Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Powder Materials Stage
2.2. Sintered Nanoceramics Stage
3. Materials and Methods
3.1. Preparation of Kesterite Nanopowders
3.2. High-Pressure and High-Temperature Sintering
3.3. Sample Labeling
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delbos, S. Kësterite thin films for photovoltaics: A review. EPJ Photovoltaics 2012, 3, 35004. [Google Scholar] [CrossRef]
- Wallace, S.K.; Mitzi, D.B.; Walsh, A. The Steady Rise of Kesterite Solar Cells. ACS Energy Lett. 2017, 2, 776–779. [Google Scholar] [CrossRef]
- Nazligul, A.S.; Wang, M.Q.; Choy, K.L. Recent Development in Earth-Abundant Kesterite Materials and Their Applications. Sustainability 2020, 12, 5138. [Google Scholar] [CrossRef]
- Hamdaoui, J.E.; Kria, M.; Lakaal, K.; El-Yadri, M.; Feddi, E.M.; Rejas, L.P.; Pérez, L.M.; Díaz, P.; Mora-Ramos, M.E.; Laroze, D. Ab initio study of carrier mobility, thermodynamic and thermoelectric properties of kesterite Cu2ZnGeS4. Int. J. Mol. Sci. 2022, 23, 12785. [Google Scholar] [CrossRef] [PubMed]
- Liu, R. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells. Materials 2014, 7, 2747–2771. [Google Scholar] [CrossRef]
- Singh, O.P.; Gour, K.S.; Parmar, R.; Singh, V.N. Reactive Sputtering Technique for Kesterite and Chalcogenide Based Thin Film Solar Cells. J. Nanosci. Nanotechnol. 2018, 18, 7670–7681. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef]
- Kapusta, K.; Drygas, M.; Janik, J.F.; Jelen, P.; Bucko, M.M.; Olejniczak, Z. From magnetic cubic pre-kesterite to semiconducting tetragonal kesterite Cu2ZnSnS4 nanopowders via the mechano-chemically assisted route. J. Alloys Compd. 2019, 770, 981. [Google Scholar] [CrossRef]
- Sahu, M.; Reddy, V.R.M.; Kim, B.; Patro, B.; Park, C.; Kim, W.K.; Sharma, P. Fabrication of Cu2ZnSnS4 light absorber using a cost-effective mechanochemical method for photovoltaic applications. Materials 2022, 15, 1708. [Google Scholar] [CrossRef]
- Dun, C.C.; Holzwarth, N.A.W.; Li, Y.; Huang, W.X.; Carroll, D.L. Cu2ZnSnSxO4-x and Cu2ZnSnSxSe4-x: First principles simulations of optimal alloy configurations and their energies. J. Appl. Phys. 2014, 115, 193513. [Google Scholar] [CrossRef]
- Tablero, C. Effect of the oxygen isoelectronic substitution in Cu2ZnSnS4 and its photovoltaic application. Thin Solid Film. 2012, 520, 5011. [Google Scholar] [CrossRef]
- Yu, R.S.; Hung, T.C. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu2ZnSnS4 thin films. Appl. Surf. Sci. 2016, 364, 909. [Google Scholar] [CrossRef]
- Washio, T.; Shinji, T.; Tajima, S.; Fukano, T.; Motohiro, T.; Jimbo, K.; Katagiri, H. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 2012, 22, 4021. [Google Scholar] [CrossRef]
- Larsen, J.K.; Ren, Y.; Ross, N.; Sarhammer, E.; Li, S.Y.; Platzer-Bjorkman, C. Surface modification through air annealing Cu2ZnSn(S,Se)4 absorbers. Thin Solid Film. 2017, 633, 118. [Google Scholar] [CrossRef]
- Tajima, S.; Asahi, R.; Isheim, D.; Seidman, D.N.; Itoh, T.; Hasegawa, M.; Ohishi, K. Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells. Appl. Phys. Lett. 2014, 105, 093901. [Google Scholar] [CrossRef]
- Hegedus, M.; Balaz, P.; Balaz, M.; Siffalovic, P.; Daneu, N.; Kanuchova, M.; Briancin, J.; Fa-bian, M. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J. Mater. Sci. 2018, 53, 13617. [Google Scholar] [CrossRef]
- Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman characterization of Cu2ZnSnS4 nanocrystals: Phonon confinement effect and formation of CuxS phases. RSC Adv. 2018, 8, 30736. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nam, D.; Gansukh, M.; Park, S.-N.; Sung, S.-J.; Kim, D.-H.; Kang, J.-K.; Sai, C.D.; Tran, T.H.; Cheong, H. Influence of sulfate residue on Cu2ZnSnS4 thin films prepared by direct solution method. Sol. Energy Mater. Sol. Cells 2015, 136, 113–119. [Google Scholar] [CrossRef]
- Awadallah, O.; Cheng, Z. In situ Raman monitoring of Cu2ZnSnS4 oxidation and related decomposition at elevated temperature. IEEE J. Photovolt. 2016, 6, 764. [Google Scholar] [CrossRef]
- Lejda, K.; Drygaś, M.; Janik, J.F.; Szczytko, J.; Twardowski, A.; Olejniczak, Z. Magnetism of Kesterite Cu2ZnSnS4 Semiconductor Nanopowders Prepared by Mechanochemically Assisted Synthesis Method. Materials 2020, 13, 3487. [Google Scholar] [CrossRef]
- Wibowo, R.A. Powder-to-film approach for fabricating critical raw material-free kesterite Cu2ZnSn(S,Se)4 thin film photovoltaic: A review. Sol. Energy 2018, 176, 157. [Google Scholar] [CrossRef]
- Cao, V.M.H.; Bae, J.; Shim, J.; Hong, B.; Jee, H.; Lee, J. Fabrication of the Cu2ZnSnS4 thin film solar cell via a photo-sintering technique. Appl. Sci. 2022, 12, 38. [Google Scholar] [CrossRef]
- Isotta, E.; Mukherjee, B.; Fanciulli, C.; Pugno, N.M.; Scardi, P. Order–disorder transition in kesterite Cu2ZnSnS4: Thermopower enhancement via electronic band structure modification. J. Phys. Chem. C 2020, 124, 7091. [Google Scholar] [CrossRef]
- Matizamhuka, W. Chapter 8—High-Pressure High-Temperature (HPHT) Synthesis of Functional Materials. In Sintering of Functional Materials; Igor, V., Ed.; Shishkovsky, IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/chapters/58807 (accessed on 3 January 2023).
