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Abstract: Immunotherapy constitutes a paradigm shift in cancer treatment. Its FDA approval for
several indications has yielded improved prognosis for cases where traditional therapy has shown
limited efficiency. However, many patients still fail to benefit from this treatment modality, and the
exact mechanisms responsible for tumor response are unknown. Noninvasive treatment monitoring
is crucial for longitudinal tumor characterization and the early detection of non-responders. While
various medical imaging techniques can provide a morphological picture of the lesion and its
surrounding tissue, a molecular-oriented imaging approach holds the key to unraveling biological
effects that occur much earlier in the immunotherapy timeline. Magnetic resonance imaging (MRI) is a
highly versatile imaging modality, where the image contrast can be tailored to emphasize a particular
biophysical property of interest using advanced engineering of the imaging pipeline. In this review,
recent advances in molecular-MRI based cancer immunotherapy monitoring are described. Next, the
presentation of the underlying physics, computational, and biological features are complemented by
a critical analysis of the results obtained in preclinical and clinical studies. Finally, emerging artificial
intelligence (AI)-based strategies to further distill, quantify, and interpret the image-based molecular
MRI information are discussed in terms of perspectives for the future.

Keywords: immunotherapy; magnetic resonance imaging (MRI); molecular imaging; treatment
response; cancer; oncolytic virotherpay; artificial intelligence (AI); apoptosis; chemical exchange
saturation transfer (CEST); magnetic resonance spectroscopy (MRS)

1. Introduction

In recent decades, survival rates for several cancer types have improved through
massive investments in research, earlier and wider population screening, and the discovery
of new therapeutics [1]. However, cancer remains a devastating disease that still constitutes
the first or second leading cause of death in most countries worldwide [2]. While surgical
tumor resection is the oldest and most intuitive line of treatment, it can be a traumatic
and stressful event that has undesirable effects on a patient's quality of life. Surgical
intervention can damage the surrounding healthy tissue and often leaves residual tumor
cells behind [3–5]. As a result, further treatment modalities (particularly radiotherapy and
chemotherapy) are often administered instead, before, or following the surgery [6–8].

Radiotherapy generates free radicals and can cause direct DNA damage aimed at de-
priving cells of their ability to proliferate and promoting cell death. One of the advantages
of radiotherapy is that healthy cells can regenerate and survive radiotherapy-associated ef-
fects better than tumor cells [8]. This case-by-case tumor cell-radiation interaction depends
on a variety of biological factors (such as intratumoral oxygen pressure and growth factor
expression) [9] such that successful tumor response will lead to apoptosis, autophagic cell
death, and necrosis [10,11]. The main challenge remains to further reduce risks to healthy
cells, and overcome the inherent radioresistance of cancer types such as melanoma and
glioblastoma [12].
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Chemotherapy is the main treatment in advanced-stage disease (when no other ap-
proach is adequate), as pre-treatment for localized disease, or in combination with surgery
or radiation [13]. Cytotoxic medicine primarily disrupts the cell cycle and induces apoptosis
in fast-dividing cells [7]. Although new targeted chemotherapeutic drugs are under devel-
opment [14–17], there is still a clear need to further reduce host tissue damage and mitigate
chemotherapy-induced side effects (ranging from vomiting, dizziness, and depression to
long-term nerve damage, kidney and cardiac pathologies, and secondary cancer) [18,19].

The recent formal regulatory approval of immunotherapy for several indications
marked a major milestone in long-standing efforts to mitigate damage to healthy cells,
and the struggle to improve cancer prognosis [20]. Compared to chemotherapy, clinical
immunotherapy trials have reported improved outcomes and better tolerated side effects
in challenging cancers [21]. Immunotherapy recruits the patient’s immune system to fight
cancer via immune checkpoint blockade therapy [22], chimeric antigen receptor (CAR) T
cell technology [23], neoantigens and cancer vaccines [24,25] or immunogenicity generating
oncolytic viruses (OVs) [26–29].

Despite its promises, immunotherapy does not work for all patients, and the fac-
tors affecting individual patient responses are unknown [30]. Given these uncertainties,
the tumor treatment response needs to be monitored longitudinally [31]. If a tumor is
irresponsive, new treatment routes need to be considered as soon as possible, bearing in
mind that the false classification of a tumor as non-responsive may result in unnecessary
administration of additional chemotherapy or radiation. In addition to routine patient care,
treatment response characterization is vital for determining the outcomes and endpoint
of new clinical trials and defining appropriate trial candidates (e.g., when a progressive
tumor constitutes an inclusion/exclusion criterion).

The most accurate way to assess treatment response is histological analysis of the
tumor biopsy [32,33]. However, this approach has a number of drawbacks: (1) It is invasive
by nature and therefore poses an inherent risk of complication [34], especially when the
tumor is located in hard-to-reach regions or near a sensitive functional tissue. (2) Treatment
response dynamics mandate frequent and longitudinal sampling which is difficult to
achieve through biopsy [35]. (3) The tumor tissue is often spatially inhomogeneous and
therefore prone to misrepresentation when a single biopsy site is analyzed [32,36,37].

These key shortcomings have contributed to the preference of noninvasive medical
imaging in cancer treatment monitoring [38]. Tumor shrinkage is an intuitive response
biomarker, and is the main pillar of many protocols for assessing the response of solid
tumors [39,40]. However, these protocols typically rely on the subjective measurement of
the tumor diameter in one or more axes, resulting in large inter-observer variability [41–43].
While computer algorithms for tumor volume detection or automatic diameter calculation
can improve the reproducibility of morphometry-based treatment response analysis [44], it
may take several weeks (or months) for morphometric changes to be detectable. Imaging
of molecular properties, on the other hand, constitutes a potential window to a variety of
biological processes (such as altered metabolism, cell proliferation, and death), which could
serve as powerful treatment response biomarkers at a far earlier stage [45,46].

