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Abstract: This perspective examines the proposition that chronically elevated blood glucose levels
caused by type 2 diabetes (T2D) harm body tissues by locally generating reactive oxygen species
(ROS). A feed-forward scenario is described in which the initial onset of defective beta cell function
T2D becomes sustained and causes chronic elevations in blood glucose, which flood metabolic
pathways throughout the body, giving rise to abnormally high local levels of ROS. Most cells can
defend themselves via a full complement of antioxidant enzymes that are activated by ROS. However,
the beta cell itself does not contain catalase or glutathione peroxidases and thereby runs a greater risk
of ROS-induced damage. In this review, previously published experiments are revisited to examine
the concept that chronic hyperglycemia can lead to oxidative stress in the beta cell, how this relates to
the absence of beta cell glutathione peroxidase (GPx) activity, and whether this deficiency might be
ameliorated by genetic enrichment of beta cell GPx and by oral antioxidants, including ebselen, a
GPx mimetic.
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1. Introduction

Much more is known about the clinical phenotype of type 2 diabetes (T2D) than
is known about its primary genetic causes. Accordingly, it is accurate to consider T2D
as a syndrome of polygenic origin rather than a single genetic illness. The prevalence
and incidence of diabetes in the world continue to climb to unprecedented heights, so
it is important to consider the possible oxidative features of the internal and external
environments that impact mammals and humans who have developed T2D. Two important
variables are the oxidative stress that can be caused by chronic hyperglycemia and the
competency of the consequent innate antioxidant response. In this perspective, I revisit
experiments designed to evaluate the success of endogenous Nrf2 and antioxidant gene
expression to repair damaged beta cells in T2D.

2. Background: The Pancreatic Islet as a Vulnerable Target for Reactive
Oxidative Species

Islets comprise approximately 2–3% of the pancreatic mass and consist primarily of
beta cells and alpha cells, amongst others. Beta cells synthesize and secrete insulin in
response to rising blood glucose levels, whereas alpha cells synthesize and secrete glucagon
in response to hypoglycemia. The primary defect in T2D is defective glucose-induced
insulin secretion, which is made worse in the presence of general insulin resistance, a
condition that frequently accompanies the development of the syndrome of T2D, obesity,
and hyperlipidemia.

Physiologic levels of ROS from various sources contribute positively to many cellular
processes. However, chronic hyperglycemia can lead to excessive formation of ROS via
several metabolic pathways, including oxidative phosphorylation, glyceraldehyde autoxi-
dation, PKC activation, and metabolism of hexosamine, glucosamine, dihydroxyacetone,
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enediol, and glyceraldehyde ([1,2]; Figure 1). If the antioxidant regulatory response at the
tissue level is not sufficient to neutralize excessive ROS, structural tissue damage can ensue,
which is referred to as oxidative stress. Most organs have tissues with cells that contain a
full complement of antioxidants, including catalase, superoxide dismutases, glutathione
peroxidases, and hemoxygenases. Pancreatic beta cells are different and thus particularly at
risk for oxidative stress because they are unique among other tissues in having only partial
protection with superoxide dismutases and hemoxygenases [3–15]. Thus, under conditions
of chronic hyperglycemia, which leads to a general state of increased formation of ROS,
the beta cell is especially at risk for undergoing the toxic effects of abnormal amounts of
ROS. This means that the beta sell, whose innate function is abnormal in T2D, can be both
the cause and a secondary victim of the chronic hyperglycemia it causes ([16–20]; Figure 2).
Many brief clinical trials with traditional oral antioxidants to treat the hyperglycemia of
T2D have been attempted but have not yet been shown to be effective in humans. More
recent experimental data suggest that the innate beta cell Nrf2/antioxidant pathway in
beta cells is active in self-repair early after exposure to oxidative stress caused by a high-fat
diet (see Figures 3–5 below), which raises the question whether this phenomenon might be
clinically applicable to the treatment of T2D.
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Figure 1. Metabolic pathways along which glucose metabolism can form reactive oxygen species
(ROS). Under physiologic conditions, glucose primarily undergoes glycolysis and oxidative phos-
phorylation. Under hyperglycemic conditions, excessive glucose levels can swamp the glycolytic
process and glyceraldehyde catabolism, so that metabolites are shunted to other pathways, which
then generate increasing levels of ROS. Modified from reference [1].



