform. Polym. 2021, 33, 1083–1092. [Google Scholar] [CrossRef]
- Winnacker, M.; Rieger, B. Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromol. Rapid Commun. 2016, 37, 1391–1413. [Google Scholar] [CrossRef]
- Bunsell, A.R. High Performance Fibers; Woodhead Publishing: Sawston, UK, 2021; Volume 2–3, ISBN 9780128222331. [Google Scholar]
- Bair, T.I.; Morgan, P.W.; Killian, F.L. Poly(1,4-phenyleneterephthalamides). Polymerization and Novel Liquid-Crystalline Solutions. Macromolecules 1977, 10, 1396–1400. [Google Scholar] [CrossRef]
- Morgan, P.W. Synthesis and properties of aromatic and extended chain polyamides. Macromolecules 1977, 10, 1381–1390. [Google Scholar] [CrossRef]
- Carretero, P.; Sandin, R.; Mercier, R.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J. Microwave-Induced Synthesis of Aromatic Polyamides by the Phosphorylation Reaction. Aust. J. Chem. 2009, 62, 250–253. [Google Scholar] [CrossRef]
- Krigbaum, W.R.; Kotek, R.; Mihara, Y.; Preston, J. Preparation of polyamides via the phosphorylation reaction. X. A study of higashi reaction conditions. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 1907–1916. [Google Scholar] [CrossRef]
- Mariani, A.; Mazzanti, S.L.E.; Russo, S. Role of the reaction parameters in the direct synthesis of aromatic polyamides. Can. J. Chem. 1995, 73, 1960–1965. [Google Scholar] [CrossRef]
- Russo, S.; Mariani, A.; Ignatov, V.N.; Ponomarev, I.I. High-molecular-weight aromatic polyamides by direct polycondensation. Macromolecules 1993, 26, 4984–4985. [Google Scholar] [CrossRef]
- Imai, Y.; Oishi, Y. Novel synthetic methods for condensation polymers using silylated nucleophilic monomers. Prog. Polym. Sci. 1989, 14, 173–193. [Google Scholar] [CrossRef]
- Oishi, Y.; Kakimoto, M.; Imai, Y. Synthesis of aromatic polyamides from N,N′-bis(trimethylsilyl)-substituted aromatic diamines and aromatic diacid chlorides. Macromolecules 1988, 21, 547–550. [Google Scholar] [CrossRef]
- Maruyama, Y.; Oishi, Y.; Kakimoto, M.; Imai, Y. Synthesis and Properties of Fluorine-Containing Aromatic Polybenzoxazoles from Bis(o-aminophenols) and Aromatic Diacid Chlorides by the Silylation Method. Macromolecules 1988, 21, 2305–2309. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Jahnke, P. New polymer syntheses, 47. Synthesis of aromatic polyethers from silylated diphenols and activated dichloro--substituted aromatics. Die Makromol. Chem. Macromol. Chem. Phys. 1990, 191, 2027–2035. [Google Scholar] [CrossRef]
- Dhara, M.G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022–1077. [Google Scholar] [CrossRef]
- Imai, Y.; Itoya, K.; Kakimoto, M. Synthesis of aromatic polybenzoxazoles by silylation method and their thermal and mechanical properties. Macromol. Chem. Phys. 2000, 201, 2251–2256. [Google Scholar] [CrossRef]
- Becker, K.H.; Schmidt, H.W. Para-linked aromatic poly(amic ethyl esters): Precursors to rodlike aromatic polyimides. 1. Synthesis and imidization study. Macromolecules 1992, 25, 6784–6790. [Google Scholar] [CrossRef]
- Lozano, A.E.; de Abajo, J.; de la Campa, J.G. Quantum semiempirical study on the reactivity of silylated diamines in the synthesis of aromatic polyamides. Macromol. Theory Simul. 1998, 7, 41–48. [Google Scholar] [CrossRef]
