Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping
Abstract
:1. Introduction
2. Results
2.1. Open-Circuit Voltage of Lithium-Filled Two-Layer Free-Standing Silicene
2.2. DFT Simulation of Doped Silicene Anode
2.2.1. Free-Standing Doped Single- and Double-Layer Silicene
2.2.2. Doped One- and Two-Layer Silicene on a Graphite Substrate
2.2.3. Lithium Diffusion in Doped Two-Layer Silicene on a Graphite Substrate
2.2.4. Transmutation Doping of Silicene on a Nickel Substrate
2.3. Alternative Charge Carriers to Lithium
2.3.1. Single Adsorption of Li, Na, K, and Mg Atoms on a Free-Standing Silicene Sheet
2.3.2. Polyatomic Adsorption of Lithium on a Free-Standing Silicene Sheet
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607. [Google Scholar] [CrossRef]
- Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material—Fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Bahari, Y.; Mortazavi, B.; Rajabpour, A.; Rabczuk, T. Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Mater. 2021, 35, 203–282. [Google Scholar]
- Chew, H.B.; Hou, B.; Wang, X.; Xia, S. Cracking mechanisms in lithiated silicon thin film electrodes. Int. J. Solid Struct. 2014, 51, 4176–4187. [Google Scholar] [CrossRef]
- Beaulieu, L.Y.; Eberman, K.W.; Turner, R.L.; Krause, L.J.; Dahn, J.R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137–A140. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar]
- Lin, Y.; Connell, J.W. Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 2012, 4, 6908–6939. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, D.; Chen, J.S.; Lou, X.W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 2012, 4, 95–98. [Google Scholar] [CrossRef]
- Liu, T.; Jin, Z.; Liu, D.-X.; Du, C.; Wang, L.; Lin, H.; Li, Y. A density functional theory study of high-performance pre-lithiated MS2 (M = Mo, W, V) monolayers as the anode material of lithium ion batteries. Sci. Rep. 2020, 10, 6897. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Zhao, S.; Zhang, Z.; Zhou, N. Two-dimensional BeB2 and MgB2 as high capacity Dirac anodes for Li-ion batteries: A DFT study. J. Phys. Chem. C 2022, 126, 9642–9651. [Google Scholar] [CrossRef]
- Chodvadiya, D.; Jha, U.; Spiewak, P.; Kurzydłowski, K.J.; Jha, P.K. Potential anodic application of 2D h-AlC for Li and Na-ions batteries. Appl. Surf. Sci. 2022, 593, 153424. [Google Scholar] [CrossRef]
- Shekh, N.; Chodvadiya, D.; Jha, P.K. Rational design of h-AlC monolayer as anode material for Mg-ion battery: A DFT study. Energy Storage 2022, 4, e415. [Google Scholar] [CrossRef]
- Kadhim, M.M.; Rheima, A.M.; Shadhar, M.H.; Abdulnabi, S.M.; Saleh, Z.M.; Al Mashhadani, Z.I.; Najm, Z.M.; Sarkar, A. New type anode for calcium ion batteries based on silicon carbide monolayer. Silicon 2022, 15, 417–424. [Google Scholar] [CrossRef]
- Jose, D.; Datta, A. Structures and electronic properties of silicene clusters: A promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 2011, 13, 7304–7311. [Google Scholar] [CrossRef]
- Jose, D.; Datta, A. Structures and chemical properties of silicene: Unlike graphene. Acc. Chem. Res. 2014, 47, 593–602. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Rakhmanova, O.R. Promising two-dimensional nanocomposite for the anode of the lithium-ion batteries. Computer simulation. Physica E Low Dimens. Syst. Nanostruct. 2021, 126, 114446. [Google Scholar] [CrossRef]
- Drissi, L.B.; Sadki, K.; El Yahyaoui, F.; Saidi, E.H.; Bosman, M.; Fassi-Fehri, O. DFT investigations of silicane/graphane conformers. Comp. Mater. Sci. 2015, 96, 165–170. [Google Scholar] [CrossRef]
- Zhang, W.; Lee, S.; McNear, K.L.; Chung, T.F.; Lee, S.; Lee, K.; Crist, S.A.; Ratliff, T.L.; Zhong, Z.; Chen, Y.P.; et al. Use of graphene as protection film in biological environments. Sci. Rep. 2014, 4, 4097. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C.C.; Zhong, H.; Han, N.; Lu, J.; et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151. [Google Scholar]
- Molle, A.; Faraone, G.; Lamperti, A.; Chiappe, D.; Cinquanta, E.; Martella, C.; Bonera, E.; Scalise, E.; Grazianetti, C. Stability and universal encapsulation of epitaxial Xenes. Faraday Discuss. 2021, 227, 171–183. [Google Scholar] [CrossRef]