Clinically relevant molecular information can be obtained using a variety of imaging
modalities, including positron emission and single photon emission computed tomographic
imaging (PET and SPECT), ultrasound, optical imaging, X-ray computed tomography (CT),
and magnetic resonance imaging (MRI) [37,47–52]. The latter stands out due to several
characteristics: (1) It is an extremely versatile modality, where the image contrast can be
programmed to emphasize a variety of biophysical properties; (2) It provides excellent soft
tissue contrast, at any tissue depth; (3) It does not require the use of ionizing radiation;
(4) It can detect molecular-based phenomena using contrast enhancing materials (similar to
PET, SPECT, and ultrasound) but also via endogenous (injection-free) mechanisms.

The aim of this review is to provide an overview of molecular MRI-based methods for
cancer immunotherapy treatment response monitoring. The underlying physics, computa-
tional, and biological aspects of molecular MRI are detailed along with a critical analysis
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of the results obtained in preclinical and clinical studies. In particular, this includes the
management of pseudo-progressing tumors, a common imaging scenario with important
clinical implications, and oncolytic virotherapy, a treatment modality that may improve
tumor sensitivity to immune detection [26]. The final section discusses the state of the
art in artificial intelligence (AI)-based strategies to further distill, quantify, and interpret
image-based molecular MRI information, and then explores future perspectives.

2. Tumor Treatment Responses—Official Guidelines and Radiological Challenges

In the last four decades, several criteria have been put forward for treatment response
monitoring. In 1981, the guidelines provided by the World Health Organization (WHO)
mainly linked tumor shrinkage to treatment response [53]. Twenty years later, an interna-
tional collaboration of health entities from the United States, Europe, and Canada presented
more simplified, drilled-down criteria entitled RECIST, the response evaluation criteria in
solid tumors [54], where tumor size dynamics were still a key component. While CT was
the modality of choice in the original RECIST criteria, the updated RECIST 1.1 guidelines
included MRI to as another useful modality of choice [40].

The relatively high mortality, lack of sufficiently effective treatment, and the biological
complexity associated with brain cancer motivated McDonald et al. [55] to conceptualize
specific guidelines for gliomas, where the evaluation criterion was tumor size estimation
based on the contrast enhanced MRI or CT. However, this analysis failed to address several
radio-pathological considerations:

(1) The lack of a sufficiently specific treatment surrogate. Contrast enhancement in the
brain reflects the blood–brain barrier disruption that often occurs in gliomas, but can
also be caused by steroids, surgery, and ischemia [56];

(2) Its limited ability to detect pseudo-progression, a radiological phenomenon where
new or enlarged contrast-enhanced regions appear several months after the initiation
of therapy, erroneously indicating that the tumor persists. Pseudo-progression is
thought to affect 9–30% of all brain tumor patients [57] and typically originates from
temporarily increased vascular permeability, generated by tissue inflammation [58];

(3) Its limited ability to detect a pseudo-response, a radiological phenomenon where
a decrease in contrast enhancement is seen in the absence of an actual response
to therapy. This effect is commonplace in patients receiving antiangiogenic-based
medicine [59].

To tackle these pitfalls, the Response Assessment in Neuro-Oncology (RANO) working
group developed new criteria for high-grade [60] and low-grade [61] gliomas. The RANO
criteria suggested waiting longer before defining tumor status to account for potential
pseudo-progression and pseudo-response, and recommended basing the tumor analysis on
a combination of contrast-enhanced MRI with T2-weighted or fluid-attenuated inversion
recovery (FLAIR) images (see Section 3.1). The RANO-based categories are divided into
complete response, partial response, stable disease, and progressive disease [39].

The emergence of immunotherapy, crowned by its first success stories, and rapidly
followed by the proliferation of related clinical studies have gradually demonstrated that
this treatment modality is not associated with pseudo-response, but is highly prone to
pseudo-progression. Studies made it clear that immunotherapy-related pseudo-progression
is driven by unique biological mechanisms (Figure 1) and is characterized by different
temporal dynamics than chemo-radiotherapy [62]. Specifically, in both brain cancer and
melanoma patients, tumors were reported to grow or new lesions formed after the adminis-
tration of immunotherapy, such that a clear response was only visible months later [30,63].
Accordingly, the RANO group published specific criteria for the treatment response mon-
itoring of glioma following immunotherapy [62]. The main difference between these
criteria and many of the previously published RANO guidelines is the recommendation to
wait three additional months before reaching a conclusive response classification decision,
in the case where a radiological progression was observed in the six months following the
initiation of immunotherapy.
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Figure 1. A mechanistic illustration of immunotherapy induced pseudo-progression, where the
immune system response to treatment falsely appears in medical images as progressive cancer.
Initially, inactivated T cells (A) are reactivated (B) subsequent to the administration of immune
checkpoint inhibitors. This yields tumor cell death (C) and releases antigens which attract additional
infiltrating inflammatory cells (D). The tumor shrinkage then causes vascular tears and hemorrhage
(E), which is expressed as lesion edema (F). The combination of necrotic tumor cells (G), inflammation
(D), hemorrhage (E), and edema (F) is ultimately (and falsely) expressed as tumor progression when
examined using conventional clinical MRI. Reproduced from [64]. Copyright ©2019, Cancer Biology
& Medicine (CC BY 4.0 license).

Clearly, this change in guidelines is better suited to the inherent risk of pseudo-
progression effects in immunotherapy, but for true non-responding tumors, it can entail
heavy costs, during which long months are spent on an unsuitable therapeutic route (most
critically in glioblastoma, where the median survival time is only 15 months [65]).

Thus, overall, pseudo-progression is a major diagnostic obstacle with immediate im-
plications for the treatment route, and specific considerations for the assessment of the
immunotherapy response. While recent treatment monitoring criteria have clearly acknowl-
edged and accommodated pseudo-progression, current imaging protocol guidelines face
problems of accuracy and only allow for a relatively late determination of tumor status.

