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Abstract: Microbiomics have significantly advanced over the last decade, driven by the widespread
availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS
and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic
respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight
has been attained into the nature, function, and significance of microbial communities in disease
onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome
assessment, there now exists a growing literature on functional assessment and host–microbe interac-
tion and, in particular, their contribution to disease progression, severity, and outcome. Identifying
specific microbes and/or metabolic signatures associated with COPD can open novel avenues for
therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of
these approaches, the large amount of data generated by such technologies can be challenging to
analyze and interpret, and currently, there remains a lack of standardized methods to address this.
This review outlines the current use and proposes future avenues for the application of NGS and
multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
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1. Introduction

The application of next-generation sequencing (NGS) has improved our understand-
ing of the respiratory microbial ecosystem in health and disease [1,2]. Traditionally, the
identification of microorganisms has been achieved through culture, which often requires a
substantial microbial load for reliable detection. Since NGS was first employed to evaluate
respiratory specimens in the early 2000s, researchers have gained a deep understanding
of the potential role of the lung microbiome in chronic obstructive pulmonary disease
(COPD) [2–4]. The dynamic nature of the lung microbiome, influenced by environmental
and host factors, treatment, and disease status, has led to the use of multi-omics approaches
to better delineate the complex microbial communities that exist in COPD [1]. Over recent
times, microbiome research has evolved into exploring multi-kingdom and host–microbial
interactions using a combination of NGS and multi-omics. One commonly used technique
to assess microbial communities in the airway is targeted amplicon sequencing, an ap-
proach that amplifies specific regions of bacterial (16S ribosomal ribonucleic acid (rRNA))
or fungal (18S internal transcribed spacer (ITS)) DNA using specific primers followed
by sequencing and taxonomic classification [5,6]. Alternatively, shotgun metagenomic
sequencing performs an unbiased sequencing of all DNA in a particular sample, providing
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a more holistic and balanced view while offering additional functional and/or resistance in-
formation about the detected microbes. Metatranscriptomics involves RNA sequencing that
provides information about microbial viability and gene expression in addition to potential
host–microbe interaction when host RNA is incorporated [7]. To gain a comprehensive
understanding of inflammation and cellular pathways involved in COPD pathogenesis and
progression, researchers may also employ genomic, proteomic, lipidomic, and metabolomic
assessments, each representing different views of a single clinical case [8–10]. While each
individual omic approach has value, a systems medicine perspective combining several
multi-omics may provide even greater insight, especially when appropriate integration for
clinical outcome prediction is used [11]. Importantly, the high inherent dimensionality and
data heterogeneity between the various omics pose analytical and interpretation challenges
that require the development of appropriate strategies for data integration and analysis.
Here, we provide a review of the current and potential future use of NGS, multi-omics, and
their data integration across the different stages of COPD (Figure 1).
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Figure 1. A pictorial summary of the current literature in relation to the application of next-
generation sequencing (NGS) and multi-omic analysis in (i) smoking-related change [12–14], (ii) sta-
ble COPD [15–22], (iii) acute exacerbations of COPD (AE COPD) [16,23–25], and (iv) COPD treat-
ment [26–28]. BAL: bronchoalveolar lavage, IL: interleukin, TIMP1: metalloproteinase-inhibitor 1,
BPIFB1: bactericidal/permeability-increasing fold-containing family B member 1, MUC5AC: mucin
5AC, NETs: neutrophil extracellular traps, IFN: interferon, TNF: tumor necrosis factor, ↑: increase,
↓: decrease.

