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Abstract: Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects
the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the
hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any
visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is
currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse
lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes
and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their
potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we
discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights
into the altered homeostasis state inherent to this fatal disease complication.

Keywords: systemic sclerosis; scleroderma; fibrosis; fibroblast; lung; pulmonary; interstitial lung
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1. Introduction

Systemic sclerosis (SSc), or scleroderma, is an autoimmune connective tissue disease
with one of the highest mortality rates among the rheumatic diseases [1]. Fibrosis is
recognized to be a defining feature of SSc, affecting the skin and multiple visceral organs [2].
As a result, SSc is considered the prototypic fibrosing disease. For more than 20 years,
interstitial lung disease (ILD), characterized by lung fibrosis, has been the leading cause
of death in SSc [3,4]. This is largely due to the lack of treatments that can stop or reverse
the fibrotic process. Currently, only two drugs are approved by the Food and Drug
Administration (FDA) for SSc, but these merely reduce the progression of ILD rather than
stop or reverse it [5,6]. SSc thus remains incurable due to progressive lung fibrosis, with
lung transplantation as the only viable option, which is impossible on the scale that it is
needed [7].

The molecular mechanisms mediating SSc-related lung fibrosis are complex and in-
completely understood. While the final outcome is the excessive deposition of extracellular
matrix (ECM) resulting in lung fibrosis, it is evident that the pathways leading to this
outcome are numerous, involving different molecular and cellular components [8]. Under-
standing the different pathogenic mechanisms that contribute to lung fibrosis in SSc and
their interplay is key to identifying potential molecular targets for therapy. In this review,
we describe the different molecular mechanisms currently implicated in SSc-related lung fi-
brosis in an effort to establish a well-needed comprehensive source for better understanding
the disease pathogenesis.

2. Gene Expression Profile of SSc

High-throughput gene expression studies on SSc lung tissues and cells have proven
to be valuable in identifying molecular pathways underpinning the pathogenesis of SSc-
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associated lung fibrosis. A microarray analysis performed on normal versus explanted SSc
lung tissues and matching primary pulmonary fibroblasts revealed that the latter showed
differentially expressed genes corresponding to ECM components and fibrotic signaling
molecules as well as novel genes and pathways that were not previously reported in the
SSc lung. Molecular signatures included those that were unique to SSc and those that
correlated with the fibrotic phenotype in SSc and idiopathic pulmonary fibrosis (IPF) [9,10].
Pro-fibrotic and ECM signatures were also identified in an independent microarray analysis
of SSc lung biopsies [11]. This latter study also identified a macrophage activation signature
and interferon signatures [11]. It is worth noting that Hsu et al.’s analysis focused on SSc
lungs with primary usual interstitial pneumonia on pathology [9], while Christmann et al.
included lung tissues with non-specific interstitial pneumonia on pathology [11]. Moreover,
Tyler et al. identified a three-gene network of interacting alleles in a cohort of 416 SSc
patients, namely, WNT5A, RBMS3, and MS12, which influenced lung outcomes in SSc.
Gene expression profiling has also focused on the fibroblasts in the lung, as they are the
effector cells in fibrosis [12,13]. A bulk RNA sequencing (RNA-seq) analysis of fibroblasts
derived from healthy versus SSc lung tissues revealed an expression profile similar to that
of whole lung tissues, with increased expression of ECM genes, including COL1A1 and
COL3A1, and fibrotic genes such as TGFB2, IGF2, IGFBP3, IGFBP5, and WNT5A, while
antifibrotic genes such as MMP1, MMP9, CTSL, SFRP1, and IL33 were underexpressed
in SSc lung fibroblasts [14]. Taken together, these findings suggest that fibroblasts are
the predominant source of the aberrant lung tissue expression profile identified using
microarray analysis. These findings also emphasize the notion that fibrosis is a dynamic
process caused by the disruption of a balance to favor pro-fibrotic factors over anti-fibrotic
pathways. More recently, single-cell RNA-seq (scRNA-seq) technology has proven to be a
powerful tool to garner insights into individual cellular contributions to lung fibrosis in
SSc [15]. Valenzi et al. demonstrated, using scRNA-seq, that SSc lung tissues show a unique
heterogeneity in fibroblast populations, namely, SPINT2hi, MFAPhi, WIFhi, and a new
myofibroblast population with high ACTA2 expression, all showing differential expression
profiles when compared with the control [13]. The data reinforced that myofibroblast
differentiation and proliferation are key drivers of disease pathogenesis [13]. Similarly,
using scRNA-seq, Reyfman et al. showed differential gene expression in the fibroblast
subpopulations of fibrotic lungs that included but were not limited to SSc-ILD [16]. Their
analysis also identified a novel population of pro-fibrotic alveolar macrophages, distinct
epithelial cell signatures, and novel airway stem cells that were across fibrosing lung
diseases [16]. In activated fibroblasts, the differential expression of ECM and pro-fibrotic
genes including COL1A1, COL3A1, POSTN, TAGLN, and ACTA2 was also noted, validating
findings of microarray and RNAseq studies [17]. These findings further reinforce the
established disease paradigm that fibroblasts are the driving force behind lung tissue
fibrosis in SSc. Thus, understanding the various molecular mechanisms of fibroblast
activation and proliferation in SSc is essential for mapping the pathology of the disease.