Int. J. Mol. Sci. 2023, 24, 3082 3 of 12
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 12 
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beta cell. The normal beta cell, however, does not contain the full complement of antioxidant en-
zymes found in other tissues, specifically catalase and glutathione peroxidases, which are important 
regulators of intracellular ROS levels and catabolism. Consequently, ROS are abundant in beta cells 
and cause oxidative damage. 

Figure 2. Hypothesis: Under conditions of supraphysiologic concentrations of blood glucose, various
metabolic pathways generate increasing levels of ROS in body tissues, including the pancreatic
beta cell. The normal beta cell, however, does not contain the full complement of antioxidant
enzymes found in other tissues, specifically catalase and glutathione peroxidases, which are important
regulators of intracellular ROS levels and catabolism. Consequently, ROS are abundant in beta cells
and cause oxidative damage.
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Figure 3. Beta cell-specific overexpression of glutathione peroxidase protects beta cells from the
functional deterioration observed in wild-type db/db-GPx(−) mice fed a high-fat diet. Initially, blood
glucose levels began to rise in both the C57 wild type and the db/db transgenic animals. However, by
10 weeks glucose levels began to decrease to levels lower than those in the transgenic animals, and
thereafter returned to the non-hyperglycemic range. We speculate that this delay in glucose response
may have been related to the fact that the GPx transgene construct included a glucose-sensitive
insulin promoter that was activated by the establishment of hyperglycemia. Modified from Ref. [21].
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Figure 5. (A) Pancreatic sections were double labeled for insulin (green fluorescence) and 4-HNE (a 
marker for oxidative stress; red fluorescence). ZDF rats after 9 days of a high-fat diet showed intense 
cytoplasmic staining for 4-HNE in beta cells (B). This was reduced 2 weeks after a return to regular 
diets (C). Immunostaining for Nrf-2 (red fluorescence) revealed significant immunoreactivity both 
in the cytoplasm and the nucleus of beta cells ZDF rats fed high-fat diets for 9 days (F) when com-
pared to ZDF controls (E). In contrast, 2 weeks after returning to regular diets the immunoreactivity 
for Nrf2 was dramatically reduced (G). Similarly, pancreatic sections stained for HO-1 (red fluores-
cence) showed increased cytoplasmic and nuclear localization of HO-1 (J) in beta cells (green fluo-
rescence), which after 9 days of HFD was greatly diminished 2 weeks after return to regular diet 
(K). Specificity of detected immunoreactivities was validated by incubation of tissue sections with 
control IgGs from each species (lower panels). Morphometric analysis of markers of oxidative stress. To 
determine the presence of oxidative stress, pancreata from both control ZDF rats fed with a 17% fat 
diet and HFD-treated ZDF rats fed with a 48% fat diet were fixed overnight with 4% formalin. Fixed 
tissues were processed for paraffin embedding, and 4-μm sections were prepared and mounted on 
slides. Sections from both groups of animals were chosen at 25-μm intervals for immunolocalization 
of 4HNE, Nrf2, and HO-1, as well as insulin to identify β cells and E-cadherin to identify the pan-
creatic epithelium. Fifty sections per animal group were analyzed for morphometric measurements. 
Primary antibodies used for these experiments included anti-4HNE (Abcam, ab46545), anti-Nrf2 
(Abcam, ab31163), and anti–HO-1 (Enzo Life Sciences), all used at 1:100 dilution and incubated 
overnight at 4 °C. Following reaction with fluorophore-conjugated secondary antibodies (Jackson 