2. NGS in Endophenotyping and Prognostication of COPD

Smoking-related change. The oral bacteriome in the healthy individual is domi-
nated by the genera Streptococcus, Prevotella, and Veillonella [12,13]. Studies have re-
ported that smoking is associated with changes in the oral microbiome, including a de-
creased abundance of the Proteobacteria phylum and the genera Neisseria, Porphyromonas,
Gamella, Capnocytophaga, Peptostreptococcus, and Leptotrichia compared to healthy non-
smokers [12,13,29–31]. In addition, functional pathways related to carbohydrates, energy,
and xenobiotic metabolism are depleted in smokers [13,29]. Interestingly, the oral bacteri-
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ome appears to be similar between former smokers and never smokers [29]. Such change
has not been observed in the lower respiratory tract where bacterial microbiome profiles
are similar between smokers and non-smokers [32–34]. These data suggest that changes
to the oral bacteriome are not permanent and are potentially reversible with smoking
cessation and likely do not involve the lower airway before a COPD diagnosis. In a small
study of the virome, Proteobacteria and Firmicute bacteriophages represent the main DNA
viruses present in the airway, and their abundance is increased in smokers, correlating with
increased levels of interleukin-8 (IL-8) and arachidonic acid [14]. This implies a potential
role for bacteriophages in the induction of inflammation in the airways of active smok-
ers. Limitations of virome studies include their low abundance in the airway, incomplete
virome databases, and the lack of standardized methodology for virus detection. These
have all hindered the progress and understanding of its contribution to chronic respiratory
diseases [35]. Further research is, however, needed to determine the precise relationship
between these microbial and inflammatory changes and the development of COPD.

Mild–moderate COPD. While the lower airway bacteriome remains comparable be-
tween non-COPD smokers and healthy individuals, changes are observed in patients with
COPD relative to non-COPD smokers [35]. Studies report a decreased bacterial alpha
diversity (within sample diversity) in individuals with COPD, and this diversity is further
altered during acute exacerbations (AE COPD). Analysis of bronchoalveolar lavage (BAL)
and bronchial brushing samples reveal an increased abundance of Streptococcus, Lactobacil-
lales, Fusobacterium, and Moraxella in mild to moderate COPD and Prevotella in those without
COPD [15,36,37]. Prevotella is therefore considered a “healthy” microbe, and its decreased
abundance in COPD is linked to increased disease severity and a downregulation of genes
promoting host defense as observed through transcriptomic analysis [15]. Madapoosi and
colleagues integrated BAL bacteriomes and metabolomic data from the SPIROMICS cohort
in individuals with mild–moderate COPD and showed that the occurrence of Prevotella
and its associated compounds, adenosine and 5- methylthioadenosine (MTA), predict clini-
cal outcome in COPD with lower symptom scores and higher lung function. Adenosine
regulates airway surface liquid (ASL) and plays a key role in maintaining ciliary function
and mucus clearance, while MTA is involved in purine metabolism and methionine sal-
vage [38]. In contrast, the presence of Streptococcus, Neisseria, and Veillonella, along with
their associated metabolites in the classes of glycosphingolipids, glycerophospholipids,
polyamines, and purine metabolism, were correlated with poorer lung function and higher
COPD symptoms, suggesting that altered host–microbe interactions are observed even at
the earliest stages of this disease [37].

Moderate–severe COPD. The dominant phyla in moderate–severe COPD include Pro-
teobacteria and Firmicutes and the genera Haemophilus, Moraxella, Streptococcus, Rothia, and
Staphylococcus [39–41]. As COPD progresses, further decreases in bacterial alpha diversity
are observed, most prominently in severe COPD [39,40]. Increased Pseudomonas is also ob-
served in COPD with severe airflow limitation [42]. In addition, microbial variation is asso-
ciated with airway inflammation and disease severity [23,39,41,43,44]. Airway Haemophilus
dominance is linked to neutrophilic inflammation, the activation of neutrophil extracellular
trap (NET) formation, and the induction of interleukin-6 (IL-6) signaling [45,46]. Studies
integrating microbiome and proteomic data illustrate that the upregulation of proteins
involved in neutrophil activation pathways is most common with Proteobacteria-dominant
microbiomes, which in turn associate with an increased exacerbation frequency, disease
severity, and overall poorer COPD prognosis [23]. Patients with frequent COPD exacer-
bations tend to have elevated levels of microbial genes involved in lipopolysaccharide
biosynthesis and energy metabolism [47–49]. When the airway mycobiome (fungal micro-
biome) is considered, a high abundance of Candida and distinct fungal profiles are observed
in COPD, with Aspergillus, Curvularia, and Penicillium having association with poor clinical
outcomes, including exacerbations and even mortality [16,24,50]. Candida is the dominant
genera in the COPD airway with an increased abundance observed in older individuals
and COPD compared to healthy controls [24,51,52]. Colonization with Candida is associated
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with lung function decline and exacerbations in cystic fibrosis, but their roles have been
lesser explored in COPD [53]. Taken together, these findings support the presence of micro-
biome signatures and the important individual roles of bacteria, fungi, metabolites, and
host interaction in the development, progression, prognosis, and exacerbations associated
with COPD.

