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Abstract: Glioblastoma multiforme (GBM), a grade IV glioma, is a challenging disease for patients and
clinicians, with an extremely poor prognosis. These tumours manifest a high molecular heterogeneity,
with limited therapeutic options for patients. Since GBM is a rare disease, sufficient statistically
strong evidence is often not available to explore the roles of lesser-known GBM proteins. We present
a network-based approach using centrality measures to explore some key, topologically strategic
proteins for the analysis of GBM. Since network-based analyses are sensitive to changes in network
topology, we analysed nine different GBM networks, and show that small but well-curated networks
consistently highlight a set of proteins, indicating their likely involvement in the disease. We propose
18 novel candidates which, based on differential expression, mutation analysis, and survival analysis,
indicate that they may play a role in GBM progression. These should be investigated further for their
functional roles in GBM, their clinical prognostic relevance, and their potential as therapeutic targets.

Keywords: glioblastoma; network analysis; topology; betweenness centrality

1. Introduction

Glioblastoma multiforme (GBM) is one of the most frequently occurring cancers of
the central nervous system, though due to its low overall prevalence, (incidence: about
3/100,000 per year) [1], it is classified as a rare disease. Despite being a subject of research for
decades, the prognosis remains bleak. The median survival time for GBM patients is about
15 months [2]. While treatment options include surgery, radiotherapy, and chemotherapy,
expanding the therapeutic repertoire is an urgent clinical requirement, due to the limited
number of drug candidates, resistance to existing drugs, and the presence of the blood–brain
barrier.

Many GBM patients harbour mutations in one or more of most commonly mutated
genes (IDH1, EGFR, PTEN, TP53, PI3K, TERT, etc. [3]), and these markers are used to
guide treatments. However, there is a tremendous intra-tumoural heterogeneity and
phenotypic plasticity, due to genetic, epigenetic, and microenvironmental factors that
influence the presentation and prognosis, and which also underlie the different resistance
mechanisms [4]. These factors result in a dynamic state where diverse cell populations
exist and undergo continuous changes. Understanding and identifying the underlying
mechanisms contributing to the disease is one of the key steps towards identifying new
drug candidates for GBM. However, obtaining patient data for brain cancers is challenging,
both due to low incidence and the difficulty of obtaining quality biopsy material. The
large heterogeneity and the overall low number of patients for whom molecular data are
available impair our ability to detect low-frequency driver mutations with acceptable levels
of statistical significance.

Computational methods such as network analysis offer complementary, bottom-up
insights into how different proteins interact to contribute to systemic perturbations in a
disease. Statistical methods treat genes and other -omic entities as being independent.
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The network structure of specific molecular interactions can form the backbone on which
disease mechanisms and therapeutic strategies can be formulated, aiding purely statistical
analyses in a way of adding mechanistic insights. Network topology, the layout of nodes
and edges in a network, helps to highlight, contextualise, and prioritise molecular players
in a given context. Topology-based measures are being used to identify novel disease asso-
ciated proteins (DAPs), disease modules, or drug candidates, among others [5]. Network
topology has been shown to identify proteins involved in disease modules that had not
been identified during GWAS studies [6]. Network topology-based methods have been
applied extensively in GBM exploration for tasks such as biomarker discovery and patient
stratification [7]. For example, network-based integration of multi-omics data based on
non-negative matrix factorization was applied to lower grade glioma (LGG) and GBM, to
identify clusters in the data [8]. Networks derived using single cell expression in paediatric
and adult patients, as well as adult glioma-derived stem cells (GSCs), identified transcrip-
tion factors and signalling proteins likely involved in cell-state transitions [9]. Single cell
data were also used by Park et al. to identify 52 transcriptional regulators mediating treat-
ments in glioblastoma xenograft models, and established a pipeline to inform therapeutic
strategies [10]. However, many of these methods require specific data that may not be
available for all diseases, especially rare conditions. A list of disease-associated genes or
proteins is usually the starting point to construct a disease-specific network for such a
topology-based analysis. However, ambiguity in defining disease-associated genes or pro-
teins translates into variability in network construction, thereby leading to low-confidence
predictions. GBM, for example, has over 3000 such associations in DisGeNET [11]. De-
pending on the stringency of inclusion criteria, these disease-gene lists can vary, raising
questions on how to define the true network. In case of such differences, it is not clear
if combining information from different sources offers improved outcomes, or if there is
an advantage in analysing different topologies separately. Outcomes of network-based
analyses are dependent on construction methods, which affect the size and topology of
the constructed network [12]. Thus, one of the challenges is to identify DAPs while incor-
porating this uncertainty. There are studies that have tried to assess the impact of small
changes in the topology of a network (missing or additional nodes, missing or additional
links, presence of disconnected components, etc.) [13–15]; however, few of them used
biological networks. Even among real biological networks, these perturbation studies
investigate cases where interactions have been almost completely mapped, such as in C.
elegans or S. cerevisiae [16,17]. For such perturbation studies, the underlying assumption
is that the structure of the true network is known. However, human protein–protein or
gene regulatory networks are both incomplete, and also contain false positive interactions
(i.e., interactions that may be detected in vitro, but may not be present in vivo). Hence,
quantification of such perturbations is challenging, due to the lack of gold standards or
ground truth. An interesting study on glioma networks was reported, using differences
in betweenness centrality (BC) between weighted networks constructed from healthy and
tumour samples [18]. However, the study considered the networks to be of the same size
and topology, differing only in edge weights. The question of changes in network topology
was not addressed.