- Lozano, A.E.; de Abajo, J.; de la Campa, J.G. Synthesis of Aromatic Polyisophthalamides by In Situ Silylation of Aromatic Diamines. Macromolecules 1997, 30, 2507–2508. [Google Scholar] [CrossRef]
- Muñoz, D.M.; Calle, M.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E. An Improved Method for Preparing Very High Molecular Weight Polyimides. Macromolecules 2009, 42, 5892–5894. [Google Scholar] [CrossRef]
- Muñoz, D.M.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E. Experimental and Theoretical Study of an Improved Activated Polycondensation Method for Aromatic Polyimides. Macromolecules 2007, 40, 8225–8232. [Google Scholar] [CrossRef]
- Smith, Z.P.; Hernández, G.; Gleason, K.L.; Anand, A.; Doherty, C.M.; Konstas, K.; Alvarez, C.; Hill, A.J.; Lozano, A.E.; Paul, D.R.; et al. Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. J. Memb. Sci. 2015, 493, 766–781. [Google Scholar] [CrossRef]
- Díez, B.; Cuadrado, P.; Marcos-Fernández, Á.; de la Campa, J.G.; Tena, A.; Prádanos, P.; Palacio, L.; Lee, Y.M.; Alvarez, C.; Lozano, Á.E.; et al. Thermally rearranged polybenzoxazoles made from poly(ortho-hydroxyamide)s. Characterization and evaluation as gas separation membranes. React. Funct. Polym. 2018, 127, 38–47. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Hernández, A.; de la Campa, J.G.; de Abajo, J.; Lozano, A.E.; Lee, Y.M. Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes. J. Memb. Sci. 2015, 493, 329–339. [Google Scholar] [CrossRef]
- Aguilar-Lugo, C.; Lee, W.H.; Miguel, J.A.; de la Campa, J.G.; Prádanos, P.; Bae, J.Y.; Lee, Y.M.; Álvarez, C.; Lozano, Á.E. Highly Permeable Mixed Matrix Membranes of Thermally Rearranged Polymers and Porous Polymer Networks for Gas Separations. ACS Appl. Polym. Mater. 2021, 3, 5224–5235. [Google Scholar] [CrossRef]
- Li, S.; Dai, Z.; Wang, T.; Huang, Z.; Guo, R. Pentiptycene-Containing Polybenzoxazole Membranes with a Crosslinked Unimodal Network Structure for High-Temperature Hydrogen Separations. Chem. Mater. 2022, 34, 9577–9588. [Google Scholar] [CrossRef]
- Conio, G.; Bruzzone, R.; Ciferri, A.; Bianchi, E.; Tealdi, A. Fiber formation from liquid crystalline precursors I. Poly(p-benzamide). Polym. J. 1987, 19, 757–768. [Google Scholar] [CrossRef]
- Kwolek, S.L.; Morgan, P.W.; Schaefgen, J.R.; Gulrich, L.W. Synthesis, Anisotropic Solutions, and Fibers of Poly(1,4-benzamide). Macromolecules 1977, 10, 1390–1396. [Google Scholar] [CrossRef]
- Yang, H.M. Aramid Fibers. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 187–217. ISBN 978-0-08-100534-7. [Google Scholar]
- Calvert, P. Aromatic polyamides. Nature 1978, 272, 670. [Google Scholar] [CrossRef]
- Bin Kabir, E.R.; Ferdous, E.N. Kevlar-The Super Tough Fiber. Int. J. Text. Sci. 2013, 1, 78–83. [Google Scholar] [CrossRef]
- Tanner, D.; Fitzgerald, J.A.; Phillips, B.R. The Keviar Story—An Advanced Materials Case Study. Adv. Mater. 1989, 1, 151–156. [Google Scholar] [CrossRef]
- Mariani, A.; Monticelli, O.; Fiori, S.; Russo, S. Relevance of purification procedures in the direct synthesis of poly(p-phenyleneterephthalamide) from its dimer. E-Polymers 2003, 3, 766–772. [Google Scholar] [CrossRef]