3. Deregulated Molecular Pathways in SSc
3.1. Fibrotic Factors
3.1.1. Transforming Growth Factor Beta (TGFβ)

TGFβ is one of the most widely studied pro-fibrotic factors in the context of fi-
brosis. The TGFβ superfamily includes TGFβ, bone morphogenetic proteins (BMPs),
growth/differentiation factors (GDFs), activins, and inhibins [18]. TGFβ plays a crucial
role in transitioning fibroblasts into activated myofibroblasts, which are responsible for
the excessive production of ECM in fibrosis [19]. TGFβ signals via interaction with two
receptor serine/threonine kinases, known as type I and type II receptors, which form a
heterotetrameric complex upon ligand binding [20]. Upon complexing, the autophosphory-
lation of type I and II receptors mediates the docking and phosphorylation of Smad 2/3,
which in turn interact with Smad 4 to create a transcriptional complex that translocates to
the nucleus and activates or represses multiple target genes [21]. While TGFβ works mainly
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via activation of the Smad pathway, it can also activate other non-canonical pathways [18].
In fibroblasts, TGFβ signaling shifts the gene expression profile to a profibrotic phenotype,
inducing the expression of profibrotic and ECM genes, while suppressing the antifibrotic
and matrix-degrading genes, leading to tissue fibrosis [19,22]. TGFβ can also exert similar
effects on other cell types, such as epithelial and endothelial cells, and can induce their
transition into alpha smooth muscle actin-expressing myofibroblasts [19,23].

In SSc, TGFβ-regulated genes are differentially expressed in the fibrotic lungs of
patients, which is correlated with the severity of the disease [24]. This is consistent with
the notion that TGFβ plays a central role in SSc pathology [25]. In fact, we previously
demonstrated that fibroblasts derived from the lungs of SSc patients express higher TGFβ1
and TGFβ2 levels than fibroblasts from healthy lungs [26]. This supports previous findings
obtained by Christmann et al. indicating that lung tissues from SSc patients show amplified
expression of genes regulated by TGFβ [11]. Recent evidence has shown that macrophages
polarized to the alternatively activated phenotype (M2) are also a major source of TGFβ [27].
A follow-up study showed that the expression of TGFβ by M2 macrophages is amplified
by methyl-CpG-binding domain 2 (MBD2) protein, which suppresses the expression of an
inhibitor upstream of TGFβ, and MBD2 was found to be overexpressed in SSc-ILD lung
tissues [28]. Zehender et al. recently demonstrated a novel mechanism for TGFβ-induced
fibrosis in SSc, which involves a loss of epigenetic control over autophagy via a Smad3-
dependent downregulation of the H4K16 histone acetyltransferase MYST1, mediating the
activation of fibroblasts [29]. Core regulators of autophagy, BECLIN1 and ATG7, were
consequently found to be upregulated in SSc dermal fibroblasts, as well as fibrotic skin and
lungs of mice overexpressing TGFBRI, while their knockdown alleviated fibrosis [29].