COPD exacerbations. During AECOPD, the mycobiome remains relatively stable;
however, bacteriome composition may be altered, often influenced by underlying airway
inflammation and baseline microbial profiles. Such changes to the bacteriome may have
significant consequences on the clinical severity and/or outcomes of exacerbations. A large,
multi-center, longitudinal study combining data from the BEAT, COPDMAP, and AERIS
cohorts identified two neutrophilic bacteriome endotypes in individuals with COPD [54].
The first, dominated by Haemophilus, associates with high levels of sputum interleukin
(IL)-1β and tumor necrosis factor (TNF)-α and remains stable during exacerbations [54].
The second endotype, characterized by a balanced bacteriome and increased levels of IL-17
in the sputum and blood, is more prone to bacterial shifts during exacerbations, either
towards the neutrophilic-Haemophilus endotype or a more eosinophilic driven endotype
where Campylobacter and Granulicatella are favored [54]. The dynamic bacterial changes
therefore observed with exacerbation, at least in a subset of patients with COPD, may
therefore be determined by their underlying inflammatory endotypes; however, where
specific genera of bacteria are evaluated, Moraxella has been associated with AECOPD and
upregulation of interferon and pro-inflammatory signaling as observed in longitudinal
studies using transcriptomics and proteomics analysis [55]. Interestingly, profiles with
elevated Moraxella reverse in the post-exacerbation state [55]. In severe exacerbations,
elevated Staphylococcus relates to increased mortality, while Staphylococcus and Pseudomonas
associate with exacerbations and greater disease severity [41–43]. By contrast, Veillonella is
reduced during AECOPD and relates to better survival [17,41,56]. While little alteration
is observed in the airway mycobiome profiles between stable, exacerbation, and post-
exacerbation COPD states, a reduced alpha diversity in the COPD mycobiome detected
during exacerbations does associate with an increased two-year mortality, suggesting that
airway fungal change remains an important consideration [16,18].

3. The Application of Proteomics and Metabolomics in COPD

Cigarette smoking has direct effects on the airway protein and/or metabolites that
have implications for the development of COPD in smokers. Proteomic analysis of BAL
fluid from smokers reveals alterations in over 500 proteins involving 15 molecular pathways
compared to non-smokers [19]. In smokers, proteins involved in oxidative phosphorylation
and the citrate cycle were upregulated, while ribosomal and antigen presentation-related
proteins were downregulated. Phagosomal and leucocyte transendothelial migration
(LTM) pathways correlate with airway obstruction, and CD8 CD69 T cells and their related
proteins are dysregulated in smokers, while CD8 T cells associate with increased airway
inflammation and remain critical in the development of emphysema [19,57].

Using induced sputum in four different groups (i.e., smokers, former smokers, never-
smokers, and those with COPD), a gradient trend of altered airway proteins is observed,
with the greatest change detectable in current smokers and individuals with COPD [58].
Smokers demonstrate an upregulation of mucin/trefoil proteins, xenobiotic metabolism en-
zymes, peptidase regulators, and proteins involved in the redox process, with such change
decreasing in former smokers to the point of approaching levels of never-smokers [58]. Thir-
teen COPD-specific proteins can discriminate current smokers, including metalloproteinase-
inhibitor 1 (TIMP1), bactericidal/permeability-increasing fold-containing family B member
1 (BPIFB1), and apolipoprotein A-I (APOA1) [58]. BPIFB1 protein, found in goblet cells,
possesses antimicrobial and immune-related functions and is upregulated in the sputum
of smokers with COPD and correlates with pack-years smoking exposure and declining
lung function over a four-year period [20,59]. Mucus hypersecretion, a common (chronic
bronchitis) phenotype in smokers and individuals with COPD, is associated with increased