Hence, the objectives of this study were two-fold—1. Identification of disease-specific
central proteins that are likely to be involved in GBM, based on background-corrected
BC [19], incorporating variability in the definition of DAPs. 2. To study the effect of partial
networks on the consistency of predictions. To this end, we assessed nine different GBM
networks, and identified some of the most consistently central nodes across them.

We proposed 18 novel candidates to be explored in the context of GBM, based on
their biological roles, differential expression, mutation status and survival analysis. We
also assessed the recoverability of these candidates in partial networks, and showed that
the proposed method recovers these candidates as some of the top-ranked candidates
in smaller, less complete networks. This simple, generalizable method does not require
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extensive quantitative integration, and could provide insights into some key, topologically
important molecular players in GBM.

2. Results

We used background-corrected BC to highlight topologically important proteins in the
GBM PPI network, and explored novel proteins that may contribute to the disease. Starting
with a list of DAPs, we explored their surrounding nodes in a curated PPI network. This
procedure highlights degree-unbiased, topologically critical nodes in the GBM network.
However, constructing the initial disease network was a non-trivial, and non-standard
task. Depending on the dataset, disease ID and quality/quantity of associated evidence
for disease association, one can obtain varying seed lists. In this study, we investigated
the effect of different network topologies on centrality calculation, and used varying seed
lists to construct and analyse partially overlapping networks. To obtain robust candidates
across the different networks, we used overlapping top-ranked proteins from across these
networks to obtain a consensus list. Novel candidates were studied further using literature
references, expression in TCGA datasets, mutation data, and survival information, in order
to examine the likelihood of their putative role in GBM.

2.1. Overlapping Top-Ranking Nodes on Applying Background-Corrected Centrality Analysis
across Topologically Varying Glioblastoma Networks Yields Robust Putative Glioblastoma
Candidates

Centrality analysis for C0017636 R, C1621958 R, and the Combined R networks yielded
66, 91, and 103 statistically significant ranked proteins, respectively (Figure 1C). The overlap
was of 33 proteins (Supplementary File S3 Table S6), among which 15, such as RET, EGFR,
and FLT1, are already known to be associated with GBM (Supplementary File S3 Table
S7). The 18 previously unlisted candidates remained significantly central across all three
complete networks, and were investigated further for their role as putative novel candidates
in GBM (Supplementary File S3 Tables S8 and S9). First, we established the association
of these candidates with cancer. Ingenuity Pathway Analysis (Table 1 connected all 18
candidates to different processes in the context of cancer. Several functions of interest were
highlighted, including the involvement of 8 out of the 18 in cell migration, 11 in necrosis
and apoptosis, and others in maintenance of morphology.

Table 1. Roles of the 18 identified candidates in different diseases/pathologies, as identified by
Ingenuity Pathway Analysis (IPA). The table shows the name and number of the candidates from the
list of 18 that participate in a given disease/pathology, the functional contribution, and the p-values of
the association, based on the number of members of the comparison set for each disease set present in
the database. Candidates are seen to play diverse roles, contributing to various processes in different
functional capacities. All 18 candidates are implicated in cancer.