Efforts to target TGFβ as a therapeutic strategy to reduce SSc lung fibrosis have not
been effective, and concerns about potential adverse complications due to the pleiotropic
roles of TGFβ in lung physiology have led to efforts focusing on targeting other pro-fibrotic
factors and molecular pathways as a therapeutic strategy to treat SSc [1,30,31].

It is worth noting that several members of the TGFβ family have been largely over-
looked in SSc lung research to date, although they are likely to play important roles in
disease pathogenesis. Unlike TGFβ, whose active form is generated when and where it is
needed, activin A and BMP4 are generally readily active and thus possess distinct signaling
dynamics from TGFβ-induced fibrosis [32].

3.1.2. Platelet-Derived Growth Factor (PDGF)

PDGF has also been shown to play a central role in organ fibrosis, since stromal
mesenchymal cells, including fibroblasts, express PDGF receptor isoforms that are acti-
vated and drive processes implicated in fibrosis, such as proliferation, migration, and
ECM deposition [33]. In fact, lung fibrosis of various etiologies, whether environmental
exposure, transplant rejection, autoimmune, or idiopathic, have been associated with in-
creased PDGF levels in bronchoalveolar lavage fluid (BALF) or lung tissues [34]. There are
two PDGF receptor isoforms, PDGFRα and PDGFRβ, which are tyrosine kinase receptors
recognized by four ligand isoforms, PDGF-A, PDGF-B, PDGF-C, and PDGF-D [35]. Upon
ligand binding, the homo- or hetero-dimerization of the receptors leads to autophospho-
rylation events of their cytoplasmic domain, which activates downstream signaling path-
ways, including phosphatidylinositol 3 kinase (PI3K), Ras-MAPK, Src, and phospholipase
Cγ (PLCγ) pathways [35]. More recently, we showed that PDGF can also signal via melanin-
concentrating hormone receptor 1 (MCHR1), modulating intracellular cyclic adenosine
monophosphate (cAMP) production and inducing TGFβ1 and connective tissue growth
factor (CTGF) expression in fibroblasts, thus promoting a fibrotic response [36].

PDGF-A and PDGF-B levels are elevated in the BALF of SSc patients [37]. Interest-
ingly, SSc-derived fibroblasts exhibit unique, positive cross-talk between PDGF and TGFβ
signaling, which does not occur in healthy fibroblasts [38]. In addition, microRNA miR-
30b, which suppresses the expression of PDGFRβ, is downregulated in the serum of SSc
patients [39]. Reducing the expression of PDGFRβ in SSc dermal fibroblasts with miR-30b
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inhibited collagen synthesis and myofibroblast activation [39]. Since miR-30b levels are
decreased in the circulation of SSc patients, it is reasonable to extrapolate these findings
to lung fibroblasts. Recently, Svegliati et al. demonstrated that PDGF and anti-PDGFR
autoantibodies, which are elevated in SSc patient serum [40,41], stimulated higher growth
rate, migration, and expression of collagen in human pulmonary artery smooth muscle
cells, which was attributed to the generation of reactive oxygen species, and elevated NOX4
and mammalian target of rapamycin (mTOR) [42]. All these findings have made PDGF
an attractive molecular target for therapeutic treatment of SSc lung fibrosis [43]. In fact,
nintedanib, a drug that blocks the ATP-binding pocket of PDGFR and other tyrosine kinase
receptors, such as fibroblast growth factor receptor (FGFR) and vascular endothelial growth
factor receptor (VEGFR), was approved by the FDA for the treatment of SSc-ILD [6,44]. At
the cellular level, nintedanib blocks the PDGF-induced differentiation of lung fibroblasts into
myofibroblasts, reduces their proliferation and migration, and suppresses the expression of
collagen and fibronectin, supporting the antifibrotic outcome of blocking PDGF signaling.