3. MRI of Cancer Immunotherapy Treatment Response

The challenges posed by immunotherapy response kinetics, the secondary biological
effects, and in particular pseudo-progression, point to the crucial need for an imaging
approach that can visualize the tumor microenvironment dynamics, the therapeutic agent
location, and the host tissue viability, as early as possible. This section aims to build an
ability to understand, evaluate, and critically discuss molecular MRI for immunotherapy
monitoring. To do so, it first outlines the basic principles of conventional MRI, the ad-
vantages of advanced (perfusion and diffusion) MRI, and its limitations. It then provides
an extensive review of recent progress in molecular MRI for immunotherapy treatment
response with representative examples. A general outline of this section as well as the main
MRI-based strategies for treatment monitoring are shown in Figure 2.
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Figure 2. MRI-based approaches for immunotherapy response monitoring. Conventional MRI may
detect morphometric changes, which appear at a relatively late stage (months after treatment initia-
tion). Advanced (perfusion and diffusion) MRI enables the detection of cellularity and vascularity-
related changes, which appear after weeks or months, without direct specificity to the immune
processes. Molecular MRI enables specific cell or virus tracking or the imaging of metabolism, thus
providing the earliest time window for immunotherapy response characterization.

3.1. Conventional MRI

The most commonly used MRI acquisition protocols are designed to highlight the
spatial differences in density and nuclear magnetic relaxation times of water protons.
Since the concentration of water molecules in the body can reach up to 55 M, and because
different tissue types (such as the brain gray and white matter) are characterized by specific
relaxation times, conventional MR images provide an excellent soft tissue contrast and a
direct way to detect anatomical abnormalities and morphological changes. By choosing
a particular set of acquisition parameters, in particular the echo and repetition times (TE
and TR, respectively), images that are mainly affected by the longitudinal or transverse
relaxation time (T1- and T2-weighted, respectively) can be produced. In the context of
cancer (and particularly gliomas), three more sequences are typically used: T2-weighted
FLAIR, which attenuates the signals stemming from the cerebrospinal fluid (CSF) [66]
and T2*-weighted gradient echo, which allows for the detection of hemorrhages, and post-
gadolinium-injection T1-weighted imaging.

Why is an exogenous contrast media needed? Although various tumor types may
be well-detected using natural (endogenous) T1 or T2-weighted imaging, there are many
others that are undetectable without contrast enhancement [67,68]. Gadolinium shortens
the T1 relaxation time in its nearby water molecules leading to brightened image regions
that reflect the accumulation of the contrast material. It thus facilitates the detection of the
blood-brain barrier disruption which often occurs in gliomas, as well as the leakier blood
vessels and their associated increased permeability, a common feature of solid tumors [69].

Unfortunately, post-gadolinium image enhancement is not reserved for gliomas or
tumor progression, and may also appear in a variety of other pathologies [70] as well as in
treatment-induced necrosis [71,72]. Many of these confounding effects present frequently
after immunotherapy, causing a potential pseudo-progression effect [64,71,73]. On the other
hand, up to one-third of malignant brain tumors do not enhance subsequent to contrast
agent injection [74]. Given the above limitations, it is clear that standard MRI sequences
are incapable of effectively and completely differentiating true from pseudo-effects at a
sufficiently early stage [60]. This accounts for the efforts to develop advanced, alternative
or complementary imaging techniques for treatment response monitoring.
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3.2. Advanced (Non-Molecular) MRI

T1- and T2-weighted imaging is the mainstay of any clinical MRI examination. How-
ever, it mostly reflects the tissue and tumor morphometry. Cellularity and vascularity are
two other physiological properties that undergo considerable changes in the course of
cancer treatment, but on a faster timescale. To identify these properties, advanced MRI
exploits their association with water diffusion and perfusion.

Diffusion weighted imaging (DWI) utilizes a set of time-dependent field gradients
to explore the mobility of water in a defined direction [75,76]. By applying a series of
linear algebra operations, a spatial map of the apparent diffusion coefficient (ADC) can
be calculated, where bright pixels represent fast diffusion (e.g., in the CSF and in regions
of edema and cystic necrosis) and dark pixels represent restricted diffusion. Given that
malignant tumors are highly cellular, low ADC values are typically associated with an
active high-grade disease [75,77]. Whereas the ADC metric is often used in clinical prac-
tice, other metrics for analyzing water diffusion have been suggested, such as diffusion
kurtosis imaging (DKI) [78]. DKI can be calculated from standard DWI-acquired data, af-
ter additional post-processing that is not currently included in standard MRI software [78].
The potential benefits of this technique for immunotherapy monitoring were reported
in several recent studies, including on dendritic cell treatment [79], and anti-PD-1 ICI
monitoring [80]. A recent study of DKI in metastatic melanoma patients reported that cell
death can be detected as early as 3–12 weeks after treatment initiation [81].

One of the hallmarks of cancer is an increased abnormal angiogenesis, where hyperper-
fusion tends to correlate with tumor aggressiveness [82]. Perfusion MRI typically initiates
with a bolus injection of gadolinium, which facilitates the tracking of vascular dynamics.
Two main contrast mechanisms are then exploited: T2*-based dynamic susceptibility con-
trast (DSC) or T1-based dynamic contrast enhancement (DCE). In DSC, a series of images is
acquired enabling the calculation of the signal curve that depicts the temporal perfusion
dynamics. Based on this signal, various metrics can be extracted. The relative cerebral
blood volume (CBV, calculated from the area under the curve) is most often used [83].
While DSC is a useful perfusion protocol, its reliance on T2* may lead to ambiguity or
incompatibility with cases where the lesion is near the sinuses or prone to susceptibil-
ity artifacts. In DCE, a set of post Gadolinium T1-weighted images is acquired, which
correlates with the vasculature leakiness and permeability. The resulting wash-in, wash-
out, and general flow characteristics may be informative of tumor malignancy, activeness,
and treatment response [84].

Several clinical studies have documented the potential usefulness of rCBV and ADC
for immunotherapy response monitoring [85,86]. Recently, a clinical study showed that
it could differentiate pseudo- from true-progression in metastatic melanoma treated with
immunotherapy [87]. In that study, the DCE-based classification of progression was signif-
icantly improved compared to that obtained based on lesion-volume; however, the area
under the classification curve (AUC) remained less than 0.76.

While advanced MRI provides a clinically useful, additional source of information,
its associated effects are still manifested relatively late in the course of treatment [88].
In a recent study by Cuccarini et al. [89], the dendritic cell immunotherapy treatment
response was evaluated based on ADC and rCBV values (Figure 3). The findings indicated
that the ability to distinguish true from pseudo-progression was possible two months
after the first appearance of the classic pseudo-response effects. Similarly, in the study by
Umemura et al. [87], pseudo-progression was distinguished from true progression using
DCE MRI at a median of 1.8 weeks after starting immunotherapy.

