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Abstract: Proanthocyanidins (PAs), also known as condensed tannins, are widespread throughout
the plant kingdom, presenting diverse biological and biochemical activities. Being one of the most
abundant groups of natural polyphenolic antioxidant, PAs are applied to improve plant tolerance to
(a)biotic stresses and delay the senescence of fruit by scavenging the reactive oxygen species (ROS)
and enhancing antioxidant responses. The effects of PAs on coloring and softening of strawberries
(Fragaria × ananassa Duch.), a worldwide demanded edible fruit and typical material for studying
non-climacteric fruit ripening, were firstly assessed in this work. The results showed that exogenous
PAs delayed the decrease in fruit firmness and anthocyanins accumulation but improved the fruit
skin brightness. Strawberries treated with PAs had similar total soluble solids, total phenolics, and
total flavonoids, but lower titratable acidity content. Moreover, the contents of endogenous PAs,
abscisic acid and sucrose, were somehow increased by PA treatment, while no obvious change was
found in fructose and glucose content. In addition, the anthocyanin- and firmness-related genes were
significantly repressed, while the PA biosynthetic gene (anthocyanin reductase, ANR) was highly
up-regulated by PA treatment at the key point for fruit softening and coloring. In summary, the
results presented in this study suggest that PAs slow down strawberry coloration and softening by
inhibiting the expression of related genes, which could be helpful for a better understanding of the
biological role of PAs and provide a new strategy to regulate strawberry ripening.

Keywords: strawberry; proanthocyanidins; softening; ripening; firmness; anthocyanins

1. Introduction

In addition to being a valuable fruit commodity throughout the world, the strawberry
(Fragaria × ananassa Duch.) has also been important as a typical model for studies of
non-climacteric fruit development and ripening, due to its short vegetative stage and ease
of propagation and production. In China, although strawberry fruit can be harvested
from November to May of the following year, the fruit harvested in spring (March and
April) confers lower economic value traits, including lower firmness, a higher rate of decay,
and physiological loss of weight during post-harvest storage, than the fruit harvested in
the winter season (November to February) [1]. This is due to the comparatively higher
temperature and light intensity in spring, which can further hasten strawberry ripening,
and thus, bring poor fruit quality and flavor [2,3]. However, in order to meet consumers’
demand for fruit in different seasons and considering fruit quality, it is very necessary to
regulate the ripening of strawberries.

Fruit ripening is an extremely complex process that involves biochemical, physiologi-
cal and structural changes resulting in fruit coloration, increase in sugar content, decrease
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in organic acids, formation of flavor and aroma, and fruit softening. This process is develop-
mentally regulated and genetically controlled; the regulatory mechanisms underlying fruit
ripening depend on the integrative roles of phytohormones and transcription factors (TFs),
as well as epigenetic modifications [4]. In the strawberry, a typical non-climacteric fruit,
rather than ethylene and respiration burst, abscisic acid (ABA) and auxin (mainly IAA)
are the main hormones that coordinately regulate fruit development and ripening. Over
the past decades, the positive regulatory role of ABA on strawberry maturation has been
extensively confirmed by various research [5]. On the other hand, it has been demonstrated
that the auxin and/or gibberellic acid (GA) inhibit strawberry fruit ripening [6,7]. To
date, a large number of TFs belonging to the B-box, bHLH, MYB, MADS-box, and bZIP
TF families, have been identified to participate in the strawberry fruit development and
ripening process by crosstalk with phytohormones or regulation of related genes [8]. In
addition, DNA hypomethylation [9] and N6-methyladenosine RNA modification [10] also
regulate strawberry fruit ripening. Moreover, some biochemicals or growth regulators
have been suggested as positive regulators and widely applied to accelerate strawberry
coloration and ripening, such as sucrose [11], melatonin [12], polyamines [13], etc. Addi-
tionally, since fruit ripening is an oxidative process that involves alterations in the redox
homeostasis of reactive oxygen species (ROS), antioxidants such as ascorbic acid (AsA) and
glutathione (GSH) have been suggested to participate in strawberry fruit ripening [14–16].
These biochemicals provide multiple ways to regulate strawberry fruit ripening, while the
molecular mechanisms still need to be further elucidated.

Proanthocyanidins (PAs), also known as condensed tannins, are the oligomers or
polymers of flavan-3-ol units, which have the same typical C6-C3-C6 flavonoid skeletons
as anthocyanins. PAs and anthocyanins are both synthesized via the phenylpropanoid and
flavonoid pathways; they share common upstream steps and require metabolic interme-
diates. PAs are mainly made of catechin and epicatechin, while anthocyanins are derived
from anthocyanidins by the addition of sugars [17]. The biosynthetic steps have been
extensively studied, and it has been suggested that the genes encoding leucoanthocyanidin
reductase (LAR) and anthocyanidin reductase (ANR) are key biosynthesis enzymes for PAs,
which are regulated by TFs [18]. PAs are natural polyphenolic antioxidants widely found
in our dietary foods, especially in fruits and seeds [17,19], and are considered beneficial to
human health. It has been extensively suggested that PAs or PA extracts are associated with
various bioactivities, exhibiting anti-inflammatory, anti-cancer, and anti-aging effects [20].
Most of these biological effects are mainly due to the high antioxidant capacity of PAs
to inhibit hydroperoxide (H2O2) generation and scavenge ROS, which is about 20 and
50 times higher than that of vitamin C and vitamin E, respectively [21]. In plants, beyond
the impacts on fruit quality and taste, usage of PAs can affect various aspects of the plant,
such as inhibition of seed germination [22] and improvement of tolerance to biotic and
abiotic stresses by regulating the plant antioxidant system to facilitate ROS scavenging [18].
Moreover, the application of exogenous PAs could enhance the biosynthesis of 2-acetyl-
1-pyrroline, the key compound of aromatic rice aroma [23]. Recently, Luo et al. [24] have
reported that over-production of PAs promoted the ABA formation in roses, indicating
the involvement of PAs in ABA signaling modulation. In addition, many studies have
indicated that exogenous PA treatment could delay the softening and postharvest ripening
of banana fruit [25,26], but the mechanism is far from being clearly explained [27]. However,
whether PAs have similar roles in regulating strawberry fruit ripening and related genes
expression has not been elucidated so far.

