Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Transmission Electron Microscopy
2.2. Measurement Method and Diffusion Analysis
2.3. Filler Effects on H2 Uptake
2.4. Filler Effects on H2 Diffusion
2.5. Correlations of Permeation with Physical/Mechanical Properties
3. Materials and Methods
3.1. Sample Composition
3.2. Exposure to H2 Gas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishimura, S. Fracture behaviour of ethylene propylene rubber for hydrogen gas sealing under high pressure hydrogen. Int. Polym. Sci. Technol. 2014, 41, 27–34. [Google Scholar] [CrossRef]
- Yamabe, J.; Nishimura, S. Hydrogen-induced degradation of rubber seals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R.P., Somerday, B.P., Eds.; Elsevier: Cambridge, UK, 2012; pp. 769–816. [Google Scholar]
- Aibada, N.; Manickam, R.; Gupta, K.K.; Raichurkar, P. Review on various gaskets based on the materials, their characteristics and applications. Int. J. Text. Eng. Process. 2017, 3, 12–18. [Google Scholar]
- Yu, W.; Dianbo, X.; Jianmei, F.; Xueyuan, P. Research on sealing performance and self-acting valve reliability in high-pressure oil-free hydrogen compressors for hydrogen refueling stations. Int. J. Hydrogen Energy 2010, 35, 8063–8070. [Google Scholar] [CrossRef]
- Sakamoto, J.; Sato, R.; Nakayama, J.; Kasai, N.; Shibutani, T.; Miyake, A. Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA. Int. J. Hydrogen Energy 2016, 41, 21564–21570. [Google Scholar] [CrossRef]
- Barth, R.R.; Simmons, K.L.; San Marchi, C.W. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis; Sandia National Laboratories: Livermore, CA, USA, 2013. [Google Scholar]
- Honselaar, M.; Pasaoglu, G.; Martens, A. Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting. Int. J. Hydrogen Energy 2018, 43, 12278–12294. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Zhang, C.; Song, Y.; Jiang, S.; Grouset, D.; Zhang, M. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 10677–10693. [Google Scholar] [CrossRef]
- Reddi, K.; Elgowainy, A.; Sutherland, E. Hydrogen refueling station compression and storage optimization with tube-trailer deliveries. Int. J. Hydrogen Energy 2014, 39, 19169–19181. [Google Scholar] [CrossRef]
- Koga, A.; Uchida, K.; Yamabe, J.; Nishimura, S. Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments. Int. J. Automot. Eng. 2011, 2, 123–129. [Google Scholar] [CrossRef]
- Balasooriya, W.; Clute, C.; Schrittesser, B.; Pinter, G. A review on applicability, limitations, and improvements of polymeric materials in high-pressure hydrogen gas atmospheres. Polym. Rev. 2022, 62, 175–209. [Google Scholar] [CrossRef]
- UNECE. Global Technical Regulation on Hydrogen and Fuel Cell Vehicles Contents. Global Technical Regulation No. 13. Available online: https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29wgs/wp29gen/wp29registry/ECE-TRANS (accessed on 3 December 2022).
- ISO 19880-5:2019; Gaseous Hydrogen—Fuelling Stations—Part 5: Dispenser Hoses and Hose Assemblies. ISO: Geneva, Switzerland, 2019.
- Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-pressure gaseous hydrogen permeation test method -property of polymeric materials for high-pressure hydrogen devices (1). Int. J. Hydrogen Energy 2020, 45, 29082–29094. [Google Scholar] [CrossRef]
- Ibarra, L.; Posadas, P.; Esteban-Martínez, M. A comparative study of the effect of some paraffinic oils on rheological and dynamic properties and behavior at low temperature in EPDM rubber compounds. J. Appl. Polym. Sci. 2005, 97, 1825–1834. [Google Scholar] [CrossRef]
- Rutherford, S.W.; Kurtz, R.E.; Smith, M.G.; Honnell, K.G.; Coons, J.E. Measurement and correlation of sorption and transport properties of ethylene-propylene-diene monomer (EPDM) elastomers. J. Membr. Sci. 2005, 263, 57–65. [Google Scholar] [CrossRef]
- Yamabe, J.; Nishimura, S. Influence of carbon black on decompression failure and hydrogen permeation properties of filled ethylene-propylene–diene–methylene rubbers exposed to high-pressure hydrogen gas. J. Appl. Polym. Sci. 2011, 122, 3172–3187. [Google Scholar] [CrossRef]
- Kang, H.M.; Choi, M.C.; Lee, J.H.; Yun, Y.M.; Jang, J.S.; Chung, N.K.; Jeon, S.K.; Jung, J.K.; Lee, J.H.; Lee, J.H.; et al. Effect of the high-pressure hydrogen gas exposure in the silica-filled EPDM sealing composites with different silica content. Polymers 2022, 14, 1151. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.K.; Kim, I.G.; Kim, K.T.; Ryu, K.S.; Chung, K.S. Evaluation techniques of hydrogen permeation in sealing rubber materials. Polym. Test. 2021, 93, 107016. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Jeon, S.K.; Kim, K.T.; Baek, U.B.; Nahm, S.H. Volumetric analysis technique for analyzing the transport properties of hydrogen gas in cylindrical-shaped rubbery polymers. Polym. Test. 2021, 99, 107147. [Google Scholar] [CrossRef]
- Phalen, R.N.; Wong, W.K. Polymer properties associated with chemical permeation performance of disposable nitrile rubber gloves. J. Appl. Polym. Sci. 2015, 132, 41449. [Google Scholar] [CrossRef]
- Low, Z.X.; Budd, P.M.; McKeown, N.B.; Patterson, D.A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev. 2018, 118, 5871–5911. [Google Scholar] [CrossRef]
- Vannucci, C.; Taniguchi, I.; Asatekin, A. Nanoconfinement and chemical structure effects on permeation selectivity of self-assembling graft copolymers. ACS Macro Lett. 2015, 4, 872–878. [Google Scholar] [CrossRef]
- Ryzhikh, V.; Tsarev, D.; Alentiev, A.; Yampolskii, Y. A novel method for predictions of the gas permeation parameters of polymers on the basis of their chemical structure. J. Membr. Sci. 2015, 487, 189–198. [Google Scholar] [CrossRef]
- Haraya, K.; Hwang, S.T. Permeation of oxygen, argon and nitrogen through polymer membranes. J. Membr. Sci. 1992, 71, 13–27. [Google Scholar] [CrossRef]
- Park, J.Y.; Paul, D.R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci. 1997, 125, 23–39. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Haraya, K.; Hattori, S.; Sasuga, T. Evaluation of polymer free volume by positron annihilation and gas diffusivity measurements. Polymer 1994, 35, 925–928. [Google Scholar] [CrossRef]
- Hill, A.J.; Weinhold, S.; Stack, G.M.; Tant, M.R. Effect of copolymer composition on free volume and gas permeability in poly(ethylene terephthalate)-poly(1,4 cyclohexylenedimethylene terephthalate) copolyesters. Eur. Polym. J. 1996, 32, 843–849. [Google Scholar] [CrossRef]