3.1.3. Fibroblast Growth Factor (FGF)

FGFs are a family of signaling proteins that can act in an endocrine, paracrine, or even
intracrine manner [45]. Under paracrine or endocrine conditions, target cells interact with
FGF ligands via four receptor tyrosine kinases, FGFR1, FGFR2, FGFR3, and FGFR4 [45]. In-
tracrine FGFs are nonsignaling, in that they act independently of FGFRs and mainly serve as
cofactors for voltage-gated sodium channels [45,46]. Upon ligand binding, FGFRs activate
multiple pathways, including PI3K, Ras-MAPK, PLCγ, and STAT signaling pathways [45].
The roles of the different FGF ligands in fibrosis have been variable in the experimental
models, with some promoting lung fibrosis and others protecting against it [47]. For ex-
ample, members of the FGF family of proteins can activate fibroblasts and induce their
proliferation and ECM deposition [48]. In contrast, one member of the family, FGF19, was
found to be protective against lung fibrosis in mice, and its levels were decreased in the
plasma of IPF patients [49]. However, studies about the specific role of FGFs in SSc-related
lung fibrosis are scarce. Recently, Chakraborty et al. demonstrated a mechanistic involve-
ment of FGF9 and its receptor FGFR3 in SSc, both of which are upregulated in SSc fibrotic
skin [50]. FGF9 was shown to bind FGFR3 and activate dermal fibroblasts from SSc skin,
leading to the downstream stimulation of AKT, p38, extracellular signal-regulated kinase
(ERK), and calcium/calmodulin-dependent protein kinase 2 (CAMK2) and promoting
cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) activation,
which induced the expression of profibrotic mediators [50]. These findings from SSc skin
have not yet been validated in tissues or primary cells derived from lungs of SSc patients.

3.1.4. Wnt/β-Catenin Signaling

Widely known for its role in organ and tissue development, the Wnt/β-catenin signaling
pathway has more recently been implicated in fibrotic disorders in different organs [51–54].
The binding of Wnt ligands to their Frizzled (Fz) receptors triggers downstream effects
inhibiting the degradation of β-catenin, stabilizing it in the cytoplasm, and promoting its
translocation to the nucleus, where it results in the transcription of Wnt target genes [55].
Earlier studies have confirmed the involvement of the Wnt/β-catenin pathway in the patho-
genesis of lung fibrosis and, specifically, in SSc [56–58]. In addition, SSc skin fibroblasts
express high levels of Wnt proteins such as Wnt1 and Wnt10b, coupled with decreased ex-
pression of the Wnt antagonists SFRP1, DKK1, and WIF1 [59]. Our group recently reported
similar results in SSc lung fibroblasts, showing increased Wnt5a and decreased SFRP1 ex-
pression in SSc lung fibroblasts compared with normal lung fibroblasts [14]. More recently,
increased levels of a novel isoform of CD146 that activates myofibroblasts were noted in
the serum of SSc patients with pulmonary fibrosis, a process driven by Wnt5a [60]. This is
consistent with previous studies showing that the Wnt/β-catenin pathway is activated in
SSc lung fibrosis, allowing its downstream pro-fibrotic effects to be promoted [57,61].
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3.1.5. Interleukins

Interleukins (ILs) are a group of cytokines with immunoregulatory functions known
to be secreted by white blood cells, but also several other cell types, such as epithelial and
stromal cells [62,63]. There are more than 40 distinct ILs, each eliciting different functions
across multiple different cell types via binding to high-affinity receptors [64]. Several of
these ILs have been shown to directly interact with fibroblasts to promote lung fibrosis [65].