Therefore, in the present study, the effects of PAs on strawberry fruit ripening, as well
as the fruit ripening quality, were investigated by exogenous treatment. Furthermore, the
expressions of genes involved in the ripening-related anthocyanins biosynthesis and fruit
softening were also estimated to explore the potential reason at the molecular level. The
results generated in this work will provide a basis for the application of PAs and benefit
the regulation of strawberry fruit softening and ripening in a new way.
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2. Results
2.1. Exogenous PA treatment Slows down Strawberry Softening and Coloring

Fruit colors are usually defined by three parameters in the CIELAB color space: the
amount of brightness, denoted by L*; the amount of color from green to red, denoted by a*;
and the amount of color from blue to yellow, denoted by b*. As shown in Figure 1A, PA
treatment largely delayed the coloration of strawberry fruit, and the 0.4% concentration
was more efficient than 0.2% PA. The L* value dropped from 66.3 to 33 on day 10 for
control fruit, but from 66.3 to 48 and 53 for 0.2% PA and 0.4% PA treatments, respectively
(Figure 1B). This result indicates that PA treatment slowed down the decrease in strawberry
brightness. In addition, the PA-treated fruit displayed a significantly lower a* value than
that of control fruit (Figure 1C). In control fruit, the a* value sharply increased at 4 d and
gradually increased thereafter. On the other hand, a similarly sharp increase was observed
in 0.2% PA-treated fruit at 7 d after treatment, while no significant change in a* in 0.4%
PA-treated fruit from 1 d to 10 d after treatment was observed. This result suggests at least
an approximate 3 d delay in red color formation occurring in the PA-treated fruit compared
with the control fruit. Furthermore, the b* value showed a similar trend in control fruit and
0.2% PA-treated fruit, which first exhibited an increase from 0 d to 4 d and then decreased
from 4 d to 10 d after treatment (Figure 1D). However, in 0.4% PA-treated fruit, the b* value
displayed an overall increase trend from 0 d to 10 d after treatment. Despite this, the b*
value in PA-treated fruit was higher than that of the control, and the 0.4% PA-treated fruit
showed the highest b* value. Moreover, the firmness of control fruit rapidly decreased 1 d
after treatment and kept decreasing to 11 N until 10 d after treatment (Figure 1E), while the
firmness in 0.2% or 0.4% PA-treated fruit dropped moderately from 46 to 26 or 34 N at 10 d.
The firmness decline in PA-treated fruit was also delayed by about 3 d compared to that in
the control fruit.

2.2. Total Soluble Solids, Titratable Acidity, Total Phenolic Content, and Total Flavonoid
Content Determination

Generally, throughout ripening, the vast majority of fleshy fruits are characterized by
increase in sugar contents, whereas titratable acidity (TA) decreases. In our results, overall,
total soluble solid (TSS) content showed a gradual decreasing trend, while TA content
exhibited a decreasing trend, in both control and PA-treated fruit (Table 1). Specifically,
1 d after treatment, the control fruit showed the highest TSS content, followed by 0.4% PA
and 0.2% PA treatments; at 4 d and 7 d, 0.2% PA- and 0.4% PA-treated fruit contained
the highest and lowest TSS contents, respectively; while 10 d after treatment, the highest
TSS level was found in 0.4% PA-treated fruit, and no distinct change was observed in
0.2% PA-treated and control fruit. In strawberries, it has been suggested that TA increases
from 10 days after bloom to the turning stage, or from 21 to 28 days from fruit set, and then
decreases until maturity [28,29]. Similarly, in the present study, we found that TA increased
from 0 to 4 days after treatment and then decreased until 10 days after treatment. The
PA treatment somehow decreased the TA content starting at 4 days after treatment. The
TSS/TA ratio dropped from 17 to 6.2 in control fruit, while dropping from 17 to 7.5 or 7.8 in
0.2% PA and 0.4% PA-treated fruit (Table 1). The total flavonoid content (TFC) and total
phenolic content (TPC) of the fruit in each comparison group showed a sharp reduction
from 0 d to 1 d and then underwent a gradual increase from 1 d to 10 d after treatment.
Eventually, the TFC and TPC reached a similar level and displayed no obvious change in
each treatment (Table 1).
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PAs repressed the a* value. (D) Change in the b* value under the treatment of PAs. (E) PA treatment 
delayed the decrease in fruit firmness. All data are presented as mean values ± standard deviation. 
Mean values were obtained from three independent biological replicates. The lowercase letters in-
dicate significant difference based on the LSD multiple test at p ≤ 0.05 level. 
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Figure 1. PA treatment affected strawberry ripening. (A) PA treatment delayed strawberry coloring.
(B) Exogenous PAs maintained the L* value of strawberry fruit during postharvest ripening. (C) PAs
repressed the a* value. (D) Change in the b* value under the treatment of PAs. (E) PA treatment
delayed the decrease in fruit firmness. All data are presented as mean values ± standard deviation.
Mean values were obtained from three independent biological replicates. The lowercase letters
indicate significant difference based on the LSD multiple test at p ≤ 0.05 level.