Diseases/Pathology Function p-Value Candidates Number of
Proteins (/18)

Cell Death and Survival Apoptosis 0.000115
STAT4, DLL1, TLN1, IFNAR2,

GFRA1, IL6R, CDC37, SH3RF1,
AFP, RRM2B, USP53

11

Cell Death and Survival,
Organismal Injury and

Abnormalities
Necrosis 0.000173

STAT4, DLL1, TLN1, IFNAR2,
GFRA1, IL6R, CDC37, SH3RF1,

AFP, RRM2B, USP53
11

Cell-To-Cell Signalling and
Interaction

Activation of lymphatic
system cells 0.000192 DLL1, STAT4, TLN1, IL6R, AFP 5

Tissue Morphology Quantity of cells 0.000288 STAT4, DLL1, TLN1, IFNAR2,
GFRA1, IL6R, SHC2, AFP, KALRN 9
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Table 1. Cont.

Diseases/Pathology Function p-Value Candidates Number of
Proteins (/18)

Cell Death and Survival,
Organismal Injury and

Abnormalities

Cell death of tumor cell
lines 0.000662 DLL1, TLN1, IFNAR2, IL6R,

CDC37, SH3RF1, AFP, RRM2B 8

Cell Death and Survival,
Organismal Injury and

Abnormalities

Cell death of immune
cells 0.000773 DLL1, STAT4, TLN1, IL6R, AFP 5

Cellular Movement Migration of cells 0.0038
DLL1, TLN1, GFRA1, IL6R,
PARP9, SH3RF1, EPB41L5,

KALRN
8

Nervous System Development
and Function

Morphology of nervous
system 0.00591 GFRA1, IL6R, SHC2, RRM2B,

KALRN 5

Cell Morphology, Nervous
System Development and

Function, Tissue Morphology
Morphology of neurons 0.00604 GFRA1, IL6R, SHC2, KALRN 4

Neurological Disease,
Organismal Injury and

Abnormalities

Progressive
neurological disorder 0.0116 DLL1, IFNAR2, IL6R, RRM2B,

USP53 5

Cancer, Organismal Injury and
Abnormalities Carcinoma 0.0142

STAT4, TLN1, IFNAR2, GFRA1,
IL6R, SHC2, PARP9, EIF1AD,

CDC37, SH3RF1, AFP, RRM2B,
DLL1, EPB41L5, PSKH1, KALRN,

GRB14, USP53

18

Collectively, these candidates are involved in maintaining morphology, cellular de-
velopment, especially neuronal development, migration, and metastasis. Based on the
primary indication of cancer involvement, we examined the association of these candidates
with GBM/glioma.

2.2. Eighteen Novel Candidates Identified in the Study Show Links to GBM/Glioma Based on
Mutations, Literature Evidence, Expression, and Survival Analysis

The biological roles of the novel candidates were explored based on mutation data, dif-
ferences in gene expression, survival correlations, and pathways involved, using different
datasets and databases as described in the Methods section.

We first checked for known mutations in the 18 candidates in the glioma/GBM datasets
from cBioPortal. SHC2 is the most frequently mutated candidate (2%, n = 1840 patients), fol-
lowed by CDC37 (1.6%), and SH3RF1 (1.1%). All the other candidates show low-frequency
mutations. Next, we investigated gene expression differences. Using glioVis, two sets of
data were considered for expression differences, the normal vs. GBM (TCGA_GBM) dataset,
and the combined TCGA_GBMLGG dataset (Supplementary File S3 Tables S8 and S10). The
candidates IFNAR2, GFRA1, PARP9, CDC37, and KALRN are significantly differentially
expressed in both datasets. Expressions of candidates such as AFP, DLL1, and GRB14 were
non-significant compared to normal samples; however, they were highly significant across
different gliomas (Supplementary File S3 Table S10 ). To enable a comparison between
normal, other glioma types, and GBM, we also plotted expression data using the processed
TCGA dataset of Rahman et al. [20]. Figure 2A shows the comparison of expressions in
some of the candidates between three groups—normal tissues, other gliomas, and GBM
(See also Supplementary File S5 Figure S1). IFNAR2 and PARP9 show differences across
all groups, while AFP and GFRA1 are significantly differentially expressed only between
other gliomas and GBM. This could indicate specific contribution to the progression from
lower-grade gliomas to GBM. Thus, the candidates showed mutations and expression
differences in glioma/GBM patients.
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Figure 1. (A) Disease-associated proteins (DAPs) were obtained from DisGeNET. Two terms corre-
sponding to glioblastoma and glioblastoma multiforme were used to obtain seed lists of various 
sizes based on different criteria. A third set of combined seed lists was also created. R: Reference (R) 
sets; P1: sets of DAPs with score ≥ 0.2; P2: sets of DAPs with score ≥ 0.1. (B) For each of the seed lists, 
the procedure for centrality analysis was followed—mapping seeds to PPI (yellow-DAPs , red-ran-
domly selected nodes), creating disease-specific and degree-stratified background random net-
works, centrality analysis and processing, to obtain background-corrected node centralities and sig-
nificance. (C) Overlapping significant proteins obtained from the analysis of the networks of the 
two categories were obtained as the most consistent candidates. 