In general, the advanced MRI methods of perfusion and diffusion enrich the set of
radiological information available for assessing tumor state and treatment compliance.
While the effects observed with these imaging protocols can be detected faster than morpho-
metric tumor changes, they still manifest at a time scale of weeks or months, without direct
specificity to immuno-related process.
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Figure 3. A single subject example of the radiological manifestation of pseudo-progression during
immunotherapy, as seen in conventional and advanced MRI. Left to right: FLAIR, ADC, post-
gadolinium T1, and CBV. In the first MRI scan (A) taken after surgery and radio-chemotherapy before
immunotherapy initiation, the increased T1 enhancement and CBV are apparent. An edema is seen
in the FLAIR image and decreased ADC, which suggests increased cellularity. In the MRI image set
taken four months after immunotherapy (B), the tumor volume appears to have increased in the T1

image, but the CBV has decreased and the ADC values are higher than in (A), indicating decreased
vascularity and less restriction, respectively. These changes suggest that the apparent increase in
tumor volume is actually misleading and is driven by pseudo-progression. Adapted with permission
from ref. [89], Cuccarini et al. J. Clin. Med. 2019;8;2007 (CC-BY 4.0 license).

3.3. Molecular MRI Monitoring

Molecular imaging is an interdisciplinary field which fuses molecular biology with
medical imaging [37,71,90–96]. When exploited for immunotherapy, it holds dual promise:

(1) Providing new insights into the mechanisms underlying the interactions between the
host tissue, the tumor, and the immunotherapeutic agent.

(2) Enabling treatment optimization on a patient-by-patient basis, through the early
classification of an immunotherapy responsive or resistant tumor.

Classical molecular imaging can be obtained through a variety of modalities, but the
most suitable types for both preclinical and clinical imaging in most body organs and
for various cancer types are nuclear medicine (PET and SPECT) and MRI. None of these
techniques are limited by tissue depth (unlike optical imaging) and are unaffected by
the bones and the skull (unlike ultrasound). As stated earlier, the focus of this review
is MRI-based immunotherapy molecular imaging, as it is highly versatile, utilizes non-
ionizing-radiation, and provides excellent soft tissue contrast. Complementary information
on the use of PET and SPECT for immunotherapy responses can be found in the following
recently published original research papers [97–103], and reviews [104–107].

3.3.1. MRI Probes

Although contrast enhancing materials are commonly used in the clinic, they are
typically utilized in their “native configuration”; i.e., without additional modification for
specific expression or targeting of a particular compound. In the molecular imaging context,
these probes are further engineered and designed for direct amplification of the biological
property of interest. For example, Huang et al. enwrapped an oncolytic adenovirus within
a calcium and manganese carbonate biomineral shell [108]. When this complex reached
the acidic tumor microenvironment, it released manganese ions, which resulted in T1
image enhancement that enabled virus detection. Du et al. loaded a chemotherapeutic
drug in lyposomal nanoparticles that were decorated with PD-L1 antibodies (for specific
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cancer targeting) and labeled with a gadolinium-based contrast agent [109]. In breast and
colon tumor-bearing mice, an image brightening was visible in the tumor region 24 h after
intravenous injection.

The antitumor immune response is heavily dependent on the immune cell migration
profile. For this reason, the image-based tracking of these cells may shed light on treatment
efficacy [110]. Cho et al. developed an iron oxide-zinc oxide core-shell nanoparticle that
can transfer antigens into dendritic cells while enabling their detection. They reported that
the resulting image darkening was indicative of a tumor antigen specific T-cell response.
In a more recent study, iron oxide nanoparticles (IONPs) were combined with dendritic
cell activating liposomes [111]. Using the particles’ T2* shortening ability, the researchers
were able to track the dendritic cells. Interestingly, the early stage (2 days post-therapy) T2*
signals at the lymph nodes allowed for the categorization of the animals into non-responder,
partial responder, and responder groups. Moreover, the late-stage (27 day post-treatment)
tumor size was correlated with the 2-day MRI image darkening effects.

In another recent study by Lee et al., cell death protein ligand (PD-L1) expression was
monitored using PD-L1 antibodies conjugated with lipid-coated IONPs [112]. A specific
binding capacity was exhibited in a mouse model of temozolomide-resistant glioblastoma,
which was clearly seen in the in vivo brain MRI.

Natural killer cells (NK) are another attractive target for MRI-probe-based tracking.
In a study by Daldrup-Link et al., a genetically engineered human NK cell line was labeled
with IONPs, and subsequently used for in-vivo distribution monitoring in a mammary
tumor mouse model [113]. A clear signal darkening effect was obtained as early as 12 h after
intravenous injection, thus highlighting the potential of this strategy for early treatment
response assessment.

The above-mentioned MRI probes were designed to enable direct tracking of im-
munotherapy associated cells or viruses. However, probes can also be used to study
the tumor microenvironment. For example, Liu et al. engineered a nanoprobe that can
“sense” acidosis and hypoxia, and respond by Mn2+ release (manifested as T1-based image
brightening) [114]. Since hypoxia is the main contributor to tumor microenvironment
hostility and immunosuppression, these image changes enabled the prediction of treatment
response to immune checkpoint inhibitors (ICI).

While the preclinical studies reported in this section have shown great promise for
the monitoring and prediction of immunotherapy treatment response within only days or
even hours, their longstanding limitation remains overcoming probe toxicity and ensuring
adequate biocompatibility, tumor specificity, and safe clearance and biodistribution profiles,
as strictly required for clinical translation.

3.3.2. Magnetic Resonance Spectroscopy

Unlike conventional MRI which exploits the abundance of water molecules in the body,
1H Magnetic resonance spectroscopy (MRS) aims to measure the signals from other biolog-
ical compounds and metabolites, at concentrations smaller by four orders of magnitude.
Following an acquisition protocol that aims to suppress the water signals, the existence of a
variety of compounds such as N-acetylaspartate (NAA), creatine, choline, lactate, lipids,
myo-inositol, and glutamate/glutamine becomes detectable [115]. Based on the different
chemical shifts of each compound, the metabolic tissue composition can be characterized.
The immediate advantage of MRS compared to MRI probes is the endogenous origin of
the image contrast. However, to compensate for the low metabolite concentrations, long
acquisition times and a single large voxel are typically used. A multi-pixel MRS imaging
variant (termed MRSI, or chemical shift imaging) may also be performed, although it still
ends up with relatively large voxels.