Table 1. Effects of PA treatment on fruit TSS, TA, TPC, and TFC. The values are presented as
mean ± standard deviation. The lowercase letters indicate the statistical differences at p ≤ 0.05
level. TSS: total soluble solids, TA: titratable acidity, TPC: total phenolic content, TFC: total
flavonoid content.

Treatment 0 d 1 d 4 d 7 d 10 d

TSS (%)
CK 7.69 ± 0.60 a 7.29 ± 0.89 ab 6.63 ± 0.74 cd 5.74 ± 0.55 e 5.22 ± 0.34 f

0.2% 7.69 ± 0.60 a 6.43 ± 0.57 cd 6.79 ± 0.48 bc 6.20 ± 0.41 de 5.20 ± 0.36 f
0.4% 7.69 ± 0.60 a 6.69 ± 0.50 cd 6.31 ± 0.72 cd 5.7 ± 0.59 de 5.99 ± 0.66 de

TA (%)
CK 0.45 ± 0.04 h 0.67 ± 0.07 fg 0.91 ± 0.10 a 0.82 ± 0.09 bc 0.84 ± 0.04 b

0.2% 0.45 ± 0.04 h 0.61 ± 0.07 g 0.73 ± 0.03 de 0.71 ± 0.03 def 0.69 ± 0.04 ef
0.4% 0.45 ± 0.04 h 0.71 ± 0.08 def 0.75 ± 0.06 de 0.70 ± 0.02 ef 0.77 ± 0.03 cd

TPC (g·kg−1)
CK 99.06 ± 8.54 bcd 58.60 ± 21.84 e 83.05 ± 31.52 bcde 98.22 ± 22.28 b 127.44 ± 29.10 a

0.2% 99.06 ± 8.54 bcd 82.41 ± 15.83 bcde 64.90 ± 8.99 de 90.34 ± 15.41 bc 127.96 ± 46.88 a
0.4% 99.06 ± 8.54 bcd 61.39 ± 8.44 e 68.50 ± 5.02 cde 79.08 ± 12.53 bcde 129.96 ± 44.30 a

TFC (g·kg−1)
CK 426.54 ± 16.30 a 322.53 ± 23.47 d 386.24 ± 37.25 ab 391.15 ± 24.32 a 412.54 ± 13.13 a

0.2% 426.54 ± 16.30 a 344.82 ± 13.15 cd 333.15 ± 24.30 cd 350.92 ± 84.88 bcd 402.01 ± 37.91 a
0.4% 426.54 ± 16.30 a 329.13 ± 13.17 cd 379.16 ± 15.56 abc 379.56 ± 21.97 abc 396.44 ± 84.10 a
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2.3. In Vivo PA and Anthocyanin Content

PA content in control fruit decreased after treatment, whereas exogenous PA treatment
effectively delayed the decline in PA content (Figure 2A). In the 0.2% PA-treated fruit, PA
content first increased from 0 d and peaked at 4 d, and then decreased to a level around
two times higher than that in control fruit. However, in the 0.4% PA-treated fruit, PA
content slightly increased from 0 d to 1 d after treatment, then decreased until reaching 7 d.
Eventually, the PA content sharply increased and peaked at 10 d, which exhibited a level
about three times higher than that in control fruit.
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Figure 2. PA content and anthocyanin content in PA-treated and untreated fruit. (A) Change in
PA content after the exogenous treatment. (B) Total anthocyanin content in the PA-treated and
untreated fruit. (C,D) Content of the main anthocyanin components, Cy3G (cyanidin 3-glucoside)
and Pg3G (pelargonidin 3-glucoside), in the PA-treated fruit compared to the control. (E) HPLC
peaks of 0.2% PA-treated sample at 7 d. (F) HPLC peaks of anthocyanins standards. The peaks with
retention time of around 11.5 and 12.2 min indicate the Cy3G and Pg3G, respectively. All data are
presented as mean value ± standard deviation. Mean values were obtained from three independent
biological replicates. The lowercase letters indicate a significant difference based on LSD multiple
test at p ≤ 0.05 level.