Collectively, these candidates are involved in maintaining morphology, cellular de-
velopment, especially neuronal development, migration, and metastasis. Based on the pri-
mary indication of cancer involvement, we examined the association of these candidates 
with GBM/glioma.  

2.2. Eighteen novel candidates identified in the study show links to GBM/glioma based on muta-
tions, literature evidence, expression, and survival analysis. 

Figure 1. (A) Disease-associated proteins (DAPs) were obtained from DisGeNET. Two terms corre-
sponding to glioblastoma and glioblastoma multiforme were used to obtain seed lists of various
sizes based on different criteria. A third set of combined seed lists was also created. R: Reference
(R) sets; P1: sets of DAPs with score ≥ 0.2; P2: sets of DAPs with score ≥ 0.1. (B) For each of the
seed lists, the procedure for centrality analysis was followed—mapping seeds to PPI (yellow-DAPs,
red-randomly selected nodes), creating disease-specific and degree-stratified background random
networks, centrality analysis and processing, to obtain background-corrected node centralities and
significance. (C) Overlapping significant proteins obtained from the analysis of the networks of the
two categories were obtained as the most consistent candidates.
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FPKM (fragments per kilobase million), and the x-axis shows the three groups: Normal (n = 5), Other 
gliomas (n = 445), and GBM (n = 233), from the Rahman et al. [20] study. (B) Survival curves for the 
candidates [y-axis—survival percentage, x-axis—survival time in months. Obtained and modified 
from glioVis [21], based on the TCGA GBMLGG dataset, GBM (n = 152), LGG (n = 515). Significance: 
***p<0.001; **p<0.01; *p<0.05. See the Validation section of Methods for details. 

To examine if the expression differences in candidates were linked to differences in 
survival, we extracted survival curves for each candidate from glioVis (Figure 2B, Supple-
mentary File 5 Figure S2). GFRA1, in particular, shows a very high hazard ratio (HR = 
12.41), with higher expression correlating with better survival. Similarly, higher expres-
sions of DLL1 (HR = 6.15) and SHC2 (HR = 5.82) are linked to higher survival probability. 
On the other hand, lower expressions of PARP9 (HR = 0.09), GRB14 (HR = 0.19), IFNAR2 
(HR = 0.20), and AFP (HR = 0.27) correlate with better survival. Except for PSKH1, STAT4, 
and TLN1, all other candidates show statistically significant correlation with survival in 
patients. Thus, high/low expressions of these candidates are seen to correlate with gli-
oma/GBM patient survival. 

Further hints of involvement of these candidates in invasiveness and metastasis, 
which are major factors contributing to the distinction between GBM and other gliomas, 
come from the canonical pathway analysis obtained from IPA (Figure 3). Apart from the 

Figure 2. (A) Expressions of some candidates: level of expression on the y-axis is in terms of log of
FPKM (fragments per kilobase million), and the x-axis shows the three groups: Normal (n = 5), Other
gliomas (n = 445), and GBM (n = 233), from the Rahman et al. [20] study. (B) Survival curves for the
candidates [y-axis—survival percentage, x-axis—survival time in months. Obtained and modified
from glioVis [21], based on the TCGA GBMLGG dataset, GBM (n = 152), LGG (n = 515). Significance:
**** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05. See the Validation section of Methods for details.