- Mayo, M.; Griffith, K.; Pikard, C.J.; Morris, A. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem. Mater. 2016, 28, 2011–2021. [Google Scholar] [CrossRef]
- Hu, W.; Yang, J. Defect in phosphorene. J. Phys. Chem. C 2015, 119, 20474–20480. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, X.; Chen, J.; Zeng, Y.; Yang, D.; Liu, Y. Effects of heavy phosphorous-doping on mechanical properties of Czochralski silicon. J. Appl. Phys. 2010, 107, 123503. [Google Scholar] [CrossRef]
- Okamoto, S.; Ito, A. Investigation of mechanical properties of nitrogen-containing graphene using molecular dynamics simulations. In Proceedings of the International Multy Conference of Engineers and Computer Scientists, Kowloon, Hong Kong, 14–16 March 2012; Ao, S.I., Castillo, O., Douglas, C., Feng, D.D., Lee, I.-A., Eds.; Newswood Limited: Kowloon, Hong Kong, 2012. [Google Scholar]
- Isakov, A.V.; Khvostov, S.; Kinev, E.; Laptev, M.; Khudorozhkova, A.; Grishenkova, O.; Rychkov, V.; Zaikov, Y. Neutron transmutation doping of thin silicon films electrodeposited from the KF-KCl-KI-K2SiF6 melt. J. Electrochem. Soc. 2020, 167, 082515. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.; Min, B.; Lee, J.S.; Cho, K.; Kim, S.; Han, H.S.; Hong, S.K.; Yao, T. Transmuted isotopes doped in neutron-irradiated ZnO thin films. Nucl. Instrum. Methods Phys. Res. B 2004, 217, 429–434. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Shon, Y.; Lee, W.C.; Fu, D.J.; Jeon, H.C.; Kang, T.W. Optical and magnetic properties of Mn+-implanted neutron-transmutation-doped GaAs bulks. J. Appl. Phys. 2004, 96, 2029–2032. [Google Scholar] [CrossRef]
- Hoglund, C.; Zeitelhack, K.; Kudejova, P.; Jensen, J.; Greczynski, G.; Lu, J.; Huliman, L.; Birch, J.; Hall-Wilton, R. Stability of 10B4C thin films under neutron radiation. Radiat. Phys. Chem. 2015, 113, 14–19. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Ivanichkina, K.A.; Vorob’ev, A.S.; Rakhmanova, O.R.; Katin, K.P.; Maslov, M.M. Improved lithium-ion batteries and their communication with hydrogen power. Int. J. Hydrogen Energy 2021, 46, 17019–17036. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Vorob’ev, A.S. Electronic and mechanical properties of silicene after nuclear transmutation doping with phosphorus. J. Mater. Sci. 2020, 55, 11367–11381. [Google Scholar] [CrossRef]
- Galashev, A.; Vorob’ev, A. An Ab initio study of lithization of two-dimensional silicon–carbon anode material for lithium-ion batteries. Materials 2021, 14, 6649. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Vorob’ev, A.S. Physical properties of silicene electrodes for Li-, Na-, Mg-, K-ion batteries. J. Solid State Electrochem. 2018, 22, 3383–3391. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Vorob’ev, A.S. Electronic properties of silicene films subjected to neutron transmutation doping. Semiconductors 2020, 54, 641–649. [Google Scholar] [CrossRef]
- Aydinol, M.K.; Kohan, A.F.; Ceder, G.; Cho, K.; Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 1997, 56, 1354–1365. [Google Scholar] [CrossRef]
- Sivonxay, E.; Aykol, M.; Persson, K.A. The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim. Acta 2020, 331, 135344. [Google Scholar] [CrossRef]
- Jin, W.; Wang, Z.; Fu, Y.Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 2016, 51, 7355–7360. [Google Scholar] [CrossRef]
- Li, H.; Fu, H.-X.; Meng, S. Silicene: From monolayer to multilayer—A concise review. Chin. Phys. B 2015, 24, 086102. [Google Scholar] [CrossRef]
- Liu, S.; Kang, L.; Jun, S.C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 2021, 33, 2004689. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K.T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081. [Google Scholar] [CrossRef]
- Kozhukh, M.L. Neutron doping of silicon in power reactors. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 1993, 329, 453–466. [Google Scholar] [CrossRef]
- Sze, S.M.; Irvin, J.C. Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300 K. Solid State Electron. 1968, 11, 599–602. [Google Scholar] [CrossRef]