The two main anthocyanins, cyanidin 3-glucoside (Cy3G) and pelargonidin 3-glucoside
(Pg3G), were measured by the HPLC method. It was suggested that anthocyanins started
to accumulate at 4 d or 7 d after detachment in the control or PA-treated fruit (Figure 2B),
indicating that exogenous PAs delayed the coloration of strawberry fruit. At 10 d after
treatment, the control fruit accumulated the highest level of anthocyanins, followed by
0.2% and 0.4% PA-treated fruit. Furthermore, as shown in Figure 2C, the Cy3G content
was distinctly higher in control fruit than that in 0.4% PA-treated fruit, while it showed
no significant difference between the control and 0.2% PA-treated fruit. For the Pg3G
content (Figure 2D), the fruit in the control group contained the highest level, followed by
0.2% and 0.4% PA treatment, except at 7 d, at which no significant difference was found
between 0.2% and 0.4% PA-treated fruit. A representation of the HPLC peaks is shown in
Figure 2E,F.

2.4. PA treatment Altered ABA and Sugar Content

As shown in Figure 3A, the ABA content exhibited a general upward trend in both
control and PA-treated fruit. Specifically, it sharply increased and reached a peak at 4 d,
and then slightly decreased in control fruit. Meanwhile, a quick increase in ABA content
from 0 d to 1 d after PA treatment was found. Under 0.4% PA treatment, ABA content kept
increasing from 0 d and peaked at 7 d, followed by a slight decrease from 7 d to 10 d after
treatment. In the 0.2% PA-treated fruit, ABA content gradually increased from 0 d to 10 d.
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The control and 0.2% PA-treated fruit had similar ABA level, while 0.4% PA-treated fruit
had higher ABA content from 4 d to 10 d (Figure 3A).
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All data are presented as mean values ± standard deviation. Mean values were obtained from three
independent biological replicates. The lowercase letters indicate significant difference based on LSD
multiple test at p ≤ 0.05 level.

By contrast, the soluble sugars, including sucrose, fructose, and glucose, presented sim-
ilar downward trends after PA treatment. In particular, the sucrose content in control fruit
was lower than that in 0.2% PA- and 0.4% PA-treated fruit from 0 d to 4 d (Figure 3B), which
could be possibly a result of the potential repressing effect on the sucrose synthesis genes,
such as sucrose synthase or sucrose phosphate synthase, at 10 d after treatment. However,
no distinctive accumulation of sucrose at 7 d and 10 d in control and 0.2% PA-treated fruit
was found. Eventually, 0.4% PA-treated fruit showed a lower sucrose level than control
and 0.2% PA-treated fruit. In addition, the fructose showed a similar decrease trend in
control and PA-treated fruit from 0 d to 4 d, while a different trend was observed afterwards
(Figure 3C). A continuous decrease and slight increase from 4 d to 10 d after treatment
was observed in control and PA-treated fruit respectively. At 10 d, 0.4% PA-treated fruit
accumulated the highest fructose level, followed by 0.2% PA-treated and control fruit. Simi-
larly, the glucose content constantly decreased from 0 d to 10 d in control fruit (Figure 3D).
However, it rapidly decreased from 0 d to 1 d or 4 d in 0.4% or 0.2% PA-treated fruit, and
thereafter slowly decreased in 0.4% PA-treated fruit but maintained at a relatively stable
level in 0.2% PA-treated fruit. It was significantly higher in PA-treated fruit than in control
fruit at 10 d after treatment (Figure 3D).

2.5. PAs Inhibited Anthocyanin-Related Gene Expression at the Key Point for Fruit Coloring

Exogenous PAs altered the expression patterns of anthocyanin- and PA-related genes
(Figure 4). Compared with the control, the transcript levels of the evaluated anthocyanin-
related genes, including phenylalanine ammonia lyase (PAL), chalcone synthase (CHS),
flavonoid 3′-hydroxylase (F3′H), dihydroflavono-4-reductase (DFR), anthocyanidin syn-
thase (ANS), UDP-glucose flavonoid-3-O-glycosyltransferase (UFGT), and MYB10, were
repressed at 4 d after the 0.4% PA treatment, upon which the anthocyanins started to
accumulate (Figure 1). Thereafter, the relative expression of F3′H, ANS, UFGT, and MYB10
increased to a higher level at 7 d and 10 d; transcript abundances of PAL and CHS reached
to a higher level at 7 d and then decreased to a lower level again at 10 d; the DFR expression
rose to a higher level until 10 d after treatment comparing to the control. The expression
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of cinnamate 4-hydroxylase (C4H) and glutathione transferase (GST) did not show obvi-
ous change at 4 d after treatment but exhibited significantly higher levels at 7 and 10 d
after treatment, which might be related to the lignin biosynthesis and PA transportation.
Notably, the expression of 4-coumarate:coenzyme A ligase (4CL) gradually decreased in
the control fruit during ripening, while the opposite trend was observed in the PA-treated
fruits. Thus, 4CL showed a significantly higher expression level in PA-treated fruits at 4, 7,
and 10 d. Moreover, the expression of LAR was also down-regulated at 4 d and significantly
up-regulated at 10 d in the PA-treated fruit compared to that in the control fruit. The
expression of LAR showed a similar level at 1 d and 7 d in PA and control fruit. However,
the ANR expression was remarkably increased by 0.4% PA treatment at 4 d, while it was
similar at 1 d, 7 d, and 10 d after treatment (Figure 4).
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Int. J. Mol. Sci. 2023, 24, 3139 8 of 17