To examine if the expression differences in candidates were linked to differences
in survival, we extracted survival curves for each candidate from glioVis (Figure 2B,
Supplementary File S5 Figure S2). GFRA1, in particular, shows a very high hazard ratio
(HR = 12.41), with higher expression correlating with better survival. Similarly, higher
expressions of DLL1 (HR = 6.15) and SHC2 (HR = 5.82) are linked to higher survival
probability. On the other hand, lower expressions of PARP9 (HR = 0.09), GRB14 (HR = 0.19),
IFNAR2 (HR = 0.20), and AFP (HR = 0.27) correlate with better survival. Except for
PSKH1, STAT4, and TLN1, all other candidates show statistically significant correlation
with survival in patients. Thus, high/low expressions of these candidates are seen to
correlate with glioma/GBM patient survival.

Further hints of involvement of these candidates in invasiveness and metastasis,
which are major factors contributing to the distinction between GBM and other gliomas,
come from the canonical pathway analysis obtained from IPA (Figure 3). Apart from the
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PI3K/AKT pathway (CDC37, IL6R), Epidermal-Mesenchymal transition (IL6R, SHC2),
tumour metastasis and T1/T2 activation are highlighted (DLL1, STAT4, IL6R). Murine
studies indicate that the shift from the Th1 to Th2 type cell response may be a factor
contributing to cancer development and progression [22]. Thus, based on mutation data,
expression, survival curves, and analysis of involved pathways, the proposed candidates
seem to contribute to several of the known deregulated processes in cancer, and may
contribute to GBM pathology.
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Figure 3. Ingenuity Pathway Analysis highlights several pathways related to the immune system,
the PI3K/AKT pathway, and pathways involved in the epithelial mesenchymal transition (EMT). The
name of the pathway is on the y−axis, with the significance on the x−axis.

2.3. Background Correction Highlights Low-Degree Structurally Critical Proteins That Connect
Several Known GBM Proteins

The candidates were identified based on background-corrected BC, to highlight nodes
that are central to the GBM network. To visualise these features, Figure 4 shows one of
the candidates, AFP, in the Reference-combined network. AFP has five nodes as its first
neighbours (degree = 5), out of which four are already known GBM-associated proteins,
including PTEN. These five nodes are, in turn, hub nodes that contain large clusters with
several GBM-associated proteins. The network grows from a six-node network of AFP
and its first neighbours, to a network of 404 nodes and 2912 edges when expanded to first
neighbours of AFP’s neighbours. As a low-degree node, it ranks much lower down the
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list based on raw centrality value, and may not have been highlighted without the degree
correction, suggesting a critical topological position of AFP in the GBM network.
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Figure 4. An example of AFP (in red) in the Reference-combined network. AFP is connected to five
neighbours, four of which are known GBM proteins; these, in turn, are hub nodes. Clustering of the
AFP network was carried out using the clusterMaker2 [23] app in Cytoscape [24].

2.4. Partial Networks Also Return Top-Ranked Nodes as the Top Hits, Thus Indicating the
Robustness of the Method to Recover Topologically Critical Nodes

Due to the absence of a gold-standard network, we investigated the performance of our
method on partial networks, starting with varying seed lists. Indeed, BC can be sensitive to
topological variations, complicating the choice between combining all available information,
or performing separate analyses. To obtain a comparison between the networks, we looked
at the presence of the 33 significant candidates in the top 20-, top 50-, and top 100-ranked
nodes in each of the networks (Supplementary File S3 Table S6). We see from Figure 5A that
the consensus networks returned fewer significant candidates as their top-ranked results
than the partial networks individually. For example, the combined Reference network
returned only 9 significant candidates in the top 20, as compared to C0017636 Reference
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(15 candidates) and C1621958 (12 candidates). Thus, in terms of capturing topologically
significant nodes among its top ranks, consensus networks do not seem to perform as well
as the individual networks.
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Figure 5. Performance of different networks considered in this study to rank significant candidates.
(A) The table shows how many out of the 33 significant candidates are obtained in the top 20-, top
50-, and top 100-ranked nodes resulting from the network analysis pipeline. Colours range from red
(lowest) to green (highest). (B) Overlap of top 200-ranked nodes between partial networks. (C) Based
on the overlap obtained in (B), significant overlap among k-top nodes of the partial networks was
obtained. This yields four consistently top-ranked candidates across all the networks.