Choline-containing compounds are one of the most interesting MRS targets, which
are found in the brain myelin and cell membranes. Increased choline signals were shown
to correlate with tumor proliferation and malignancy [116], and represent the rapid mem-
brane synthesis in proliferating tumor cells. Importantly, the choline/creatine ratio was
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successfully exploited to differentiate the true progression from treatment induced effects
in several clinical brain cancer studies [117].

The fatty acids associated with tumor cell membranes are yet another important
treatment biomarker which correlates with apoptosis [118]. Limmatainen et al. reported
the concomitant changes occurring in choline and lipid MRS signals in an apoptotic rat
glioma model [119]. Interestingly, on day 8 of ganciclovir treatment, the lipid (apoptotic
representative) signal reached its peak, while the choline signal, which represents tumor
malignancy, started abruptly decreasing. A later carcinoma rodent study by Hemminki et
al. showed that a combination of these signals was useful for OV treatment monitoring,
and could detect true responders in a matter of days following treatment initiation [120].

3.3.3. 19F MRI

Although 1H MRS is a powerful tool for studying the chemical composition of tissues,
it lacks specificity for labeling and tracking specific cells. 19F MRI, on the other hand,
utilizes exogenously administered fluorine to provide metabolic cell information, which is
considered unambiguous (given the scarcity of endogenous 19F in the body) [121]. Recently,
Croci et al. successfully used perfluorocarbon-containing nanoparticles and 19F MRI to
noninvasively track tumor associated microglia and macrophages over time in response to
radiotherapy [122].

Weibel et al. imaged intratumor inflammation using perfluorocarbon-labeled immune
cells. They applied this methodology to a variety of animal tumor models undergoing
OV-treatment, and demonstrated its potential for early stage treatment monitoring [91].

Similar to the IONP reports presented in Section 3.3.1, a rodent tumor study by
Ahrens et al. showed that 19F MRI can be used to monitor dendritic cell migration to the
lymph node [123]. Dubois et al. imaged perfluorocarbon labeled CAR T-cells in a mouse
model of leukemia at a clinical 3T field strength [124]. The detection was enabled as early
as 1 day post-injection, and the perfluorocarbon did not alter the cytotoxic profile.

Overall, 19F MRI provides very high specificity in detecting molecular phenomena,
but is hampered by the need for specialized radiofrequency coils that are not included in
standard MR scanners.

3.3.4. Hyperpolarized Carbon-13 MRI

Similar to 19F imaging, 13C MRI exploits nuclear species that are rare in living organ-
isms. To benefit from the inherent specificity associated with the exogenous administration
of these compounds to the body but still be able to sufficiently amplify their signals,
a process called dynamic nuclear polarization needs to be used which requires dedicated
instruments, very low temperatures, and strong magnetic fields. Eventually, a substrate
of interest becomes MR-visible and its metabolism (after intravenous injection) can be
characterized [125].

Thus, traditional 1H MRS provides a snapshot of the molecular state, whereas hy-
perpolarized 13C MRI provides a dynamic and rapid window to investigate metabolic
changes. There are a number of endogenous metabolites that can be labeled with 13C,
of which pyruvate has been the most extensively studied. In the context of cancer, tumors
consume more pyruvate than healthy cells, as described by the Warburg effect [126]. As a
result, the conversion of pyruvate into lactate is correlated with tumor malignancy [127].
Miloushev et al. studied the 13C pyruvate to lactate dynamics in a small patient cohort
composed of oligodendroglioma, recurrent glioblastoma, melanoma, and metastatic ovar-
ian carcinoma patients. They observed stronger lactate signals in untreated as compared
to treated tumors, as well as in recurrent tumors [128]. In a more recent study, 13C-based
pyruvate to lactate conversion rate maps were reconstructed, and enabled the detection of
the early metabolic response to ICI in a prostate cancer patient [129].

In addition to the direct imaging of metabolism, 13C MRI has also been used to investi-
gate the tumor microenvironment. Gallagher et al. labeled bicarbonate with hyperpolarized
13C to obtain quantitative pH images in a subcutaneous mouse tumor model [130]. A year
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later, the same group injected hyperpolarized 13C-labeled fumarate intravenously into
lymphoma-bearing mice, and were able to image its conversion to malate. The rate of this
process served a biomarker for cell necrosis and early treatment response [131].

The practical implementation of 13C MRI requires ad hoc preparation of the injected
solutions, the purchase of a polarizer and X-nuclei MRI coils, and eventually an injection
and imaging under strict time constraints (since the signal attenuates within minutes).
However, in light of the promising quantitative, metabolic, and treatment specific molecular
information it has already provided, and if further confirmed in large cohort clinical studies,
the associated financial and technical burden will be largely compensated for.

3.3.5. Chemical Exchange Saturation Transfer (CEST) MRI

CEST is a molecular imaging technique that enables the imaging of metabolites, mo-
bile proteins and peptides [132–135]. Unlike MRS, CEST enables relatively high spatial
resolution imaging; e.g., a pixel size of several hundreds of microns or 1–2 mm in preclinical
and clinical studies, respectively, while retaining reasonable scan times. In a typical CEST
acquisition protocol, a series of saturation pulses are applied at a variety of chemical shifts
around the water resonance frequency. When the saturation pulse frequency matches
the resonance frequency of the exchangeable protons of interest, their net magnetization
is decreased at which point these protons undergo a chemical exchange with the water
protons, yielding a decreased water-pool signal. By applying sufficiently long (on the order
of seconds) saturation pulses, or saturation pulse trains, a dramatic signal amplification
can be achieved, allowing for the imaging and detection of millimolar compound concen-
trations [136]. Some of the most useful endogenous compounds that contain exchangeable
protons include the amide (–NH), amine (–NH2), and hydroxy groups (–OH) [49]. The CEST
signal depends on the volume fraction of the labile protons (which is proportional to the
compound or metabolite concentration), the exchange rate between the solute and water
protons (which is typically correlated with the temperature and pH) [137,138], water relax-
ivity, and the acquisition parameters [139]. Since the CEST signal originates from molecular
compounds and is influenced by the microenvironment, it can inform on early-occurring
treatment-related effects.