Figure 5. (A) Pancreatic sections were double labeled for insulin (green fluorescence) and 4-HNE
(a marker for oxidative stress; red fluorescence). ZDF rats after 9 days of a high-fat diet showed intense
cytoplasmic staining for 4-HNE in beta cells (B). This was reduced 2 weeks after a return to regular
diets (C). Immunostaining for Nrf-2 (red fluorescence) revealed significant immunoreactivity both in
the cytoplasm and the nucleus of beta cells ZDF rats fed high-fat diets for 9 days (F) when compared
to ZDF controls (E). In contrast, 2 weeks after returning to regular diets the immunoreactivity for
Nrf2 was dramatically reduced (G). Similarly, pancreatic sections stained for HO-1 (red fluorescence)
showed increased cytoplasmic and nuclear localization of HO-1 (J) in beta cells (green fluorescence),
which after 9 days of HFD was greatly diminished 2 weeks after return to regular diet (K). Specificity
of detected immunoreactivities was validated by incubation of tissue sections with control IgGs
from each species (lower panels). Morphometric analysis of markers of oxidative stress. To determine
the presence of oxidative stress, pancreata from both control ZDF rats fed with a 17% fat diet and
HFD-treated ZDF rats fed with a 48% fat diet were fixed overnight with 4% formalin. Fixed tissues
were processed for paraffin embedding, and 4-µm sections were prepared and mounted on slides.
Sections from both groups of animals were chosen at 25-µm intervals for immunolocalization of 4HNE,
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Nrf2, and HO-1, as well as insulin to identify β cells and E-cadherin to identify the pancreatic ep-
ithelium. Fifty sections per animal group were analyzed for morphometric measurements. Primary
antibodies used for these experiments included anti-4HNE (Abcam, ab46545), anti-Nrf2 (Abcam,
ab31163), and anti–HO-1 (Enzo Life Sciences), all used at 1:100 dilution and incubated overnight at
4 ◦C. Following reaction with fluorophore-conjugated secondary antibodies (Jackson ImmunoRe-
search) slides were mounted with DAPI containing mounting medium (Vector Laboratories) and
viewed at a Nikon i90 microscope for image acquisition and analysis using NIS-Elements AR 3.2
(Nikon). *** p < 0.001, **** p < 0.0001. Modified from Ref. [23].

3. Molecular Consequences of Chronic Hyperglycemia and Resultant Oxidative Stress
on Residual Beta Cell Function in T2D

In the last half of the 20th century, a great deal was learned about abnormalities in
beta cell function in humans and animals with T2D. Much of this information came from
clinical research that involved studies such as the oral and intravenous glucose tolerance
tests (for a general review, the reader is referred to DeGroot Endocrinology, 8th edition,
year 2023, pages 557–588). T2D was characterized metabolically as a state involving not
only hyperglycemia but paradoxically also one in which fasting circulating insulin levels
could be in the normal or even in the distinctly abnormally high range. Over several
decades it became appreciated that high basal insulin levels were common in T2D and
were, for the most part, associated with individuals who were obese and, to a lesser extent,
lean. It was also learned from intravenous glucose tolerance testing that the initial burst
of insulin release within minutes of injecting glucose that was normally present in non-
diabetic humans was totally absent in subjects with T2D. This loss was unique to glucose
because the first-phase responses to other agonists, such as amino acids, glucagon, and
isoproterenol, were fully intact. These features strongly suggested that T2D was clearly
distinct from T1D, an immunologic disease that involved the death of beta cells and the
total disappearance of agonist-induced insulin responses.