To ascertain the ability of the pipeline to highlight significant nodes amongst its top
ranks, we considered the varying lengths of individual networks for their enrichment. We
can see that in the partial networks P1 and P2, among the significant candidates that can
be found in the top 100 ranks of each network, almost 60–70% of them are present in the
top 20. In the larger reference networks, 60–80% can be recovered in the top 50. Thus, the
pipeline enriches the candidates among the top ranks, and seems to accommodate missing
information and differences in topologies in partial networks.

To further account for the varying network sizes and the ability of partial networks to
recover the novel candidates, we used the tool DynaVenn to obtain the most significant
overlaps among the ranked lists, as it uses flexible thresholds for comparison among top-k
members of lists. For the partial networks P1 and P2, for the top 200-ranked nodes for
C0017636, C1621958, and the combined networks, 58 proteins were common between
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P1, and 78 among the P2 networks (Figure 5B). For each network category, DynaVenn
considered varying top-k nodes, as shown in Figure 5C, and calculated the most significant
overlap to be 10 and 23 nodes, respectively. Four out of the eighteen proposed candidates
are top-ranking nodes across all the partial networks. These conservative results can be
considered robust—these candidates are consistently top-ranked across different topologies,
and after multiple-testing correction. Thus, this study highlights four proteins—SH3RF1, IF-
NAR2, GFRA1, and SHC2—as high-confidence GBM-associated proteins, and an expanded
set of 18 probable candidates to be explored further to establish their roles in GBM.

3. Discussion

Using a specific PPI network analysis method and sets of known proteins associated
with GBM, we confirmed 15 known GBM proteins, and proposed 18 novel candidates of
interest in GBM based on mutational and expression data, survival curves, and pathway
analysis. Among the confirmed proteins, RET, an oncogene, is known to play a role in the
development of the central and peripheral nervous system, and EGFR is one of the most fre-
quently mutated genes in glioblastoma. Among the novel candidates, several are enzymes
(DLL1, PARP9, RRM2B, SH3RF1, USP53), three are membrane receptors (GFRA1, IFNAR2,
IL6R), two are kinases (KALRN, PSKH1) and some others with miscellaneous roles, such
as transcriptional regulation, and adaptor proteins (SH3RF1, SHC2)(Supplementary File S3
Table S9). We obtained a collated overview of the biological functions of the candidates
from various databases, such as GeneCards [25], The National Center for Biotechnology
Information (NCBI, https://www.ncbi.nlm.nih.gov/, accessed on 14 October 2022, HPA,
etc. IFNAR2, IL6R, and GFRA1 are receptors for ligands linked to GBM, namely type I
interferons, IL6, and RET. Several candidates are members of immune system response
machinery (IFNAR2, IL6R, STAT4), while some such as PARP9 are involved in interferon
antiviral response, along with functions in DNA repair. RRM2B is involved in metabolism
and hypoxia response, induced due to DNA damage [Genecards]. SHC2 and GRB14 are
both linked to metabolism-linked cellular growth, and belong to SHC and GRB families;
other members have been annotated as glioma pathway members [KEGG pathways, [26].
KALRN, EIF1AD, DLL1, SH3RF1, and TLN1 are involved in neuronal structural integrity,
plasticity, differentiation, and may contribute to the highly invasive nature of GBM as
compared to other gliomas. EPB41L5 has been linked to metastasis and EMT in different
cancers [NCBI]. USP53 has also been shown to play a role in mesenchymal transition [27].
In adults, AFP is a tumour marker. CDC37 is linked to stabilisation of proteins by acting as
chaperone. Three of these candidates, IFNAR2, IL6R, and RRM2B, are known drug targets.
These nodes could be good candidates for targeting, as they are likely to have lower side
effects due to their low degree.