Treatment Monitoring Using Endogenous CEST Contrast

The most widely used CEST target consists of the amide protons in mobile cellular pro-
teins and peptides [140]. In a seminal study by Zhou et al. [96], the CEST-weighted amide
signal (at 3.5 ppm downfield of the water resonance frequency) was able to distinguish
tumor recurrence from radiation necrosis. In rats, cell death was manifested as CEST-image
darkening, due to the absence of mobile cytosolic proteins and peptides. In active glioma
on the other hand, image brightening was obtained due to the increased cytosolic protein
and peptide content. Importantly, the T1-weighted post-gadolinium imaging of the same
animals was not able to distinguish between the two groups. Based on the same contrast
mechanism, Sagiyama et al. [141] were able to detect an early therapeutic response to
chemotherapy in glioblastoma-bearing mice. The amide CEST signal decrease, which
was obtained 4 days post-chemotherapy, was concordant with the reduced levels of cell
proliferation, as seen in Ki67-based histology, and preceded any changes in tumor volume.
The amide CEST signal has been further investigated in a variety of clinical studies that
could differentiate between pseudo-progression and true tumor progression [142,143].

In addition to its sensitivity to mobile protein concentrations, the dependence of the
amide CEST signal on pH (via the proton exchange rate) [144,145] can serve as another im-
portant treatment biomarker, given that increased intracellular (and decreased extracellular)
pH is the hallmark of cancer [146,147]. Additional CEST targets, such as the amine protons
at 3 ppm downfield of water have a linear signal relationship with pH in the physiological
range [148]. Finally, based on the combination of amine and amide signal ratios, an absolute
pH mapping, independent of compound concentration can be performed [149].
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Recently, Cho et al. presented preliminary data showing the ability of amine-weighted
CEST for the detection of an immunotherapy response [150]. In a rodent study, the tumor
CEST signal at 3 ppm was elevated at baseline, and returned to normal (contralateral-
tissue-like) values after a combination of dendritic cell vaccination and anti-PD1 treatment
(Figure 4A). The authors also presented single-patient data that were consistent with
the pre-clinical findings, where a recurrent glioblastoma patient was successfully treated
with PD-L1. The corresponding amine-CEST images were in visual agreement with the
post-contrast T1-weighted findings (Figure 4B).

Figure 4. Immunotherapy treatment response monitoring using amine-weighted CEST imaging.
(A) Postcontrast T1-weighted images (top) and amine-weighted CEST images (bottom) obtained
during combination immunotherapies with dendritic cell vaccination and anti-PD-1 treatment. A re-
sponse to the treatment is manifested as a decreased CEST signal (green compared to red in the
left-hand side of the brain); (B) post-contrast T1 (left) and amine-weighted CEST (right) images from a
recurrent glioblastoma patient treated with PD-L1 demonstrating a successful response characterized
by homogenization of the CEST Amine contrast. Reproduced with permission from Cho et al. NMR
in Biomedicine 2022;e4785. doi:10.1002/nbm.4785 [150]. Copyright ©2022 John Wiley & Sons Ltd.

In a different study, the applicability of endogenous amide-based CEST MRI for
treatment monitoring was examined in a glioblastoma mouse model of oncolytic virother-
apy [151]. However, the standard CEST analysis metrics (based on the signal asymmetry
around the water resonance frequency and Lorentzian model fitting) failed to discriminate
between the apoptotic treatment responsive core and the tumor periphery (which was
unaffected by the virus). This was apparently caused by the multitude of confounding
signals stemming from the altered water relaxivity (associated with edema), the semisolid
macromolecule magnetization transfer dynamics, and the acquisition parameters used.
To overcome these obstacles, an advanced artificial-intelligence-boosted acquisition and re-
construction technique was developed (see Section 4), which resulted in the spatial quantifi-
cation of the amide proton exchange rate and volume fraction across the animal brain. Both
of these parameters served as useful biomarkers for apoptosis detection (Figure 5), which
is characterized by protein synthesis inhibition and decreased intracellular pH [152,153].

Treatment Monitoring Using Exogenous CEST Contrast

Given the complexity of the in-vivo molecular environment, the existence of multiple
proton pools, and the simultaneous changes in several magnetic tissue properties during
cancer treatment, it is highly desirable to further increase the signal-to-noise ratio, sensitivity
and specificity of CEST imaging using exogenously injected materials. In recent decades,
a variety of CEST agents have been developed, based on paramagnetic [154,155] and
diamagnetic [156] materials, liposomes [157], iodine [158,159], and glucose [160–163].
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Figure 5. Quantitative CEST imaging of OV-induced apoptosis in a glioblastoma-bearing mouse,
72 h following virus inoculation. (a) conventional T2-weighted image; (b) semisolid macromolecule
proton volume fraction (fss) map, where a decreased volume fraction represents tumor-related edema
and a change in the lipid composition of tumor tissue relative to normal brain tissue; (c,d) amide
proton exchange rate (ksw, c) and volume fraction (fs, d) maps. Regions of decreased intracellular
pH and mobile protein concentration, respectively, are indicative of apoptosis; (e–h) histology and
immunohistochemistry images validate the MR findings with cleaved caspase-3 positive tumor
regions and decreased Coomassie blue protein staining, indicative of apoptosis. Reprinted with
permission from Perlman et al. Nat Biomed Eng. 6, 648-657 (2022) [151]. Copyright ©2021, The
authors, under exclusive licence to Springer Nature Limited.

One of the main hurdles to MRI probe development is the need to provide sufficient
and extensive proof of biocompatibility, followed by exhaustive examinations and trials
before a regulatory approval for clinical use may be considered. In a clever re-purposing
approach, it was found that previously established and FDA approved iodine-based CT
contrast agents may also serve as CEST contrast media. These compounds contain a
few amide groups that resonate at different frequencies [164,165]. By calculating the
ratio of the associated CEST signals, the extracellular pH can be derived and mapped
across the tumor [166]. Acidosis is not only a hallmark of malignancy but also promotes
oncogenetic metabolism. Proton pump inhibitors (PPI) are molecules aimed to inhibit the
extracellular tissue acidification by creating an alkaline pH that may improve the efficiency
of immunotherapy [167]. A recent preclinical study by Irrera et al. reported that CEST MRI
with the CT contrast agent iopamidol was able to successfully monitor the pH changes
associated with PPI administration [168].