In roughly the same time frame, there was intense research attention on exploring
the causes of elevations in blood insulin levels in obese individuals with and without
T2D. The primary in vivo methodology initially involved glucose clamp studies, which
can be performed under normoglycemic or hyperglycemic conditions. The overall study
design has several different variations, but the overall goal is to ascertain the quantitative
relationship between blood glucose and insulin levels as one or the other is manipulated
independently. For one example, it was observed that obese and aged individuals with
elevated basal insulin levels were resistant to the effects of exogenous insulin such that more
infused insulin was required to maintain a given clamped glucose value. Such findings
gave rise to the term insulin resistance and led to a great deal of in vitro research examining
molecular mechanisms of insulin action and insulin resistance in various tissues, including
the liver, muscle, and adipose tissue.

Research into the regulation of beta cell function revealed that insulin gene expression
in cell lines was adversely affected if the cells were chronically cultured in media con-
taining high concentrations of glucose. For example, experiments using the beta cell line
HIT-T15 showed that chronic culturing of these cells in media containing supraphysiologic
concentrations over many weeks caused progressive declines in levels of insulin mRNA,
insulin content, and glucose-induced insulin secretion [24]. Loss of agonist-induced insulin
secretion in these cells was a general phenomenon rather than the glucose-specific one
observed in T2D subjects [25]. In other words, type 1 patients have no insulin to secrete,
whereas type 2 patients have intact insulin secretion but not in response to an acute intra-
venous glucose challenge. This distinction suggested that chronic exposure to high glucose
levels per se could lead to adverse changes in beta cells independent of the innate nature of
T2D. This, in turn, suggested that the hyperglycemia caused by T2D itself might have an
independent and secondary consequence of further impairing the ability of beta cells to
synthesize and secrete insulin. Searching for such a feed-forward deleterious mechanism
that might worsen already compromised beta cell function led to the observations using
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HIT-T15 cells that prolonged exposure to supraphysiologic glucose concentrations caused
the disappearance of two insulin promoter regulatory proteins. One protein was initially
named GSTF [26] and later identified as STF-1 [27], and even later PDX-1. A second protein
that disappeared was initially named RIPE3b1 activator [28,29] and later termed MafA.
Studies of DNA binding to the insulin promoter of HIT-T15 cells showed that binding
of MafA decreased 20 passages earlier than the decrease in Pdx-1 binding [30] and also
that insulin reporter activity could be partially restored by reconstitution of the cells with
Pdx-1 DNA. Results from similar experiments using another beta cell line, the Beta-TC-6
cell, demonstrated similar adverse effects of prolonged exposure to high glucose levels on
insulin gene expression, but in this case, the defect was primarily a decrease in RIPE-3b1
activator with no defect in PDX-1 gene expression [29].

Extension of these in vitro experiments to in vivo experiments with a rodent model of
T2D, the male Zucker Diabetic Rat (ZDF) fed a high-fat diet, were conducted by comparing
data from control rats and rats treated with troglitazone, a drug that lowers blood glucose in
these rodents. The control animals developed progressive hyperglycemia and an associated
loss of PDx-1 and insulin mRNAs and diminution of glucose-stimulated insulin secretion.
Treatment with troglitazone prevented hyperglycemia and the adverse effects on PDX-1
and insulin gene expression and improved insulin secretion [18].

4. Search for Causal Relationships among Glucose Toxicity, Oxidative Stress, and
Defects in Beta Cell Function in T2D: The Importance of Glutathione Peroxidase

Clinical reports of elevated levels of oxidative stress markers in patients with T2D
are numerous. Relevantly, the islet is among the least well-endowed tissues in terms of
intrinsic antioxidant enzyme expression. Essentially, the beta cell expresses only super-
oxide dismutases and hemoxygenases with very little, if any, glutathione peroxidase or
catalase [3–5,15], which leaves the cell largely unprotected against intracellular peroxides.
Additionally, the product of superoxide dismutases is hydrogen peroxide, which itself
a reactive oxygen species. To assess the impact of these inter-relationships, we cultured
HIT-T15 cells in media containing supraphysiologic levels of glucose with and without
the inclusion of the antioxidant N-acetyl-l-cysteine (NAC) or aminoguanidine (AG) in
the media. Both NAC and AG partially prevented decreases in insulin mRNA, insulin
gene promoter activity, DNA binding of PDX-1 and MafA, insulin content, and glucose-
induced insulin secretion [16]. Additionally, these two drugs were given to hyperglycemic
ZDF diabetic rats, both of which prevented a rise of blood markers of oxidative stress
(8-hydroxy-2′-deoxyguanosine and malondialdehyde + 4-hydroxy-2-nonenal) and partially
prevented hyperglycemia, glucose intolerance, and defective insulin secretion as well as
decrements in cell insulin content, insulin gene expression and PDX-1 binding of the insulin
gene promoter.