We had previously noted that different sizes and topologies of networks are possible
based on different inclusion criteria [5]. Hence, one question arises as to whether applying
a stringent criterion that yields smaller networks is more useful than having large networks
with more scope for discovering new candidates but with the risk of including more false
positives. This study explored what happens when starting with an incomplete or partial
list of disease-associated candidates, in the realistic scenario of a relatively rare condition.
We expected low-degree nodes to be more sensitive to changes in network topology, and
identified nodes that remain consistently top-ranked in small, partial networks. In fact,
a small but well-curated list of starting seed proteins can yield some of the key nodes
obtained from expanded networks, despite not being statistically significant.

Ultimately, the usefulness of such methods depends on the insights they can provide.
We find that this study indeed highlights known proteins involved in GBM, and relevant,
putative candidates that are relatively unexplored in this context. However, the candidates
highlighted are reflective of the network measure chosen. As we used betweenness cen-
trality, which is larger for nodes connecting different subgraphs and translates to proteins
bridging different physiological processes, the candidates show a high level of pleiotropy,
with multiple roles in metabolism, immune system function, and structural integrity main-

https://www.ncbi.nlm.nih.gov/


Int. J. Mol. Sci. 2023, 24, 3075 11 of 14

tenance. Targeting such critical nodes may address the multiple dysregulations found in
the tumour environment.

Interestingly, our study also highlights developmental proteins, such as AFP and
SH3RF1, along with structural proteins. It has been reported that GBMs contain heteroge-
neous cell populations belonging to different subtypes (astrocytomas, oligodendrogliomas,
etc.), and that these cells could be undergoing phenotypic transitions from one type to
another. These transitions are reflected in continuous ranges of gene expression. These
transitions are also supported by markers linked to hypoxia, stemness, and quiescence [4].
The proposed candidates reflect these functions, and the temporal variation in expression
across cell populations may explain the low statistical significance for these candidates
in expression and survival analysis. Lastly, some of the candidates show non-significant
differences between healthy and glioblastoma samples, which could be attributed to the
low number of healthy samples.

Given that this method is based on a single type of input, i.e., a PPI network, and
a single type of network measure, not all of the molecular contributors of GBM will be
captured. Almost 400 different network measures have been proposed [28]; however, very
few of them are found to be used in practice. In order to obtain the scope of application
vis-a-vis different measures, this study will need to be expanded to include different
measures, topologies, and network sizes. Since this method is applicable in the absence
of large molecular datasets and only requires a gene list, it might be useful to explore
conditions which, like GBM, are rare and/or where limited data are available. However,
these network-based methods need further refinement, more measures, and combinations
need to be explored before a standardised pipeline can be established. These initial results
are promising, and warrant further studies on both the method as well as on the novel
candidates this study highlighted in the case of GBM.

4. Methods and Materials

In this study, disease-specific networks were constructed using seed DAPs and a
protein–protein interaction (PPI) network. The datasets used are described below, while
the computational pipeline used was as previously described [19]. Briefly, we compared,
for each protein, its BC score in the disease network with the distribution of its BC scores
in 10,000 degree-stratified random networks. Statistical significance of the scores was
calculated using Monte Carlo non-parametric testing.

4.1. Obtaining Seed Lists

Glioblastoma (GBM) is assigned the unique Medical Subject Headings [29] (MeSH) ID
D005909. DisGeNET [11] yields three lists, which map to the same MeSH ID but different
UMLS (Unified Medical Language System) concept IDs: C0017636 (Glioblastoma, 3177
genes), C0334588 (Giant cell glioblastoma, 95 genes), and C1621958 (Glioblastoma Multi-
forme, 3197 genes) (Supplementary File S1 Tables S1–S3). DisGeNET is a comprehensive
resource, which includes data from many resources, such as UniProt, PsyGeNET, Orphanet,
the CGI, CTD (human data), ClinGen, etc. Among the two largest sets, 2910 genes are
common, while the third one is contained in both of these sets. Hence, this study was based
on the two largest sets, C0017636 and C1621958, a combination of which consisted of 3369
unique genes (Supplementary File S1 Table S4). The protein products of the seed genes
were termed GBM DAPs. This combined list was used as a basis for labelling proteins as
known disease associations, and candidates not included were termed novel.