Int. J. Mol. Sci. 2023, 24, 2955 5 of 16

sputum MUC5AC in smokers and individuals with chronic bronchitis, while emphysema
is characterized by high plasma protein levels and components of neutrophil extracellular
traps (NETs) in sputum. Importantly, these changes are also observed in e-cigarette users
and support the key roles of mucins and their related proteins in COPD pathogenesis and
progression [57,60,61].

A multi-center sputum metabolomic study involving 980 patients, including smok-
ers, non-smokers, and individuals with COPD, identified elevated levels of sialic acid,
hypoxanthine, xanthine, methylthioadenosine, adenine, and glutathione analytes in COPD.
These metabolites associate with mucus hydration, adenosine metabolism, and oxida-
tive stress, while sialic acid and hypoxanthine are linked to disease severity, time to next
exacerbation, and the prediction of future COPD exacerbations [21]. Paired BAL and
plasma metabolomics in 115 individuals from the SPIROMICS cohort demonstrate that
the two compartments have poor correlation, with BAL being more closely associated
with COPD phenotypes. Multiple classes of metabolomes, including amino acids, fatty
acid, carnitines, and phospholipids, associate with lung function and emphysema. Amino
acids such as leucine and lysine are enriched in emphysema, while decreased levels of
isoleucine, serine, and arginine associate with poorer lung function (FEV1/FVC ratio) [22].
Distinct metabolomic signatures are also characteristic of AECOPD, with reduced levels
of tryptophan and increased activity of the Indoleamine 2,3-dioxygenase pathway, which
possesses antimicrobial properties [25,62]. Altered airway metabolomics are observed even
in stable COPD, with variation dependent on underlying COPD phenotypes and further
change occurring during AECOPD.

Sphingolipids, dysregulated in COPD, are essential components of the plasma cell
membrane and remain involved in cell homeostasis and the binding of microbial toxins [63].
Increased ceramide levels are found in the lung tissue of smokers and individuals with mild
COPD; however, as COPD progresses to a more severe disease, reverse trends emerge [64].
Dysregulation of 13 sphingolipids observed in induced COPD sputum positively correlates
with smoking pack-year exposure and reduced lung function [65]. These include ceramides,
dihydroceramides, sphingomyelin, and glycosphingolipids, and these changes linked to
smoking attenuate after two months of smoking cessation [65]. Changes in glycerophos-
pholipids are observed during AECOPD, particularly in non-eosinophilic phenotypes [66].
Similar results are reported in plasma and serum metabolomics and proteomic studies,
with the dysregulation of amino acid, phospholipids, and sphingolipid pathways in COPD
and/or emphysema relative to smokers, which associate with declining lung function and
increased exacerbations [26,27,67–72]. Proteomic and metabolomics signatures identified in
COPD clearly differentiate from smokers without COPD, and several of these relate to the
oxidative stress response, mucin production, lipid metabolism, leucocyte, and phagosomal
pathways. All such pathways are relevant in COPD pathogenesis and represent potential
targets for drug development.