- Zhao, X.; Kalidas, N.; Lehto, V.-P. Self-standing mesoporous Si films as anodes for lithium-ion microbatteries. J. Power Sources 2022, 529, 231269. [Google Scholar] [CrossRef]
- Wang, H.; Wu, M.; Lei, X.; Tian, Z.; Xu, B.; Huang, K.; Ouyang, C. Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy 2018, 49, 67–76. [Google Scholar] [CrossRef]
- Momeni, M.J.; Mousavi-Khoshdel, M.; Targholi, E. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries. Mater. Chem. Phys. 2017, 192, 125–130. [Google Scholar] [CrossRef]
- Galashev, A.Y. Computer development of silicene anodes for litium-ion batteries: A review. Electrochem. Mater. Technol. 2022, 1, 20221005. [Google Scholar] [CrossRef]
- Kondo, H.; Sawada, H.; Chikaaki Okuda, C.; Sasaki, T. Influence of the active material on the electronic conductivity of the positive electrode in lithium-ion batteries. J. Electrochem. Soc. 2019, 166, A1285–A1290. [Google Scholar] [CrossRef]
- Xiong, Z.-Y.; Zhang, B.-Y.; Wang, L.; Yu, J.; Guo, Z.-X. Modeling the electrical percolation of mixed carbon fillers in polymer blends. Carbon 2014, 70, 233–240. [Google Scholar] [CrossRef]
- Smith, K.; Wang, C.-Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J. Power Sources 2006, 160, 662–673. [Google Scholar] [CrossRef]
- Xia, X.; Dahn, J.R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 2012, 15, A1–A4. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Coddard, W.A., III; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.L.; Swager, T.M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J. Am. Chem. Soc. 2012, 134, 17896–17899. [Google Scholar] [CrossRef]
- Andrews, J.L.; Mukherjee, A.; Yoo, H.D.; Parija, A.; Marley, P.M.; Fakra, S.; Prendergast, D.; Cabana, J.; Klie, R.F.; Banerjee, S. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 2018, 4, 564–585. [Google Scholar] [CrossRef]
- Palacin, M.R. Battery materials design essentials. Acc. Mater. Res. 2021, 2, 319–326. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Jia, L.; Yuan, H.; Chang, Y.; Gu, M.; Zhu, J. Dynamic instability of lithiated phosphorene. RSC Adv. 2020, 10, 32259. [Google Scholar] [CrossRef] [PubMed]
- Galashev, A.Y.; Vorob’ev, A.S. First principle modeling of a silicene anode for lithium ion batteries. Electrochim. Acta 2021, 378, 138143. [Google Scholar] [CrossRef]
- Galashev, A.E.; Ivanichkina, K.A. Computer study of silicene applicability in electrochemical devices. J. Struct. Chem. 2020, 61, 659–667. [Google Scholar] [CrossRef]
- Zhu, J.; Schwingenschlögl, U. Silicene for Na-ion battery applications. 2D Mater. 2016, 3, 035012. [Google Scholar] [CrossRef]
- Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 2013, 87, 085444. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [PubMed]
- Siesta-Pro/Siesta-Pseudos-and-Basis-Database. Available online: https://www.simuneatomistics.com/siesta-pro/siesta-pseudos-and-basis-database/ (accessed on 20 December 2022).
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
Property | Li | Na | K | Mg |
---|---|---|---|---|
, eV | 2.082 | 1.650 | 1.536 | 2.667 |
, eV | 4.759 | 4.761 | 4.760 | 4.591 |
, Å | 2.288 | 2.285 | 2.284 | 2.369 |
, Å | 2.740 | 2.990 | 3.325 | 2.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galashev, A.Y.; Vorob’ev, A.S. Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping. Int. J. Mol. Sci. 2023, 24, 2864. https://doi.org/10.3390/ijms24032864
Galashev AY, Vorob’ev AS. Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping. International Journal of Molecular Sciences. 2023; 24(3):2864. https://doi.org/10.3390/ijms24032864
Chicago/Turabian StyleGalashev, Alexander Y., and Alexey S. Vorob’ev. 2023. "Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping" International Journal of Molecular Sciences 24, no. 3: 2864. https://doi.org/10.3390/ijms24032864
APA StyleGalashev, A. Y., & Vorob’ev, A. S. (2023). Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping. International Journal of Molecular Sciences, 24(3), 2864. https://doi.org/10.3390/ijms24032864