These observations led to an assessment of the importance of the absence of glutathione
peroxidase activity in beta cells during periods of oxidative stress. These experiments
involved both HIT-T15 cells and isolated islets from male Wistar rats and from humans [17].
We observed that high glucose concentrations increased intracellular peroxide levels in
human islets and HIT-T15 cells. Inhibition of gamma-glutamyl cysteine synthetase by
buthionine sulfoximine augmented the increase in islet peroxide and decrease in insulin
mRNA caused by ribose. Adenoviral overexpression of glutathione peroxidase increased
islet glutathione peroxidase activity and protected islets against the adverse effects of ribose.
We concluded that oxidative stress is one mechanism for glucose toxicity in pancreatic
islets, a mechanism that is enhanced by the innate absence of islet glutathione peroxidase.
They suggested that the use of GPx mimetics may represent a valuable ancillary treatment
that could add a novel layer of protection for the beta cell [18,31].

5. Effects of Ebselen, a Glutathione Mimetic, in Preventing T2D in the Male ZDF Rat

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one, a nontoxic seleno-organic drug,
is a lipid-soluble, orally bioavailable small molecule classified as a GPx mimetic [32–34]
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that has been used in human trials for hearing loss and neurovascular disease [35,36].
Because beta cells are known to be deficient in GPx, we selected ebselen as a candidate
for preventing the deterioration of beta cells in male ZDF rats, a rodent model of T2D [22].
These animals are obese, leptin receptor-negative, and develop glucose intolerance, in-
sulin resistance, and fasting hyperglycemia. Ebselen treatment of male ZDF rats with T2D
was found to have beneficial effects on beta cell function and structure. It ameliorated
fasting hyperglycemia, sustained non-fasting insulin levels, and lowered non-fasting glu-
cose and HbA1c levels with no effects on body weight. It also doubled beta cell mass
(Figures 3 and 4), prevented apoptosis, prevented the expression of oxidative stress mark-
ers, and enhanced intranuclear localization of the two critical insulin transcription factors,
PDX-1) and MafA. These findings in live animals suggest that ebselen is an agent that
should be evaluated clinically in humans undergoing the onset of type 2 diabetes

6. Protection of Beta Cells by the GPx-1 Transgene against the Glucotoxic Effects of
Chronic Hyperglycemia Female db/db Mice

We studied whether an increase in GPx-1 in beta cells specifically would protect them
from the adverse effects of chronic hyperglycemia [21]. For these studies, we used female
C57BLKS/J mice fed a high-fat diet, an animal model of T2D, to overexpress the GPx-1
transgene. We found that without the assistance of hypoglycemic agents, spontaneous
hyperglycemia in db/db-GPx(+) mice was initially ameliorated by ten weeks of age and then
by 20 weeks almost completely reversed (compare the red line in Figure 3 at 10 weeks vs.
20 weeks. Beta cell volume and insulin granulation and immunostaining were greater in
db/db-GPx-1(+) overexpressed animals compared to db/db-GPx-1(−) control animals. The
control animals lost intranuclear MafA, which was prevented by GPx-1 overexpression. We
concluded that it was a transgenic enhancement of intrinsic antioxidant defenses of mouse
beta cells that protected them against the deterioration of beta cells that occurs during the
development of hyperglycemia. These results led us to examine more closely whether
animals just beginning to develop spontaneous T2D and whose beta cells were just on the
verge of being exposed to initial hyperglycemia and oxidative stress might evince evidence
for intrinsic antioxidant expression via the Nrf2/antioxidant pathway as an attempt to
initiate beta cell repair [23].