Reporter gene imaging allows for the monitoring of transgene expression, and hence
constitutes a powerful technique for exploring the molecular processes involved in im-
munotherapy. In a seminal work in the field, Gilad et al. designed an artificial CEST
reporter gene based on the biodegradable lysin rich-protein (LRP) [169]. It creates a
detectable contrast at the amide proton frequency, which enables the milli-molar-level
detection of cells in tumors. In a more recent study, Farrar et al. engineered the LRP
reporter gene into a herpes simplex-derived oncolytic virus [170]. The virus was then
inoculated into glioma bearing rats in-vivo, and CEST-weighted images were acquired at
baseline and in the acute phase (Figure 6). A significant increase in CEST contrast was
observed within the virally-infected tumors, while retaining viral replication and therapeu-
tic efficacy. Although the LRP reporter gene has been established in a variety of in-vivo
studies [50,171], and further redesigned for increased stability and sensitivity [172], it is
limited by the confounding endogenous tissue amide proton signals, which overlap with
the LRP effect (at around 3.5 ppm). Bar-Shir et al. recently designed a CEST reporter gene
with labile exchangeable protons that resonate at a large chemical shift (5.8 ppm) [173].
They employed this reporter to track dendritic cell cancer vaccine in a mouse brain tumor
model and reported it could detect the presence of fewer than 10,000 cells.
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Figure 6. Oncolytic virotherapy monitoring using a CEST reporter gene. CEST-weighted images
were acquired from three rats before (A–C,G–I) and 8–10 h after (D–F,J–L) the inoculation of an LRP
expressing (top) or empty (bottom) G47∆ virus. An increased CEST signal at the tumor was obtained
for the LRP OV expressing group (D–F) but not in the control group (J–L). Reprinted with permission
from Farrar et al. Radiology 275(3), pp. 746–754 (2015) [170]. Copyright ©2015 Radiological Society
of North America (RSNA).

4. Artificial Intelligence (AI) in Immunotherapy Treatment Monitoring

Despite the major developments in the field of molecular MRI, and their direct appli-
cations to immunotherapy response monitoring, a few key limitations remain unresolved
that hinder the translation of these methods into widespread clinical use:

(1) The acquisition time may be relatively long, especially for inherently low signal-to-
noise ratio (SNR) methods;

(2) The images are mostly qualitative and depend on the particular set of acquisition
parameter used;

(3) The clinical data interpretation (and final tissue state characterization) is observer-
dependent.

It is hard to ignore the major leap in AI performance, whose direct implications af-
fect almost all fields of science. Medical imaging in particular has benefited from this
progress, in that many modern AI frameworks were originally designed to mimic human
visual perception [174,175]. Luckily, these opportunities were not overlooked by molecular
imaging scientists, who started meeting the challenges mentioned above by incorporating
and expanding AI strategies to boost the performance, accuracy, and clinical compati-
bility of molecular MRI. AI in medical imaging encompasses an extremely broad field,
based on advanced mathematical and computational foundations, with a large volume of
treatment response-related publications [176–178]. This section provides the reader with
some concrete examples of the potential benefits of “injecting” AI throughout the molecular



Int. J. Mol. Sci. 2023, 24, 3151 14 of 25

imaging pipeline (Figure 7), while highlighting the works related to immunotherapy. In this
brief guided tour, we will travel backwards in the imaging process, starting from the last
classification step, all the way back to the acquisition protocol design.

Figure 7. AI-based interventions along the imaging pipeline, allowing automatic and optimized proto-
col design, faster and denoised image reconstruction, rapid quantification of biophysical parameters,
automatic tumor delineation, and automatic classification of tumor responsiveness.

While only occurring at the end of the imaging process, the use of AI is most intuitive
in the context of final tissue classification, which is aimed to derive an automatic and
inter-observer variability-free assessment of tissue response. A variety of methods have
been developed for this task, which typically employs conventional MRI. For example,
Chang et al. proposed a method for automatic RANO glioma assessment [44]. It consists
of two main parts: a 3D U-net convolutional neural network that segments FLAIR and T1
MR images, and an additional algorithm that calculates the required RANO measurements
from the segmented masks. Cho et al. implemented a similar strategy but employed
automatic RANO on volumetric information [179]. Vollmuth et al. expanded the input
image modalities to include diffusion information [180]. Although still using RANO criteria
and conventional imaging, Rundo et al. proposed a semi-automatic approach where the
radiologist manually selects the region of interest followed by automatic morphometric
analysis and deep immunotherapy response classification [181]. In a more recent study,
Guo et al. [182] implemented deep learning techniques on a combination of conventional
MR and amide CEST-weighted images to separate true tumor progression from radiation
effects. In this study of glioma patients, the addition of molecular images as input improved
diagnostic performance.

Notably, many tissue state classification techniques rely on a prior delineation of the
tumor margins. Since this can be achieved using conventional MR images, it is beyond the
scope of this review (see comprehensive reviews in [183–185]).

One of the critical limitations of medical imaging is the contrast-weighted form of
commonly acquired data. While exact biophysical parameter maps can be extracted using
repeated acquisition at steady state conditions and known analytical solutions (as in
classical water T1 and T2 mapping), this approach translates into long acquisition times,
which are impractical for clinical use. This issue is further exacerbated in molecular imaging,
where the low SNR demands even longer acquisition times, and where the complexity of
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the biological scenario (which involves a number of proton pools, especially in the brain)
may severely undermine quantification accuracy and further increase its computation time.