4. Understanding COPD Therapeutics Using NGS

Inhaled corticosteroids (ICS). ICS therapy is recommended as add-on therapy for COPD
patients experiencing frequent exacerbations and/or with a raised blood eosinophil profile;
however, it is proposed to associate with risks of developing pneumonia. Changes in the
lung bacteriome are linked to ICS use which may contribute to increased susceptibility
to pneumonia. A randomized controlled trial (RCT) in steroid naïve COPD patients
found that treatment with fluticasone-containing inhalers for one year was associated with
increased alpha diversity and the presence of Streptococcus pneumoniae and Haemophilus
influenzae but only in patients with low baseline sputum and/or blood eosinophil count [73].
The effects of ICS on Streptococcus abundance are thought to be mediated by cathepsin
D/cathelicidin activity, which has roles in host defenses against bacteria in an ICS-treated
mouse model [74]. In addition, changes to the lower airway bacteriome with increased
growth of Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and
Acinetobacter baumanii are observed with fluticasone-based therapy [75]. Fluticasone alters
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Klebsiella pneumoniae gene expression, leading to less virulence and evasion of the host’s
innate immune response, leading to better airway survival [76]. Another RCT found that
fluticasone-based therapy after 12 weeks was associated with greater bacterial shifts from
baseline and decreased alpha diversity compared to the formoterol-only group [77]. Host
transcriptomic–microbiomic analysis using the same cohort further found that fluticasone-
based therapies associate with the enrichment of gene expression and accompanying
pathways that relate to longitudinal innate and adaptive immune-inflammatory change
and also to bacteriome diversity, in particular, Haemophilus in the fluticasone- but not
budesonide- and/or formoterol-based groups [78]. Such change is thought to be steroid-
specific, and alterations to lung microbiomes and host transcriptomes may play important
roles in the occurrence of pneumonia following ICS administration in COPD [78]. A
large cross-sectional study of mild–moderate COPD found that ICS therapy reduced the
abundance of Prevotella and host genes involved in tight junction regulation using bronchial
brushings; however, no differences in bacterial load and/or alpha diversity between ICS
and non-ICS groups were observed [15]. Reported differences in the effects of ICS on the
microbiome are likely influenced by sample type and method of collection (e.g., sputum
versus bronchial brushings), COPD severity, dose and type of ICS used, and duration
of treatment. Nonetheless, alterations in bacteriomes have been described in all studies,
albeit with different magnitudes and specific bacterial species. Moreover, changes in the
lung microbiome further influence the host transcriptome, supporting the alteration of
gene expression secondary to microbial dysbiosis related to ICS use in COPD. Overall,
these data collectively suggest that ICS, particularly fluticasone therapy, modulates lung
microbiomes and in turn host transcriptomes. Interestingly, similar alterations have not
been observed in lung mycobiome profiles with ICS use in COPD whether sputum or BAL
was employed [16,24,79].

Long term macrolides. Macrolides are used in moderate–severe COPD with frequent
exacerbation [28]. These drugs have anti-inflammatory, immunomodulatory, and antimi-
crobial effects; however, their long-term use increases the risk of developing antimicrobial
resistance where studies have found macrolide resistance genes in COPD, particularly in
eosinophilic predominant individuals [80–82]. Streptococcus, Actinomyces, Campylobacter,
and Aggregatibacter are among the key microorganisms contributing to macrolide resis-
tance [80,81]. Chronic antibiotic use in COPD associates with a greater than three-fold
increase in antibiotic resistance, although, importantly, the overall bacterial burden is
stable [83]. In an RCT where COPD patients were given either azithromycin or placebo,
and BAL samples were collected at baseline and 8 weeks post-treatment, analyzed using
16S rRNA targeted amplicon sequencing, metabolomic and cytokines analyses revealed no
significant differences in bacterial load between and within groups at baseline and 8 weeks.
Importantly, however, the azithromycin group demonstrated a decreased alpha diversity
and 11 low-abundance taxa, accompanied by increases in particular bacterial metabolites,
including benzoic acid, indole-3-acetate, and glycolic acid. These changes, likely due to an
oxidative stress response were accompanied by a decreased host inflammatory response,
including chemokine ligand 1, TNF-α, IL-13, and IL-12p40, suggesting that azithromycin
alters host–microbial interaction that subsequently leads to changes in bacterial metabolites,
resulting in an overall anti-inflammatory effect [84].