IL-6 has been extensively studied in the context of SSc, and its levels are increased
in SSc serum, skin, and fibroblasts [66–69]. Serum levels of IL-6 strongly correlate with
the severity of SSc lung fibrosis and are predictive of mortality in SSc patients, suggesting
a profibrotic role of IL-6 in lung tissues [70]. Our group confirmed a significant increase
in IL-6 expression in lung tissues derived from SSc patients compared with healthy lung
tissues [10] and showed that the increase in lung fibroblasts is mechanistically driven, at
least in part, by upregulated lysyl oxidase (LOX) via activation of c-Fos [71]. Tocilizumab, a
monoclonal antibody targeting the IL-6 receptor, preserved lung function in SSc patients,
slowing lung fibrosis progression, and was approved by the FDA for the treatment of
SSc-ILD [5,72,73].

The involvement of multiple other ILs in SSc-related lung fibrosis has been docu-
mented. Yaseen et al. demonstrated a significant increase in IL-31 in SSc serum coupled
with the overexpression of its receptor, IL-31RA, in SSc-derived lung fibroblasts, and con-
firmed the profibrotic effects of IL-31 in mouse lungs [74]. Moreover, IL-11 was significantly
upregulated in SSc lung fibroblasts [75,76]. Follow-up studies confirmed that IL-11 drives
the activation of lung fibroblasts. Specifically, mice with conditional fibroblast-specific
knockout of the IL-11 receptor were protected from bleomycin-induced lung fibrosis, and
IL-11 knockout lung fibroblasts were refractory to TGFβ stimulation [77]. IL-1 induces
miR-155, which was overexpressed in SSc lung fibroblasts, leading to increased TGFβ and
collagen synthesis, as well as further feed-forward expression of IL-1 driven by inflamma-
some activation [78]. Other interleukins whose serum levels correlated with ILD severity in
SSc patients include IL-13, IL-17, IL-33, and IL-34; however, their exact roles in promoting
lung fibrosis are incompletely delineated [79–82].

3.1.6. Insulin-Like Growth Factors (IGFs) and Their Binding Proteins (IGFBPs)

IGFs and IGFBPs have been implicated in the pathogenesis of SSc lung fibrosis.
IGF-I levels are increased in the BALF of SSc patients, and the protein itself promotes
the proliferation of fibroblasts [83]. IGF-II expression is also increased in fibrotic SSc
lung tissues and fibroblasts and induces ECM deposition via the activation of PI3K and
Jun N-terminal kinase pathways [84]. A follow-up study demonstrated that IGF-II signaled
via type 1 IGF receptor (IGF1R), insulin receptor (IR), and a hybrid IGF1R/IR complex recep-
tor, promoting fibrosis through multiple mechanisms: by directly activating myofibroblasts,
by increasing ECM production while reducing its degradation, and by stimulating the
expression of TGFβ2 and TGFβ3 [26]. We showed that IGFBP-3 and IGFBP-5 are profibrotic
proteins that stimulate the production of ECM by lung fibroblasts [85–87]. IGFBP-5 is
significantly overexpressed in SSc lung tissues and fibroblasts and induces the expression
of collagen type I, fibronectin, CTGF, LOX, and DOK5 [88,89]. Mice expressing human
IGFBP-5 showed sustained increased expression of ECM genes [90]. Recently, IGFBP-2
serum levels were found to have prognostic value for assessing the development of ILD
in SSc patients, but further studies are needed to understand its potential role in lung
disease [91].