- Eastmond, G.; Daly, J.; McKinnon, A.; Pethrick, R. Poly(ether imide)s: Correlation of positron annihilation lifetime studies with polymer structure and gas permeability. Polymer 1999, 40, 3605–3610. [Google Scholar] [CrossRef]
- Nagel, C.; Günther-Schade, K.; Fritsch, D.; Strunskus, T.; Faupel, F. Free volume and transport properties in highly selective polymer membranes. Macromolecules 2002, 35, 2071–2077. [Google Scholar] [CrossRef]
- McGonigle, E.A.; Liggat, J.J.; Pethrick, R.A.; Jenkins, S.D.; Daly, J.H.; Hayward, D. Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films—dependence on free volume. Polymer 2001, 42, 2413–2426. [Google Scholar] [CrossRef]
- Yampolskii, Y.P.; Korikov, A.P.; Shantarovich, V.P.; Nagai, K.; Freeman, B.D.; Masuda, T.; Teraguchi, M.; Kwak, G. Gas permeability and free volume of highly branched substituted acetylene polymers. Macromolecules 2001, 34, 1788–1796. [Google Scholar] [CrossRef]
- Fujita, H. Notes on free volume theories. Polym. J. 1991, 23, 1499–1506. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Demarez, A.; Hock, A.G.; Meunier, F.A. Diffusion of hydrogen in mild steel. Acta Metall. 1954, 2, 214–223. [Google Scholar] [CrossRef]
- Sander, R.; Acree, W.E.; De Visscher, A.; Schwartz, S.E.; Wallington, T.J. Henry’s law constants (IUPAC recommendations 2021). Pure Appl. Chem. 2021, 94, 71–85. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef]
- Kanehashi, S.; Nagai, K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. J. Membr. Sci. 2005, 253, 117–138. [Google Scholar] [CrossRef]
- Wang, J.S.; Kamiya, Y. Evaluation of gas sorption parameters and prediction of sorption isotherms in glassy polymers. J. Polym. Sci. B Polym. Phys. 2000, 38, 883–888. [Google Scholar] [CrossRef]
- Vieth, W.R.; Tam, P.M.; Michaels, A.S. Dual sorption mechanisms in glassy polystyrene. J. Colloid Interface Sci. 1966, 22, 360–370. [Google Scholar] [CrossRef]
- Paul, D.R. Gas sorption and transport in glassy polymers. Ber. Bunsenges. Phys. Chem. 1979, 83, 294–302. [Google Scholar] [CrossRef]
- Bondar, V.I.; Kamiya, Y.; Yampol’skii, Y.P. On pressure dependence of the parameters of the dual-mode sorption model. J. Polym. Sci. B Polym. Phys. 1996, 34, 369–378. [Google Scholar] [CrossRef]
- Jung, J.K.; Lee, C.H.; Son, M.S.; Lee, J.H.; Baek, U.B.; Chung, K.S.; Choi, M.C.; Bae, J.W. Filler effects on H2 diffusion behavior in nitrile butadiene rubber blended with carbon black and silica fillers of different concentrations. Polymers 2022, 14, 700. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal: A fractal theory-based approach. Fuel 2019, 253, 588–606. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S. Estimation of pressure-dependent diffusive permeability of coal using methane diffusion coefficient: Laboratory measurements and modeling. Energy Fuels 2016, 30, 8968–8976. [Google Scholar] [CrossRef]
- Knudsen, M. Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch röhren. Ann. Phys. 1909, 333, 75–130. [Google Scholar] [CrossRef] [Green Version]