2.6. PAs Affected the Expression of Firmness-Related Genes

In the control fruit, the expression of the pectate lyases (PL) gene sharply decreased
at 4 d, and then increased at 7 d and 10 d to a similar level to 1 d. In contrast, it showed a
gradual increase trend of PL expression under 0.4% PA treatment. Except for 1 d, PL gene
expression was increased by PA treatment at 4, 7 and 10 d (Figure 5). Polygalacturonases
(PG1 and PG2) displayed similar decrease trends in the control fruit, while opposite trends
were observed in the 0.4% PA-treated fruit from 1 d to 10 d (Figure 5). The relative
expression levels of PG1 and PG2 were lower at 1 d and 4 d but higher at 7 d and 10 d
in the PA-treated fruit compared to the control. The expression of pectin methylesterase
(PME38) exhibited a lower level under PA treatment from 1 d to 7 d, while exhibiting a
higher level at 10 d. For the expression of PME39, it was inhibited at 1 d after PA treatment,
while, thereafter, although no statistical changes were observed, it showed a higher level in
PA-treatment fruit at 4, 7 and 10 d compared to that in the control fruit (Figure 5).
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Furthermore, cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl CoA reductase
(CCR) expression showed no significant change at 1 d, but significant repression at 4 d
and induction at 7 d and 10 d, respectively in the PA-treated fruit. The caffeic acid O-
methyltransferase (COMT) expression showed remarkable up-regulation at 7 d after PA
treatment, while it showed no significant change at 1 d, 4 d and 10 d in the 0.4% PA-treated
fruit (Figure 6). Likely, no evident change in the expression of coumarate 3-hydroxylase
(F5H), caffeoyl CoA O-methyl transferase (CCoAOMT), and coumarate 3-hydroxylase
(C3H) at 1 and 4 d after PA treatment was found. However, noticeable up-regulation of
the expression of F5H, C3H and CCoAOMT occurred at 7 and 10 d after PA treatment. For
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the expression of HCT, a significantly higher level was observed at 1, 7 and 10 d after PA
treatment, while a similar level was found at 4 d after PA treatment (Figure 6).
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3. Discussion

The strawberry is a highly demanded edible fruit, cultivated and consumed world-
wide. It is highly favored for its nutritional and medicinal properties. However, strawberry
fruits develop and ripen very rapidly, especially in high-temperature environments. It
is well known that when the temperature is high, strawberry ripening and coloring oc-
cur very quickly, and thus produce smaller fruit with lower quality [30]. Slowing down
ripening during periods of heat is necessary, which will benefit the strawberry’s fruit
quality. Nowadays, a series of methods have been developed to delay the ripening of
strawberries, such as the application of phytohormones [6,7], 5-azacytidine [31], nitric
oxide [32], and antioxidants [14–16]. In this study, we found that exogenous application of
PAs significantly slowed down the softening and coloring of strawberries (Figure 1). Our
results here offer a potentially efficient and safe method to delay strawberry ripening in
strawberry production. PAs are the second-most abundant polyphenols after anthocyanins
in strawberry fruit [33]. They are not only considered beneficial to human health, but
also may act both as antifungal compounds and antioxidants to extend fruit shelf life and
enhance fruit quality preservation [18,34]. In this study, exogenous PA infiltration delayed
the ripening process of strawberries by slowing down the softening and coloring (Figure 1),
suggesting a potential new role of PAs involved in fruit ripening.
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Strawberry fruit ripening is a complex, genetically and environmentally regulated pro-
cess. ABA and sucrose were suggested as the main regulators of strawberry fruit ripening.
Exogenous ABA and sucrose application largely accelerate strawberry ripening [11]. To esti-
mate whether exogenous PAs delay strawberry ripening by participating in ABA or sucrose
signaling, the ABA and sucrose content was detected. In our results, 0.2% PA treatment
did not change, while 0.4% PA up-regulated, the ABA content significantly (Figure 3A),
making it clear that PAs in certain concentrations could promote ABA production. This is
supported by previous studies, which have claimed that PAs promoted ABA biogenesis in
Arabidopsis thaliana [22]. Meanwhile, our results show that PA treatment increases sucrose
content (Figure 3B), which gave us a clue that PAs slow down strawberry fruit ripening,
but not by suppressing the ABA and sucrose production.