3.1.7. YAP/TAZ

Yes-associated protein (YAP) and transcription coactivator with PDZ-binding motif
(TAZ) are key components of the Hippo pathway [92]. Mammalian STE20-like (MST) and
large tumor suppressor kinase (LATS) are the core proteins upstream of YAP/TAZ in the
Hippo pathway [93]. When the Hippo pathway is activated, the sequential phosphorylation
of MST, LATS, and then YAP/TAZ occurs, causing the retention of YAP/TAZ in the
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cytoplasm [94]. YAP/TAZ signaling mediates its effect via cross-talk with multiple other
pathways, including the TGFβ and Wnt/β-catenin pathways [94]. YAP/TAZ was shown to
promote myofibroblast proliferation, contraction, and ECM synthesis [95]. Myofibroblast-
specific YAP/TAZ deficiency ameliorates fibrosis across multiple organs, including lungs,
kidneys, and liver, supporting previous findings on the critical role that YAP/TAZ signaling
plays in fibrogenesis [96]. Further delineation of the role of YAP/TAZ signaling in SSc-
related fibrosis is warranted. Toyoma et al. demonstrated that targeting YAP/TAZ with
dimethyl fumarate is a viable therapeutic strategy for dermal fibrosis in SSc [97]. More
recently, Wu et al. showed that skin fibroblasts and serum from SSc patients had increased
levels of YAP and TAZ compared with healthy controls, and they demonstrated that
knockdown of YAP/TAZ in mice alleviated bleomycin-induced lung fibrosis [98].

3.1.8. Chemokines

Chemokines are a family of small proteins that play a critical role in maintaining
homeostasis and regulating inflammation and tissue-specific leukocyte migration [99].
Upon tissue damage, chemokines initiate and maintain the inflammatory process, and the
fine-tuning of their expression is imperative for the resolution of inflammation, culminating
in tissue repair and wound healing [100]. Chemokines can activate fibroblasts and perpet-
uate their ECM production and deposition [100]. This has led to research on the roles of
certain chemokines in SSc lung disease. Specifically, C-C motif ligand-2 (CCL2) levels were
elevated in the BALF of SSc patients compared with healthy controls [101]. Furthermore,
CCL2 protein was overexpressed in fibroblasts from fibrotic lungs of SSc patients [102].
Wu et al. demonstrated that CCL2 plasma levels can serve as a biomarker and a potential
therapeutic target for ILD progression in SSc patients, as higher CCL2 levels predicted a
faster decline in forced vital capacity (FVC%) over time [103]. Another chemokine, CXCL4,
was reported by van Bon et al. to be elevated in SSc patients and correlated with the severity
of lung fibrosis [104]. A follow-up study by Affandi et al. demonstrated that CXCL4 is
required for bleomycin-induced lung fibrosis in mice, where it promoted myofibroblast
transformation, leading to excessive ECM deposition [105]. Multiple other chemokines
have been implicated in SSc lung fibrosis, such as CCL5, CCL7, CCL18, CXCL3, and CXCL8,
mostly as potential biomarkers of ILD [100,106,107]. Further studies are still needed to
elucidate which of these chemokines are central to the pathogenesis of SSc lung fibrosis.

3.2. Anti-Fibrotic Factors

While most studies focus on the pro-fibrotic molecular contributors to SSc lung fibro-
sis, reduced levels and/or blunted activity of anti-fibrotic pathways constitute a crucial
component of uncontrolled fibrosis. Here, we describe anti-fibrotic proteins and pathways
whose reduced expression or activity has been implicated in SSc lung fibrosis.