Short-term antibiotics and systemic corticosteroids. During AE COPD, corticosteroids
and antibiotics are often prescribed only for short durations, typically ranging from 5 to
7 days. Alteration in bacteriome profiles was observed with decreased bacterial diversity
following oral corticosteroid treatment. This includes increases in the phyla Proteobacteria
and genera Haemophilus and Moraxella but decreases in Streptococcus [44]. Reverse trends are
observed with antibiotic treatment [44,85]. A decreased bacterial diversity with increased
prevalence of Pseudomonas and Stenotrophomonas coupled with upregulation of microbial
gene expression in xenobiotic metabolism and antimicrobial resistance are seen in groups
of patients that fail to respond to antibiotics, defined as persistent or worsening signs and
symptoms after 72 h of treatment during an AECOPD. In contrast, Prevotella, Peptostrepto-
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coccus, Selenomonas, and the gene responsible for DNA repair and amino acid metabolism
are decreased in antibiotic failure groups [86]. Despite this, changes to the mycobiome are
not observed following either antibiotic and/or corticosteroid therapy during an AECOPD,
suggesting that short courses of systemic antibiotics and/or corticosteroids influence bac-
teria but not fungi in the COPD airway [16]. In light of this, it may be more optimal to
consider interactions between different microbial kingdoms within a single organ com-
partment rather than simply evaluating a single kingdom. Such an approach may provide
a better understanding of the complex microbial communities and their inter-relations.
Mac Aogain and colleagues demonstrate altered inter-kingdom interactions following ex-
acerbations and antibiotic treatment in bronchiectasis [87]. Future research using similar
concepts and approaches should be extended to COPD where patient stratification and
treatment effectiveness can be optimized for AE COPD using a combination of NGS and
multi-omics [87].

5. Multi-Omic Data Integration in COPD

Omics technologies, including NGS and mass spectrometry, have made it possible to
assess multiple aspects of a single patient’s biology, including their genome, transcriptome,
epigenome, proteome, metabolome, and microbiome [10,37,88]. While analyzing one aspect
in isolation can provide valuable information (Figure 1), it may offer an incomplete picture
of the pathobiological mechanisms (endotypes) at play and their response to treatment,
particularly during exacerbation and/or disease progression [44,51,89,90]. For example,
COPD disease progression due to alpha-1 antitrypsin (AAT) deficiency is highly variable,
and metabolites show poor statistical power for prediction after correction for false dis-
covery rate [71,91]. Integrated approaches combining omics data in a sequential and/or
simultaneous manner may alternatively provide a better, more holistic view of disease
pathophysiology and allow for the search for novel biomarkers associated with particu-
lar endophenotypes. Considering multiple “omics” may allow a better understanding
and/or prediction of COPD outcomes where the detection of analytes in one dataset may
be enhanced by “borrowing” information from another. This leads to the identification
of “treatable traits” and may allow targeted treatment in individual patients based on the
understanding of their underlying molecular and microbial endophenotypes along with
relevant clinical information and outcomes [92–94].

Multi-omic integration strategies: Several recent studies have used multiple omics
datasets and other biological and/or clinical information holistically, analyzing them
together using integrative methods to identify groups of patients with co-alteration of
microbial and/or multi-omic profiles [37,92,95]. The hypothesis-generating power of
multi-omics may be applied to inform in vivo experimental systems and uncover the
role of particular lung microbiome-derived metabolites. For instance, changes in the
tryptophan metabolism of Lactobacilli reduced indole-3-acetic acid, which in turn alleviated
COPD-associated airway inflammation and epithelial apoptosis [95]. The intergration
of culturomic strategies with metagenomics allows for mechanistic studies and a deeper
understanding of microbial virulence and the mechanisms of antimicrobial resistance [96].
However, no single integration strategy is suitable for all purposes, and this has led to the
development of various approaches, including multi-staged analysis and meta-dimensional
analysis [97,98]. Multi-staged integration involves considering two numerical and/or
categorical features of the data, while meta-dimensional analysis incorporates all relevant
data types by combining them into a single matrix or “metadata” set that can be holistically
assessed. While meta-dimensional analysis possesses greater statistical power, it may be
more difficult to implement when combining data from different types of datasets [87,99].
This can be achieved using a similarity network fusion (SNF) approach, which involves the
creation of similarity networks between different omics datasets followed by fusion and
analysis of the integrated networks as successfully applied in bronchiectasis and COPD [11].