A series of biochemical and physiological changes takes place during the ripening
process. First of all, the degree of fruit coloring is an important index of fruit ripening, and
usually expressed in numerical terms along the L*, a*, and b* axes (from white to black,
green to red, and blue to yellow, respectively). According to our results (Figure 1), the L*,
a*, and b* values were significantly altered by PA treatment, for which, L* and b* values
were higher, while the a* value was lower in PA-treated fruit than that in the control fruit
during the ripening process. This result indicates a higher brightness but lower redness,
and again clearly suggests a delay in fruit coloration of PA-treated fruit. Consistently
with this, our results further exhibited an obvious repression of total anthocyanin content
in both 0.2% and 0.4% PA-treated fruit (Figure 2B), because the red color of strawberry
fruit is the result of anthocyanin accumulation. In addition, the Pg3G and Cy3G are
commonly regarded as two major anthocyanins in strawberries; the Pg3G occurs in a
higher amounts than Cy3G and accounts for around 70% of total anthocyanins [35]. The
HPLC results in the present study also showed that under 0.2% PA treatment, only Pg3G
was significantly changed, while the Cy3G showed no change (Figure 2C,D), suggesting
0.2% PAs repressed the fruit coloration mainly by suppressing Pg3G biosynthesis. At the
molecular level, anthocyanin accumulation is regulated by the expression of biosynthetic
genes and the major regulator MYB10 [36]. Most of these genes are barely expressed
in the early developmental stage and then sharply increase at the turning stage, upon
which the anthocyanins start to accumulate [37]. Similarly, in our results (Figure 4), most
of the anthocyanin related genes, such as F3′H, DFR, ANS, UFGT and MYB10, largely
increased form 1 d to 4 d in the control fruit, resulting in color formation at 4 d. In
contrast, in the PA-treated fruit, the increase in gene expression, including F3′H, DFR
and ANS, was delayed to 7 d or 10 d after treatment. Although the expression of UFGT
and MYB10 significantly increased at 4 d compared to 1 d, both of the highest levels
were detected at 10 d after PA treatment. Structural genes play an important role in
flavonoid and anthocyanin biosynthesis. For examples, the antisense repression of CHS
could lead to colorless strawberry fruit [38]; FaF3′H rarely expressed during strawberry fruit
development period, and the decreased FaF3′H gene expression blocks Cy3G accumulation
in red-flesh strawberries [39]; and the lower expression of ANS gene has been suggested
to contribute to the white color of Chilean strawberries [40]. Therefore, the repression
of ANS, F3′H, DFR, and CHS expression at 4 d after PA treatment, but a subsequent
increase in these genes’ expression at 7 d after treatment, might provide one of the possible
reasons that PA treatment delayed anthocyanin accumulation from 4 to 7 d. Otherwise,
the upstream gene 4CL was largely induced from 4 to 10 d after PA treatment (Figure 4),
which might contribute to the precursors for the downstream lignin biosynthesis pathway
and fruit firmness, because anthocyanin and lignin biosynthesis share the same upstream
phenylpropanoid pathway.

On the other hand, the apparently higher PA content might contribute to the low an-
thocyanins in the PA-treated fruit as well (Figure 2A). Since the PAs and anthocyanins were
synthesized by competitive branches derived from the common phenylalanine pathway,
it was previously suggested that overexpression of the regulators of PA biosynthesis in
strawberries resulted in a loss of red coloration in the flesh, accompanied with an increased
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PA content [41], while the silencing of the glucosyltransferase for anthocyanidins FaGT1 re-
sulted in a redirection from anthocyanins to PAs in the flavonoid pathway [42]. Moreover, a
previous study has suggested that silencing of ANR, the key enzyme for PA biosynthesis in
strawberries, lead to a decrease in PA content but to an increase in anthocyanin production
at the early fruit-development stage [43]. In contrast, our results show a remarkable in-
crease in ANR expression in the PA-treated fruit (Figure 4), and it is reasonable to speculate
that exogenous PA treatment induced the ANR expression, which therefore up-regulated
the endogenous PA content. The results also show that there was an increase after 7 d
after 0.4% PA treatment in PA content (Figure 3). We speculate that the reason why the PA
content increased at 10 d after treatment is that there was an increase in LAR expression at
that time. As previously suggested, LAR is one of the key enzymes for PA biosynthesis; the
expression pattern of LAR genes is consistent with the PAs in strawberries [44]. Overex-
pression of LAR genes could greatly increase the PA content [45,46]. In the meantime, it has
been previously reported that overexpression of the CHS gene resulted in co-suppression
of homologous genes in petunias, and this co-suppression is related to an RNA silencing
mechanism [47]; overexpression of apple ANR genes inhibited expression of both CHI and
DFR genes, leading to loss of anthocyanin, which might be due to the interactions among
enzymes involved in the flavonoid biosynthetic pathway [48,49]. Similarly, in this study,
the up-regulation of ANR might have induced the down-regulation of ANS, DFR, and F3′H
at 4 d after PA treatment and correspondingly delayed the accumulation of anthocyanins
in strawberry fruit. This result is similar to the result in bananas [26].

Furthermore, fruit softening, another one of the most important ripening traits, is
mainly caused by cell wall disassembly and degradation. Pectins represent approximately
60% of the strawberry cell wall [50]; thus, to a great extent, loss of fruit firmness is due
to the action of enzymes involved in pectin degradation, such as PG, PL, PME, XYL, EXP,
and TFs, including MYB79 and RIF. Among these enzymes, PME provides the hydrolysis
substrate for PG and functions synergistically with the PG enzyme to soften fruit [51]; the
expression level of FcEXP1, FcEXP2, and FcEXP5 was found to be correlated with fruit
firmness reduction [52]. Our results show that the firmness loss of control fruit started at
1 d, while under PA treatment, the firmness decrease began at 4 d (Figure 1E), implying the
delay of firmness loss with PA treatment. Deeply, we found that the expression of PL, EXP2,
PG2, and PME39 was repressed only at 1 d after PAs treatment; the transcript level of PG1
was inhibited at 1 d and 4 d after PAs treatment; and PME38 expression was suppressed
at 1, 4, and 7 d after PAs treatment (Figure 5). This result indicates that PG1 and PME38
might function as important key genes affecting strawberry firmness, as previous studies
suggested [53,54]. Furthermore, the RIF encoding a NAC TF and MYB79 was showed to
positively regulate strawberry fruit ripening [55,56]. Our result show that the expression of
RIF was repressed at 1 and 4 d after PA treatment, but increased at 7 d after PA treatment
(Figure 5), again indicating that in the PA-treated fruit, fruit ripening was delayed from 4 to
7 d after treatment. The expression of MYB79 showed no distinct change at 1 and 4 d but
significant increase at 7 and 10 d, indicating that RIF might play the major role in controlling
strawberry fruit ripening; MYB79 also contributes to strawberry fruit ripening. In addition,
lignin is one of the polymers that strengthen plant cell walls and contribute to fruit firmness.
The relative expression levels of key structural genes involved in the lignin biosynthesis
pathway were examined. It has been suggested that the expression of genes CAD and CCR
strongly influences fruit firmness [57]. Likewise, among the detected lignin biosynthetic
genes in this study, CAD and CCR were found to be significantly inhibited at 4 d after
PA treatment; however, most of the other involved genes such as HCT, F5H, C3H, and
CCoAOMT expressions were not significantly altered at 1 and 4 d but significantly increased
at 7 and 10 d after PA treatment (Figure 6). This probably indicates higher lignin levels and
explains the decrease in firmness loss in the PA-treated fruit during strawberry ripening.
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4. Materials and Methods
4.1. Plant Materials and Treatment