Cathepsins are lysosomal proteases widely known for their role in intracellular house-
keeping for the maintenance of cellular homeostasis, such as antigen processing and the
degradation of proteases and chemokines [108]. However, cathepsins are not limited to the
lysosome and have been shown to play important extracellular functions, particularly in
remodeling and degrading the ECM [109,110]. Cathepsin S (CTSS) levels were significantly
decreased in the serum of SSc patients compared with healthy controls, and the reduced
levels were reflective of the severity of SSc lung fibrosis [111]. More recently, we reported
that Cathepsin L (CTSL) expression was significantly reduced in lung fibroblasts and tissues
derived from SSc patients, in part due to constitutive suppression by the TGFβ/Smad
pathway, and that the lack of availability of CTSL in the extracellular milieu prevented the
release of the anti-fibrotic protein endostatin [14]. Endostatin is released by proteolytic
cleavage from the C-terminus of collagen-XVIII and has shown potent anti-fibrotic effects
on human fibroblasts and human tissues as well murine models of fibrosis [112]. Endo-
statin is in fact detected in the circulation and BALF of SSc patients and patients with other
lung fibrosing diseases, but its levels do not reach therapeutic levels, suggesting a blunted
anti-fibrotic response in SSc-associated fibrosis [113,114].
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Matrix metalloproteinases (MMPs) are ECM-degrading enzymes that play an impor-
tant role in maintaining tissue matrix homeostasis [115]. We showed, using bulk RNAseq,
that the expression of multiple MMPs, including MMP1, MMP9, MMP15, and MMP28, is
reduced in lung fibroblasts derived from SSc patients compared with healthy controls [14].
MMP19-deficient mice had an augmented lung fibrotic response to bleomycin when com-
pared with wildtype mice, and their lung fibroblasts overexpressed collagen type I and
alpha smooth muscle actin, a marker of myofibroblast activation [116,117]. In addition, E4,
an anti-fibrotic peptide derived from the C-terminus of endostatin, activates the urokinase
pathway in primary lung fibroblasts and lung tissues, leading to the induction of MMP1
and MMP3 and consequently promoting matrix degradation and fibrosis resolution [118].

Multiple other proteins have been shown to play a protective role against SSc-related
lung fibrosis. For example, Chu et al. demonstrated that deacetylase Sirtuin 1 was un-
derexpressed in the peripheral blood mononuclear cells (PBMCs) of SSc patients with
lung fibrosis, and its activation in bleomycin-treated mice or overexpression in human
lung fibroblasts reduced collagen production and ameliorated the fibrotic response [119].
Sirtuin 3 has also been implicated in SSc skin and lung fibrosis [120]. Further, decreased
serum levels of Sirtuins 1 and 3 correlated with lung fibrosis in SSc [121]. The expression
of other sirutins, notably, Sirtuin 7, is also decreased in SSc lung fibroblasts, resulting
in increased Smad3 levels [122]. As we note above, two members of the IGFBP family,
IGFBP-3 and -5, are increased in SSc skin and lung and promote fibrosis [85–87]. In con-
trast, another member of the family, IGFBP-4, is underexpressed in SSc lung fibroblasts
and exhibits anti-fibrotic activity via the suppression of CTGF and C-X-C chemokine re-
ceptor 4 (CXCR4) [123]. Antagonism of Wnt signaling is another anti-fibrotic pathway.
The expression of secreted frizzled proteins (SFRPs) 1 and 4, which are Wnt antagonists,
was suppressed upon bleomycin administration in mice via the hypermethylation of the
promoter region, which induced Wnt overactivity and progression of lung fibrosis [124].
Another Wnt antagonist, DKK1, was also suppressed via the hypermethylation of its gene
promoter in SSc fibroblasts [125]. This is supported by findings showing that methyl cap
binding protein-2 (MeCP2), which methylates the SFRP1 and DKK1 promoter regions, is
overexpressed in SSc fibroblasts, resulting in reduced expression of its target genes [126,127].
In addition, miR27a-3p, which targets SFRP1 expression, is upregulated in SSc fibroblasts,
leading to reduced SFRP1 levels in the circulation of SSc patients [128]. While the latter
studies were mainly focused on SSc dermal fibroblasts, our group confirmed the reduced
expression of SFRP1 and DKK1, coupled with Wnt overexpression, in SSc lung fibrob-
lasts, supporting the protective role of these Wnt antagonists also in SSc lung fibrosis [14].
Taken together, the reduced expression of anti-fibrotic genes in SSc-associated lung fibrosis
supports the concept of a blunted or suppressed anti-fibrotic response in SSc.