Technical and computational challenges: Technical limitations in clinical research and the
accompanying data may lead to the analysis of only a fraction of the biological variability
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present between individuals. In all intergrative analyses, unaccounted factors and batch
effects should not be underestimated as they can significantly contribute to the difficulty
in replicating scientific findings between cohorts including respiratory medicine [100].
Although computational methodologies and analytical tools are constantly improving with
advances in areas such as artificial intelligence and information science, there remain impor-
tant challenges in accurately separating biological signals from technical noise, particularly
for complex diseases such as COPD which are often influenced by multiple factors. Con-
tamination is an important issue with NGS, and care with sample acquisition, handling and
processing including the incorporation of sequencing controls at each step are paramount
to identify potential contaminants. An additional bioinformatics approach may be added,
especially to identify contaminant organisms and exclude them from downstream data
analysis [79,101]. It can be difficult to distinguish between protein, gene, and epigenetic
perturbations from batch effects, contamination, and technical heterogeneity [102]. Bioin-
formatic approaches that integrate large amounts of data into models and/or network
representations may help address the issue, however, no single approach is suitable for
all cases. Many different algorithms are available, including clustering, network analysis,
data reduction (PCA), and Bayesian analysis [11,103,104]. The overall lack of standardized
biostatistical and algorithmic procedures can itself lead to uncertainty about the validity
of results and difficulty in reproducing them, making it important for bioinformatic re-
searchers to assess the sensitivity and optimal network thresholds of their implementations.
Ensuring replication and experimental validation of results remains a priority for this field.
Most commonly available data integration tools are generally accessible as source code and
require computer programming expertise to understand and apply in clinical settings. Such
issues may be addressed through the development of iterative software tools with a focus
on clinical accessibility and implementation that incorporates preprocessing techniques
such as normalization, filtering, and feature selection.

System representation: Networks, or graphs, are graphical representations of complex
data. In these networks, nodes represent the elements of the system being studied (such as
genes, proteins, or individuals), and edges, or links, connect nodes that interact in some
way (such as through causation or correlation). These networks are not fixed templates but
can be customized to the specific system being studied and are used to make inferences
about the dynamic behavior of the system in response to perturbations of critical network
elements, for instance, the effect of antibitoics on microbes in the COPD airway. Systems
biology, which is typically used to study experimental models of disease may also provide
useful insights for clinical medicine. Network medicine can identify disease biomarkers
and/or drug targets, which are key nodes whose perturbation can shift the state of the
biological system from health to disease or vice versa [105,106].

Drug discovery challenges: Network pharmacology is a drug discovery approach that
aims to simultaneously target multiple nodes in a disease-specific biological network with
small molecules to restore normal, healthy dynamic function. This approach has the po-
tential to improve efficacy and reduce the toxicity of therapeutic intervention, but further
methodological development is needed. In one example of multi-omic integration address-
ing the COPD-bronchiectasis association, Huang and colleagues proposed five endoytypes
based on combined microbiome/proteome profiles, to speculate on “targetable” treatment
approaches [92]. Further, concurrent integration of gut and lung microbiomes allows for
the capture of complex interactions between distinct anatomical sites, to stratify patients
into “high-“ and “low-“ gut-lung interaction groups in a non-cystic fibrosis bronchiectasis
study [107]. Such approaches should be applied to COPD. Importantly, the lack of stan-
dardized biostatistical and algorithmic procedures between studies creates uncertainty
about the validity of results and hinders reproducibility, making experimental validation a
major priority for such analyses.
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6. Clinical Application and Future Directions

Advances in sequencing technologies have enabled a deeper understanding of the
lung microbiome in COPD. The affordability and availability of these technologies, along
with the simplification of bioinformatics processes, have made it possible to consider their
use in clinical settings. While their use in clinical practice remains at a relatively nascent
stage, NGS and multi-omic integration identifies individuals with high-risk COPD and
poorer outcomes which may aid in prospective treatment stratification [16,52]. For instance,
dysbiosis of the airway microbiome, particularly in COPD with low eosinophils and
those receiving fluticasone-based ICS treatment, have the highest risks of pneumonia [73].
Airway microbiomes dominated by neutrophilic-Haemophilus profiles are linked to poorer
prognosis, while Prevotella-dominance relates to better clinical outcomes [15,49].