- Welty, J.R.; Wicks, C.E.; Wilson, R.E. Fundamentals of Momentum, Heat, and Mass Transfer; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Thornton, A.W.; Nairn, K.M.; Hill, A.J.; Hill, J.M. New relation between diffusion and free volume: I. Predicting gas diffusion. J. Membr. Sci. 2009, 338, 29–37. [Google Scholar] [CrossRef]
- Wang, Z.F.; Wang, B.; Yang, Y.R.; Hu, C.P. Correlations between gas permeation and free-volume hole properties of polyurethane membranes. Eur. Polym. J. 2003, 39, 2345–2349. [Google Scholar] [CrossRef]
- Jung, J.K.; Lee, C.H.; Baek, U.B.; Choi, M.C.; Bae, J.W. Filler influence on H2 permeation properties in Sulfur-CrossLinked ethylene propylene diene monomer polymers blended with different concentrations of carbon black and silica fillers. Polymers 2022, 14, 592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Composites | EPDM HAF20 | EPDM HAF40 | EPDM HAF60 | EPDM SRF20 | EPDM SRF40 | EPDM SRF60 |
---|---|---|---|---|---|---|
Dispersion (%) | 88.3 ± 2.0 | 97.3 ± 0.7 | 97.4 ± 0.2 | 90.2 ± 0.4 | 97.4 ± 0.8 | 98.7 ± 0.2 |
Composites | k | a | b | R2 | Langmuir Contribution * (%) |
---|---|---|---|---|---|
Neat EPDM | 26.2 | 0 | 0 | 0.99 | 0 |
EPDM HAF20 | 17.5 | 1163 | 0.0232 | 0.99 | 21 |
EPDM HAF40 | 16.0 | 2210 | 0.0193 | 0.99 | 35 |
EPDM HAF60 | 2.52 | 610 | 0.1941 | 0.95 | 81 |
EPDM SRF20 | 19.1 | 775 | 0.0328 | 0.99 | 18 |
EPDM SRF40 | 20.1 | 911 | 0.0374 | 0.99 | 20 |
EPDM SRF60 | 15.9 | 1982 | 0.0237 | 0.99 | 39 |
EPDM S20 | 24.5 | 0 | 0 | 0.99 | 0 |
Composites | EPDM | ZnO | St/A | HAF N330 | SRF N774 | Silica S-175 | Si-69 | PEG | DCP | TAC |
---|---|---|---|---|---|---|---|---|---|---|
EPDM Neat | 100 | 3.0 | 1.0 | 1.5 | 1.0 | |||||
EPDM HAF20 | 100 | 3.0 | 1.0 | 20 | 1.5 | 1.0 | ||||
EPDM HAF40 | 100 | 3.0 | 1.0 | 40 | 1.5 | 1.0 | ||||
EPDM HAF60 | 100 | 3.0 | 1.0 | 60 | 1.5 | 1.0 | ||||
EPDM SRF20 | 100 | 3.0 | 1.0 | 20 | 1.5 | 1.0 | ||||
EPDM SRF40 | 100 | 3.0 | 1.0 | 40 | 1.5 | 1.0 | ||||
EPDM SRF60 | 100 | 3.0 | 1.0 | 60 | 1.5 | 1.0 | ||||
EPDM S20 | 100 | 3.0 | 1.0 | 20 | 1.6 | 0.8 | 1.5 | 1.0 | ||
EPDM S40 | 100 | 3.0 | 1.0 | 40 | 3.2 | 1.6 | 1.5 | 1.0 | ||
EPDM S60 | 100 | 3.0 | 1.0 | 60 | 4.8 | 2.4 | 1.5 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.K.; Lee, J.H.; Jeon, S.K.; Tak, N.H.; Chung, N.K.; Baek, U.B.; Lee, S.H.; Lee, C.H.; Choi, M.C.; Kang, H.M.; et al. Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers. Int. J. Mol. Sci. 2023, 24, 2865. https://doi.org/10.3390/ijms24032865
Jung JK, Lee JH, Jeon SK, Tak NH, Chung NK, Baek UB, Lee SH, Lee CH, Choi MC, Kang HM, et al. Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers. International Journal of Molecular Sciences. 2023; 24(3):2865. https://doi.org/10.3390/ijms24032865
Chicago/Turabian StyleJung, Jae K., Ji H. Lee, Sang K. Jeon, Nae H. Tak, Nak K. Chung, Un B. Baek, Si H. Lee, Chang H. Lee, Myung C. Choi, Hyun M. Kang, and et al. 2023. "Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers" International Journal of Molecular Sciences 24, no. 3: 2865. https://doi.org/10.3390/ijms24032865
APA StyleJung, J. K., Lee, J. H., Jeon, S. K., Tak, N. H., Chung, N. K., Baek, U. B., Lee, S. H., Lee, C. H., Choi, M. C., Kang, H. M., Bae, J. W., & Moon, W. J. (2023). Correlations between H2 Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers. International Journal of Molecular Sciences, 24(3), 2865. https://doi.org/10.3390/ijms24032865