Strawberry (Fragaria × ananassa cv. Benihoppe) fruits were detached from plants at
the large green stage from a greenhouse located at Sichuan Agricultural University and
transported to the lab immediately. Fruits were selected for uniformity in size and a lack
of defects. To keep the water needed for growth, the fruit stalk was enclosed in absorbent
cotton and supplied with water each day during the experiment. At least 40 fruits were
injected with 1 mL PAs (0.2% and 0.4% m/v) at the fruit top using a syringe, and another
40 fruits were injected with 1 mL sterile water and used as a control. The injected fruits were
placed into an incubator with 25/21 ◦C (day/night), 16/8 h photoperiod, and 85–90% RH
for 10 d. The injection parts of a random 10 fruits were sampled at 1, 4, 7, and 10 d after
treatment and then stored at −80 ◦C for further use. The fruit in the control group (CK)
turned to fully red-ripe in 10 days after treatment; to keep the same time period as in the
control, we only sampled fruit and detected the physiological changes within 10 days. At
least 3 fruits were mixed as one biological replicate, and 3 replicates were detected in total.

4.2. Skin Color, Fruit Firmness, TSS, and TA Assays

The fruit skin color was evaluated with a CR-400 chromometer (Konica Minolta, Japan)
and represented by L*, a*, and b* values. Two parts of the fruit sides displaying obvious
coloring delay were used for the color measurement. Fruit firmness was determined
two times on each side of the fruit with a Texture Analyzer TA XT2i (Stable Micro systems,
Godalming, Surrey, UK) with a 5 mm diameter cylinder needle. TSS was expressed as
percentage and detected using a digital refractometer (PAL-1, Atago, Tokyo, Japan). TA
content was presented as citric acid percentage and estimated by titrating the fruit extract
against 0.1 M NaOH.

4.3. TPC and TFC Evaluations

The TPC and TFC was determined using the Folin–Ciocalteu and aluminum tri-
chloride method, respectively, according to previous studies [58,59]. Briefly, around 1 g
strawberry samples were extracted in 80% acetone; after standing one hour in room
temperature, the mixtures were centrifuged and the supernatant was collected and used
for measurement. For TPC detection, 250 µL of the supernatant and 1200 µL of 10% Folin–
Ciocalteu reagent (Sigma-Aldrich, St. Louis, MO, USA) were mixed and left to react for
5 min. A solution of 7% sodium carbonate was added and incubated for 30 min at 37 ◦C to
neutralize the mixture. A calibration curve was made by using quercetin as the standard.
The absorbance was determined at 415 nm using a UV/vis spectrophotometer. The results
were expressed as milligram quercetin equivalent per gram of fresh weight (FW). For TFC
determination, 350 µL of the extract was mixed with 150 µL of 5% NaNO2, followed by
incubation for 6 min. Then, 0.3 mL of 10% aluminum tri-chloride was added, and the
mixture was allowed to stand for 5 min. Finally, 1 mol NaOH was added to the mixture
and adjusted to 2 mL with distilled water. The absorbance was measured at 650 nm using a
UV/vis spectrophotometer. Rutin was used as a standard for constructing the calibration
curve. Results were presented as mg of rutin equivalents per g of FW.

4.4. Measurement of ABA Content

ABA content was assayed with an Elisa ABA determination Kit (Mlbio, shanghai,
China). Strawberry fruit samples of approximately 1 g were extracted with a 9 mL PBS
buffer (pH 7.2) and centrifuged at 10,000× g for 20 min. The supernatant was used for ABA
determination, following the manufacturer’s protocol.