Therapeutic targeting of the lung microbiome should be considered for clinical benefit;
however, important practical challenges need to first be addressed [108]. Manipulating
the microbiome with the idea of restoring a “healthy” ecosystem has proven successful in
the treatment of gastrointestinal diseases. For example, fecal microbiota transplantation
(FMT) has been a very successful treatment for recurrent Clostridium difficile infection, and
probiotics may prevent antibiotic-associated diarrhea [109,110]. The use of a Streptococcal
nasal spray to alter the upper airway microbiome has been attempted in children with
recurrent otitis media, albeit with mixed results [111,112]. Microbiome-based therapy is a
growing field, and integrative multi-omic approaches will assume even greater importance
as they provide a more comprehensive characterization of the microbial environment for
future precision therapy in COPD. Integrating multi-omic data is highly relevant in COPD,
as identifying microbial-metabolite-host signatures has already been shown to provide a
holistic approach with clinical relevance [37]. Importantly, however, the high throughput
data generated by multi-omics technologies necessitate the early involvement of statisti-
cians and bioinformaticians for optimal, standardized data processing and analysis [98].
Analytical challenges continue to include topological differences in data collection, vari-
ation in individual omic data composition (absolute versus relative quantification), and
methods utilized for data integration. The disparity in statistical methods employed and
the types of datasets used for integration further heighten the complexity of data inter-
pretation [10,97,98]. Moreover, it remains difficult to infer causation despite having large
datasets, especially if collected at a single time point. Overcoming these challenges requires
better validation, including experimental, which will ultimately allow for better utilization
of multi-omics data and an improved understanding of the mechanisms underlying the
onset and progression of COPD.

The implementation of systems medicine, which involves the integration of various
“omics” data and the use of interdisciplinary teams, requires significant change to healthcare
systems. These changes include the creation of specialized data storage facilities, the
development of standard analytical pipelines, and the training of new staff with expertise
in NGS, multi-omics, and computational biology. The Helper Context-aware Engine System
(HCES) is an online tool that aims to support patients and doctors in managing chronic
diseases at all levels of risk [113]. It uses a Bayesian network algorithm to depict the
dependencies between COPD symptoms (attributes) in order to address the limitations of
the naive Bayesian hypothesis, which assumes independence between attributes. Using
similar tools in the future, integrating multi-omics can improve the prediction of risk
factors and provide computer-aided support applications for disease monitoring in COPD.
Critically, however, such change comes with significant costs, particularly in developing
countries where the COPD burden remains high [114]. There is a clear need to embrace
a holistic scientific approach (as opposed to a traditional reductionist research strategy)
that leverages each distinct “-omic” dataset derived from multi-omic studies in COPD.
By integrating information from multiple biological levels (such as genes, molecules,
cells, organs, and the environment) and using multi-omics for assessment into a single
mathematical model, we may better understand the chain of events leading to observable
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phenotypic manifestations in COPD and uncover novel methods of intervention for the
prevention and/or treatment of this disease (Figure 2).
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7. Conclusions

Studies to date in COPD demonstrate a significant relationship between the micro-
biome and its host (Figure 1). An increased abundance of Prevotella is associated with
lower airway symptoms and better lung function, while Haemophilus relates to exacer-
bations and mortality even in stable COPD. Metabolomic studies reveal distinct airway
metabolomic signatures related to mucus hypersecretion, NETS, and dysregulation of
sphingolipids in COPD. Changes in the bacteriome and metabolites have been observed
with COPD treatment during exacerbations and with ICS and long-term macrolide use in
stable COPD (Figure 1). By employing different omics techniques, these works delineate
potential pathways that associate with an increased risk of COPD progression. In order to
gain a more comprehensive understanding of the role of microbes in COPD, future studies
must move beyond single kingdom approaches and instead employ multi-kingdom and
inter-organ views using NGS and multi-omics in longitudinal and interventional cohort
studies, including clinical trials. This will aid the rapid development of endophenotyping,
biomarkers, and therapeutics with the potential of realizing precision medicine in COPD.
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