7. The Innate Protective Response of the Nrf2 and Hemoxygenase-1 Pathway against
the Development of T2D Diabetes in Female Fat-fed ZFD Rats

The strategy of these studies was to examine the evidence for endogenous antioxidant-
mediated repair mechanisms via activation of the Nrf2/antioxidant pathway ([37–44];
Figure 6) that might occur during early beta cell deterioration characteristic of female ZDF
rats fed a high-fat diet. These studies involved feeding rats with a high-fat diet (HFD) for 1,
2, 4, 7, 9, 18, or 28 days followed by a return to regular chow for 2–3 weeks after stopping
the HFD [23]. We observed evidence of functional beta cell damage (hyperglycemia) after
9 days of exposure to HFD. We also observed a return to normoglycemia after 2–3 weeks of
stopping the HFD and returning the rats to normal chow. Damage was more severe, and
repair was less evident after 18- or 28-day exposure to HFD. Assessment of beta cell volume,
morphology, and insulin-specific immunoreactivity, as well as ultrastructural analysis by
transmission electron microscopy, revealed that short-time exposure to HFD produced sig-
nificant changes in morphology and function that were reversed after returning to regular
chow for two weeks. Contemporaneous formation of intracellular markers of oxidative
stress, intranuclear translocation of Nrf2, and formation of intracellular antioxidant proteins
in the 9-day experiments indicated participation of the Nrf2/antioxidant pathway in this
reversal (Figure 5). This repair did not occur if the animals were immediately sacrificed at
9 days of HFD without returning them to regular chow for two weeks before sacrifice.
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Figure 6. Illustration of the functional relationships between KEAP1 and Nrf2 under conditions
of non-stress and oxidative stress. Under quiescent conditions, Nrf2 is bound by KEAP1 in the
cytoplasm, which ushers Nrf2 to proteosomes for degradation. In the face of oxidative stress, Nrf2 is
released from KEAP1 and enters the nucleus, where it serves as a key activator for the promoter of
antioxidant genes.

8. Conclusions

The main emphasis of this perspective is that oxidative stress caused by chronic
hyperglycemia is an important force in the continued deterioration of beta cell function
in T2D and is relentless in the face of inadequately treated chronic hyperglycemia. When
hyperglycemia becomes a constant feature of T2D, beta cell damage is amplified and
sustained by its own failure to correct excessive levels of glucose and reactive oxygen
species. This begets increasingly more beta cell damage, a vicious self-perpetuating cycle
that represents a feed-forward mechanism for even more cellular damage. A caveat to this
logic is that animal models of T2D also develop high levels of blood triglyceride, which
raises the possibility lipids and not necessarily glucose, may play a role in the progressive
demise of beta cell function, i.e., via lipotoxicity [45]. We assessed this possibility in
experiments involving Zucker diabetic rats treated for 6 weeks with either bezafibrate, a
lipid-lowering drug that does not affect plasma glucose levels, or with phlorizin, a drug
that lowers plasma glucose without lowering lipid levels [46]. We observed that antecedent
hyperglycemia, not hyperlipidemia, was associated with increased islet triacylglycerol
content and decreased insulin gene expression and thus glucotoxicity and not lipotoxicity,
was more likely to account for the demise of beta cell function in the ZDF animals.

The evidence cited in this perspective and brief review suggest that incomplete reso-
lution of hyperglycemia characteristic of medical treatment of T2D is itself a factor in the
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continued development of beta cell deterioration over time and that chronic oxidative stress
plays a major role in this pathogenesis. It seems possible that clinical strategies involving
antioxidants should enhance protection from persistent hyperglycemia and that this might
allow the completion of beta cell repair and resolution of hyperglycemia after the onset of
the disease.
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