4.5. Sugars Detection

Soluble sugars, including sucrose, fructose, and glucose, were evaluated using the
modified high-performance liquid chromatography (HPLC) method as previously de-
scribed [60]. An approximately 0.3 g fruit sample was extracted in 80% ethanol; after
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standing for 30 min, the mixture was centrifuged for 10 min. The extraction was repeated
twice. The supernatant was collected and supplemented to 10 mL by adding sterile water.
Then, 2 mL of the supernatant was subjected to a water bath for the evaporation of ethanol.
After that, 1 mL sterile water was added and centrifuged for 10 min; the supernatant
was filtered with a 0.22 µm membrane and subjected to an HPLC analysis system with a
refractive index detector. The separation was achieved using a Platinum Amino column
(5µm, 250 mm × 4.6 mm i.d.; Silgreen, Beijing, China). HPLC analysis was carried out by
isocratic elution for 20 min; CAN:H2O (80:20, v/v) was used as the mobile phase, the flow
rate was set as 1.2 mL/min, and the injection volume was 10 µL.

4.6. PAs and Anthocyanins

An improved DMAC (4-dimethylaminocinnamaldehyde) method was employed to
quantify PA content [61]. In brief, approximately 1.5 g fruit samples were extracted with
extraction solution consisting of acetone: water: acetic acid = 150:49:1 (v/v/v). After
reaction for 1 h, the mixture was centrifuged for 20 min, the supernatant was diluted with
80% ethanol and added to the DMAC solution for quantification at 640 nm using a UV/vis
spectrophotometer. Total PA content was expressed as grams of PA per gram of FW.

Anthocyanins were detected by the HPLC method as previously described [62]. In
summary, 0.2 g fruit samples were extracted in 2 mL of 1% HCL in methanol for 48 h at 4 ◦C
in darkness. The extraction was repeated once; the clear liquid was collected and filtered
using a 0.22 µm membrane. A 10 µL aliquot of the sample was subsequently subjected to
HPLC analysis. Compound separation was carried out with an ODS C18 column (5µm,
250 mm × 4.6 mm i.d., Silgreen, Beijing, China). Methanol and 5% formic acid were used
as mobile phases A and B; a linear gradient (95–0%) of A in B was performed for 20 min,
followed by 100% B for 5 min. The flow rate was set as 1 mL/min, and chromatograms
were recorded at 510 nm. Anthocyanins were quantified by comparing them with external
standards. Total anthocyanins were calculated by the sum of Pg3G and Cy3G.

4.7. Gene Expression

Total RNA was isolated according to the improved cetyltrimethylammonium bromide
(CTAB) method [63]. Frozen fruit samples were finely ground in liquid nitrogen, and
extracted with a 3% CTAB extraction solution, containing 100 mM Tris-HCl, 25 mM EDTA,
and 2 M NaCl. After a vortex of 3 min, the mixture was placed into a water bath at 65 ◦C
for 30 min and subsequently centrifuged at 4 ◦C for 10 min. The supernatant was collected
into a new clear tube, an equal volume of chloroform was added, it was mixed very well for
5 min, and then centrifuged for 10 min. The extraction with chloroform was repeated three
times, and finally the supernatant was precipitated at 4 ◦C for 1 h using 8 M LiCl. After
centrifuging for 10 min and washing with 75% ethanol twice, the RNA pellet was dissolved
in DEPC-treated water. The concentration and integrity were measured using a Nano drop
and gel electrophoresis. First-strand cDNA was synthesized using a PrimeScript RT reagent
Kit (TAKAR, Dalian, China), following the manufacture’s steps.

Quantitative real time PCR (qPCR) reactions were performed in a Bio-Rad 96-well
plate system. A total of 10 µL of solution containing 1 µg cDNA, 5 µL SYBR Green PCR
Master Mix (TAKARA, Dalian, China), and 10 mM primers was mixed for reaction. The
PCR program was set to an initial denaturation at 95 ◦C for 5 min, denaturation 15 s at
95 ◦C, annealing 20 s at 58 ◦C, extension 30 s at 72 ◦C, and a melting curve from 60 to
95 ◦C at 0.1 ◦C/s was recorded. Forty reaction cycles were set. The 26S-18S interspacer
RNA was selected as the internal control for normalization. At least two well replicates
were performed for each sample, and threeindependent cDNA samples were used as three
biological replicates. The primers of flavonoid-related and housekeeping genes were the
same as used in a previous study [64]; other primers were designed using NCBI online tool;
all primers are listed in Supplementary Table S1.
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4.8. Statistical Analysis

The relative expression levels of detected genes were calculated by the 2−∆∆CT method;
the 26S-18S interspacer RNA was applied as a reference gene to normalize the expression
of the target gene. Experimental data were presented as mean values of three replicates
± standard deviation. Statistics were calculated using the one-way ANOVA method with
IBM SPSS Statistics software (v 23.0). The differences between the groups were determined
by LSD multiple tests at the significance level of p ≤ 0.05.

5. Conclusions

The results of this study show that PAs delayed the decrease in strawberry fruit
firmness but increased ABA and sucrose content during ripening. Moreover, no obvious
regular change patterns of TSS, TPC, and TFC, but a lower TA content, resulted from PA
treatment. In addition, PA treatment induced the expression of ANR, one of the key genes
for PA biosynthesis, and in turn, increased the endogenous PA content. Furthermore, the
repression of anthocyanin- and fruit-firmness-related genes by exogenous PAs in the key
stage (4 d after treatment, upon which anthocyanins started to accumulate and initiate fruit
firmness) could delay the accumulation of anthocyanins and fruit firmness loss during fruit
ripening. These findings could be helpful for a better understanding of the biological role
of PAs and provide a new strategy to regulate strawberry ripening.
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