- Yang, H.H. Kevlar Aramid Fibre; John Wiley & Sons Ltd.: Chichester, UK, 1993; ISBN 0471937657. [Google Scholar]
- Yan, H.; Li, J.; Tian, W.; He, L.; Tuo, X.; Qiu, T. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Adv. 2016, 6, 26599–26605. [Google Scholar] [CrossRef]
- Muñoz, D.M.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J. Monomer Reactivity and Steric Factors affecting the Synthesis of Aromatic Polyamides. High Perform. Polym. 2007, 19, 592–602. [Google Scholar] [CrossRef]
- Biovia, D.A.; DSME, R. Dassault Systèmes, 2017R2; Materials Studio: San Diego, CA, USA, 2017. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Shawnee Mission. KS 2009; Semichem Inc.: Edinburgh, UK, 2009. [Google Scholar]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar] [CrossRef]
- Zhang, I.Y.; Wu, J.; Xu, X. Extending the reliability and applicability of B3LYP. Chem. Commun. 2010, 46, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R. Common Ground. Lancet 1973, 302, 139–141. [Google Scholar] [CrossRef]
- Jensen, J.O. Vibrational frequencies and structural determination of adamantane. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1895–1905. [Google Scholar] [CrossRef]
- Gaussian 09, revision A.02. Software for Computational Chemistry. Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Thompson, M.A. ArgusLab, 4.0.1; Planaria Software LLC: Seattle, WA, USA, 2004. [Google Scholar]
Batch Reaction | TMSC a | TMSC /Py b | TMSC/Py/DMAP c | ηinh d,e |
---|---|---|---|---|
1 | - | - | - | 3.2 ± 0.1 |
2 | 2 | 2 | - | 4.4 ± 0.1 |
3 | 2 | 2 | 20 | 6.7 ± 0.1 |
4 | 2 | 4 | 20 | 6.3 ± 0.1 |
5 | 2 | 4 | 40 | 6.6 ± 0.1 |
EHOMO (eV) | Energy Gap (eV) * EHOMO[PPD]–ELUMO[TC] | |
---|---|---|
PPD | −4.75 | −1.84 |
Silylated PPD | −4.41 | −1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, G.; Ferrero, S.; Reinecke, H.; Bartolomé, C.; Martinez-Ilarduya, J.M.; Álvarez, C.; Lozano, Á.E. New Insights in the Synthesis of High-Molecular-Weight Aromatic Polyamides-Improved Synthesis of Rod-like PPTA. Int. J. Mol. Sci. 2023, 24, 2734. https://doi.org/10.3390/ijms24032734
Hernández G, Ferrero S, Reinecke H, Bartolomé C, Martinez-Ilarduya JM, Álvarez C, Lozano ÁE. New Insights in the Synthesis of High-Molecular-Weight Aromatic Polyamides-Improved Synthesis of Rod-like PPTA. International Journal of Molecular Sciences. 2023; 24(3):2734. https://doi.org/10.3390/ijms24032734
Chicago/Turabian StyleHernández, Guiomar, Sergio Ferrero, Helmut Reinecke, Camino Bartolomé, Jesús M. Martinez-Ilarduya, Cristina Álvarez, and Ángel E. Lozano. 2023. "New Insights in the Synthesis of High-Molecular-Weight Aromatic Polyamides-Improved Synthesis of Rod-like PPTA" International Journal of Molecular Sciences 24, no. 3: 2734. https://doi.org/10.3390/ijms24032734
APA StyleHernández, G., Ferrero, S., Reinecke, H., Bartolomé, C., Martinez-Ilarduya, J. M., Álvarez, C., & Lozano, Á. E. (2023). New Insights in the Synthesis of High-Molecular-Weight Aromatic Polyamides-Improved Synthesis of Rod-like PPTA. International Journal of Molecular Sciences, 24(3), 2734. https://doi.org/10.3390/ijms24032734