For the two UMLS IDs, we used 3 levels of evidence for the inclusion of seeds:
(1) a manually curated list of DAPs, (2) DAPs that had an DisGeNET score ≥ 0.2, and
(3) DAPs with a score ≥ 0.1. These thresholds were chosen heuristically to obtain small
networks that contained the best-known glioblastoma-associated genes with reasonably
sound evidence. A third set of seed lists was generated by combining the seeds across
each of the selection criteria (i.e., combining curated seeds from C0017636 and C1621958,
and across the other two thresholds) (Supplementary File S2 Table S5). The remaining
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~2700 DAPs with low scores were not considered as seeds for this analysis. Among the nine
networks, we considered the largest network of each category to be the complete reference
network for that category. The other smaller networks were treated as partial networks.
Figure 1A lists the initial sizes of the nine networks.

4.2. Mapping to PPI

Protein–protein interaction data were obtained from the multi-validated human
dataset of the BioGRID [30] database (v 4.4.204). A list of 16,227 proteins that are found to
be expressed in the brain (obtained from the Human Protein Atlas (HPA [31]) was used
to filter the PPI network. A final PPI set of 87,424 interactions was obtained. DAPs were
mapped to the processed PPI network.

4.3. Computational Pipeline and Resources

The centrality analysis and background correction were as described previously [19],
depicted in Figure 1B. The pipeline was built in Python 3, using NetworkX for centrality
computations. For each of the disease networks, the centrality score was compared against
10,000 background random networks. Networks were processed on the High-Performance
Computing cluster of the University of Luxembourg [32]. The code is available on GitHub
at the following address: https://github.com/sysbiolux/Background_corrected_network_
analysis, accessed on 14 October 2022.

4.4. Overlap Significance

The significance of overlaps between the top-ranked candidates of the different partial
networks was analysed using DynaVenn [33] (https://ccb-compute.cs.uni-saarland.de/
dynavenn/, accessed on 14 October 2022). This online tool computes the significance of
overlap between up to 3 lists. Overlaps were calculated among the top 200 proteins of the
3 networks for P1 and P2 categories.

4.5. Validation

Overlapping top-ranking candidates from the networks were explored in the con-
text of GBM, gliomas, and their roles in different cancers based on the literature. For the
significant candidates, mutation data were obtained from the cBioPortal [34] database
(https://www.cbioportal.org/, accessed on 7 September 2022) (Supplementary File S3
Table S8). Disease involvement information was obtained from the HPA (Supplemen-
tary File S3 Table S8). Survival analysis results were extracted from the tool glioVis [21]
(http://gliovis.bioinfo.cnio.es/, accessed on 14 November 2022), using the GBM and lower-
grade glioma (GBMLGG) and glioblastoma (GBM) datasets from The Cancer Genome
Atlas (TCGA) [35]. The evidence table in Supplementary File S3 (Table S8) lists both
outcomes, while survival curves in Figure 2B and Supplementary File S5 Figure S2 are
based on the combined GBMLGG dataset. The GBM dataset compares normal samples
with GBM, while the combined dataset contains GBM and other lower-grade gliomas
(LGG)—oligodendroglioma, oligoastrocytoma, and astrocytoma, while normal samples are
absent. Differential expression information was obtained from two sources: TCGA GBM
dataset via glioVis (Supplementary File S3 Table S8), and the TCGA data processed and
published by Rahman et al. [20]. The latter dataset was split into three groups: normal,
GBM, and other gliomas. Samples labelled as IDH1 wild-type were considered GBM
(n = 233), and all other types of gliomas were combined under ‘Other gliomas’ (n = 445).
Normal samples (n = 5) were used as labelled, and these data were used to obtain the ex-
pression plots (Supplementary File S5 Figure S1). Significance was tested using the pairwise
t-test, with Benjamini–Hochberg correction for multiple testing. Differential expression in
the GBMLGG dataset mentioned in Supplementary File S3 Table S10 was as obtained from
glioVis. Enrichment of candidates based on their known disease associations, contributions
to specific biological processes, and involvement in different canonical pathways was

https://github.com/sysbiolux/Background_corrected_network_analysis
https://github.com/sysbiolux/Background_corrected_network_analysis
https://ccb-compute.cs.uni-saarland.de/dynavenn/
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obtained from Ingenuity Pathway Analysis (IPA, Qiagen GmbH) (Supplementary File S4
Tables S11 and S12).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24043075/s1.
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