3.3. Extracellular Molecules as Pro- and Anti-Fibrotic Mediators

In addition to increased production of ECM components and the enzymes respon-
sible for their crosslinking in fibrosis, matricryptins have emerged as important players
in fibrosis. Matricryptins are cleavage products of extracellular matrix proteins and gly-
cosaminoglycans that exert biological activity. For example, endostatin is cleaved from
Collagen XVIII and exerts anti-fibrotic effects [112]. In contrast, endotrophin, released from
Collagen VI, has pro-fibrotic effects [129]. In addition, enzymes extensively studied for
their matrix crosslinking function can harbor additional functions relevant to fibrosis. As
an example, LOX has moonlighting functions that include the induction of IL-6 and the
increased production of ECM components [71]. Thus, approaches to mitigate lung fibrosis
in SSc should take into consideration the levels and activity of the various enzymes that
cleave molecules in the ECM, resulting in the release of matricryptins [130], and those
implicated in ECM stabilization that have additional novel functions in promoting fibrosis.
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4. Conclusions

ILD remains the leading cause of death in SSc due to the lack of effective treatments
that halt or reverse fibrosis. Understanding the multitude of molecular pathways involved
in SSc-driven lung fibrosis and building a comprehensive view of their interconnections
are critical to identify effective targets for anti-fibrotic therapies. The dynamic nature of
fibrosis is the result of an abundance of pro-fibrotic factors and paucity of anti-fibrotic
ones (Figure 1). While most therapeutic approaches to SSc-ILD have focused on targeting
profibrotic molecular pathways, strategies to induce the endogenous anti-fibrotic response
could serve as a viable and more effective therapeutic strategy, since endogenous molecules
are less likely to demonstrate toxicity or elicit an autoimmune response. The end goals are
to restore homeostasis, halt the progression lung fibrosis, and even reverse it, thus reducing
mortality in SSc and other fibrosing lung diseases such as IPF.
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implicated in ECM stabilization that have additional novel functions in promoting fibro-
sis. 

4. Conclusions 
ILD remains the leading cause of death in SSc due to the lack of effective treatments 

that halt or reverse fibrosis. Understanding the multitude of molecular pathways involved 
in SSc-driven lung fibrosis and building a comprehensive view of their interconnections 
are critical to identify effective targets for anti-fibrotic therapies. The dynamic nature of 
fibrosis is the result of an abundance of pro-fibrotic factors and paucity of anti-fibrotic 
ones (Figure 1). While most therapeutic approaches to SSc-ILD have focused on targeting 
profibrotic molecular pathways, strategies to induce the endogenous anti-fibrotic re-
sponse could serve as a viable and more effective therapeutic strategy, since endogenous 
molecules are less likely to demonstrate toxicity or elicit an autoimmune response. The 
end goals are to restore homeostasis, halt the progression lung fibrosis, and even reverse 
it, thus reducing mortality in SSc and other fibrosing lung diseases such as IPF. 

 
Figure 1. Lung fibrosis in SSc is the result of an imbalance between anti-fibrotic and pro-fibrotic 
factors, favoring the latter, and resulting in the activation of fibroblasts and the excessive deposition 
of ECM. ES, endostatin; MMP, matrix metalloproteinase; CTSL, Cathepsin L; TGFβ, Transforming 

Figure 1. Lung fibrosis in SSc is the result of an imbalance between anti-fibrotic and pro-fibrotic
factors, favoring the latter, and resulting in the activation of fibroblasts and the excessive deposition
of ECM. ES, endostatin; MMP, matrix metalloproteinase; CTSL, Cathepsin L; TGFβ, Transforming
Growth Factor Beta; PDGF, Platelet-Derived Growth Factor; WNT, Wingless-Related Integration Site;
ECM, extracellular matrix; SSc, systemic sclerosis.
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