To address these quantification challenges, a variety of AI-based methods have re-
cently been developed. Gurbani et al. proposed a physics-driven deep learning model to
accelerate the spectral fitting of MRSI [186]. In a study of glioblastoma patients, whole-brain
quantification took less than 1 min. Magnetic resonance fingerprinting (MRF) is a relatively
new paradigm in quantitative MRI [187]. Initially proposed for conventional MRI, it allows
the simultaneous extraction of water T1 and T2 in sub-minute scan time. MRF is built on
pseudo-random and rapid acquisition protocols that generate a large set of heavily under-
sampled and noisy raw images. However, the temporal dynamics hidden in each pixel’s
trajectory contain a unique signal pattern (fingerprint), which represents its underlying
biophysical tissue properties. By exploiting the well-studied Bloch equations, an extensive
pre-experiment simulation can generate a large dictionary of expected signal trajectories
for a variety of tissue parameter combinations. By comparing the simulated dictionary
entries to the acquired experimental data, the inverse quantification problem can be solved,
and the underlying magnetic properties determined. In the molecular imaging realm, MRF
was successfully expanded for MRS [188] and CEST quantification [189–192]. To account
for the exponential growth in dictionary size, which translates into very long molecular
parameter matching, a variety of deep-learning architectures have been suggested. These
works enable rapid image acquisition (e.g., <5 min) and whole brain molecular parameter
quantification in a matter of seconds [151,193–197]. Importantly, in a virotherapy treatment
monitoring animal study, a comparison of conventional CEST-MRF to deep-learning-based
CEST-MRF pointed to the clear superiority of the latter in terms of quantification accuracy
and speed [151].

Moving further back in the molecular MRI pipeline leads to the interface between the
k-space (the spatial frequency domain) and the raw image data reconstruction. While this
field has been extensively explored [198,199], and has resulted in exciting AI-associated
breakthroughs [200], it is nonspecific for molecular imaging.

Finally, in recent years, researchers have begun to explore the feasibility of harnessing
AI-based strategies at the earliest possible intervention point, namely, for acquisition
protocol design. Zhu et al. represented the analytical solution of the Bloch equations
as a computational graph forming a supervised learning architecture that can update
and optimize the protocol parameters (e.g., the flip angle (FA) and TR) to generate very
rapid acquisition schemes that can quantify water T1 and T2 while overcoming field
inhomogeneities [201–203].

Loktyushin et al. proposed a supervised learning framework to discover MRI se-
quences for different tasks, including k-space trajectory and flip angle optimization, specific
absorption rate (SAR) mitigation, and quantitative T1 mapping [204]. Perlman et al. de-
veloped an end-to-end framework for generating rapid (less than 1 min) CEST acquisition
protocols while simultaneously training a reconstruction network that extracts quantita-
tive molecular maps from the raw data [205]. Kang et al. developed a learning-based
approach for the optimization of semisolid magnetization transfer MRF protocols [206] and
demonstrated its applicability on human subjects.

While machine-learning based methods for acquisition protocol design are typically
based on well-established magnetic signal propagation models, two very recent works have
shifted the optimization stage from the pre-experiment offline, simulative environment
to an actual physical scanner. Beracha et al. developed an adaptive MRS acquisition
optimizer [207]. By applying repeated acquisition while using the measured signal and
information-theory optimal bounds to update the next acquisition parameters in real time,
the authors successfully extracted the relaxation time of in vivo metabolites, while achieving
a 2.5-fold acceleration. Glang et al. developed a model-free target driven framework, where
the scanner’s “actions” are directly linked to the image target [208]; for example, the
concentration of the metabolite of interest. By allowing the scanner to freely optimize
its acquisition profile until the output data converges to the desired target, the authors
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generated new quantitative CEST protocols within a 3 h acquisition-based optimization.
Although extremely innovative, additional research needs to be conducted to overcome the
need for very long acquisition-based optimization and the availability of a ground-truth
reference, which are challenging to obtain in-vivo.

5. Conclusions and Outlook

In this review, today’s key methods for molecular MRI-based immunotherapy treat-
ment monitoring were presented, compared, and discussed. These techniques enable the
tracking of cells and viruses, the derivation of tissue pH, and imaging of hypoxia, protein
expression, cell death, and metabolite concentration, which ultimately translates into early
detection of treatment response, the core advantage of molecular MRI.

The main hurdles include the inherently low SNR of the contrast mechanisms (as in
MRS), the need for expensive and non-conventional equipment (such as X-nuclei coils and
a polarizer), and high field MRI (which is useful for MRS and CEST imaging). Since most
of these emerging approaches have been presented in animal studies, large cohort clinical
studies are needed and regulatory approval obtained prior to widespread adoption.

Although each imaging route (conventional, advanced, and molecular MRI) provides
its own biologically interesting layer of information, the future is likely to lie in a multi-
modal combination of all these rich data into a single imaging and classification pipeline.
However, the more protocols are added to the clinical routine, the longer the scan time per
patient becomes, which results in increased cost and patient discomfort. Given the massive
ongoing research efforts to accelerate MRI acquisition in general and molecular MRI in
particular (see Section 4), we expect that the benefits of incorporating molecular MRI into
the cancer treatment monitoring pipeline will outweigh its (current) shortcomings.

As discussed in the previous section, AI-based strategies can contribute to accelerating
the acquisition and reconstruction of molecular MRI, improve its quantification perfor-
mance, denoise its output, and automate protocol design and ultimate tissue classification.
Given the success of deep learning in non-image related fields, new discoveries will doubt-
less be fused with molecular MRI in the future, such as text processed from electronic health
records [209] and blood test data [210], to potentially uncover hidden biological relations
and achieve a better characterization of tissue state. However, since all these disruptive
technologies will need to be acknowledged, accepted and routinely practiced by physicians,
it is crucial to ensure that they become more transparent [211] and explainable [212].

In terms of repeatability and reproducibility, expert-based consensus guidelines are also
a must (though some have recently started to emerge) for reporting standards [213], the use
of optimized and shared acquisition protocols [214,215], and the derivation of “good-method-
development-practices” [216] for molecular and quantitative MRI method development.

As shown in this review, a variety of molecular MRI-based methods have been de-
veloped for studying the underlying mechanisms responsible for cancer immunotherapy
responses, and providing early in vivo detection of tumor and host tissue state. Given
the promising preliminary results and the continuous improvement in imaging accuracy,
speed, and specificity, this imaging modality is expected to potentially become a valuable
tool for routine clinical management of immunotherapy.
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