- He, J.; Sun, L.; Zhang, K.; Wang, W.; Jiang, J.; Chen, Y.; Yang, P.; Chu, J. Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl. Surf. Sci. 2013, 264, 133–138. [Google Scholar] [CrossRef]
- Drygas, M.; Kapusta, K.; Janik, J.F.; Bucko, M.M.; Gierlotka, S.; Stelmakh, S.; Palosz, B.; Olejniczak, Z. Novel nanoceramics from in situ made nanocrystalline powders of pure nitrides and their composites in the system aluminum nitride AlN/gallium nitride GaN/aluminum gal-lium nitride Al0.5Ga0.5N. J. Eur. Ceram. Soc. 2020, 40, 5339. [Google Scholar] [CrossRef]
- Drygaś, M.; Lejda, K.; Janik, J.F.; Musielak, B.; Gierlotka, S.; Stelmakh, S.; Pałosz, B. Compo-site nitride nanoceramics in the system titanium nitride (TiN)-aluminum nitride (AlN) through high pressure and high temperature sintering of synthesis-mixed nanocrystalline powders. Materials 2021, 14, 588. [Google Scholar] [CrossRef]
- Drygas, M.; Lejda, K.; Janik, J.F.; Stelmakh, S.; Palosz, B. Novel composite nitride nanoceramics from reaction-mixed nanocrystalline powders in the system aluminum nitride AlN/gallium nitride GaN/titanium nitride TiN (Al:Ga:Ti = 1:1:1). Materials 2022, 15, 2200. [Google Scholar] [CrossRef]
- Dimitrievska, M.; Boero, F.; Litvinchuk, A.P.; Delsante, S.; Borzone, G.; Perez-Rodriguez, A.; Izquierdo-Roca, V. Structural polymorphism in “kesterite” Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis. Inorg. Chem. 2017, 56, 3467. [Google Scholar] [CrossRef]
- Gamo, I. Infrared Absorption Spectra of Water of Crystallization in Copper Sulfate Penta- and Monohydrate Crystals. Bull. Chem. Soc. Jpn. 1961, 34, 764–766. [Google Scholar] [CrossRef]
- Saha, J.K.; Podder, J. Crystallization of Zinc Sulphate Single Crystals and Its Structural, Thermal and Optical Characterization. J. Bangladesh Acad. Sci. 2011, 35, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, K.; Drygas, M.; Janik, J.F.; Olejniczak, Z. New synthesis route to kesterite Cu2ZnSnS4 semiconductor nanocrystalline powders utilizing copper alloys and a high energy ball milling-assisted process. J. Mater. Res. Technol. 2020, 9, 13320–13331. [Google Scholar] [CrossRef]
- Choubrac, L.; Paris, M.; Lafond, A.; Guillot-Deudon, C.; Rocquefelte, X.; Jobic, S. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy—An ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 2013, 15, 10722. [Google Scholar] [CrossRef] [PubMed]
- WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and Their Structural Analogues. 2018. Available online: http://database.iem.ac.ru/mincryst (accessed on 3 January 2023).
- Kurban, G.V.T.; Rego, A.S.C.; Mello, N.M.; Brocchi, E.A.; Navarro, R.C.S.; Souza, R.F.M. Thermodynamics and kinetic modeling of the ZnSO4·H2O thermal decomposition in the presence of a Pd/Al2O3 catalyst. Energies 2022, 15, 548. [Google Scholar] [CrossRef]
- Mettler-Toledo, Thermal Analysis Applications. Thermal Decomposition of Copper Sulfate Pentahydrate. Available online: https://www.mt.com/fr/fr/home/supportive_content/matchar_apps/MatChar_UC156.html (accessed on 3 January 2023).
- Available online: https://www.mindat.org/min-1522.html (accessed on 3 January 2023).
- Boutahar, L.; Benamrani, A.; Er, Z.; Bioud, N.; Rouabah, Z. Elastic constants of tetragonal Cu2ZnSnS4 semiconductor: Ab-initio calculation. Ann. West Univ. Timis. —Phys. 2022, 64, 55. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Küllmey, T.; Speziale, S.; Pakhomova, A.S.; Quennet, M.; Paulus, B.; Ritscher, A.; Lerch, M. High-pressure behavior of disordered kesterite-type Cu2ZnSnS4. Appl. Phys. A 2021, 127, 616. [Google Scholar] [CrossRef]
- Schorr, S.; Gonzalez-Aviles, G. In-situ investigation of the structural phase transition in kesterite. Phys. Status Solidi (a) 2009, 206, 1054–1058. [Google Scholar] [CrossRef]
Cubic Zincblende-Type Prekesterite | Disordered Tetragonal Kesterite | |||
---|---|---|---|---|
a [Å] | Dav [nm] | a, c [Å] | Dav [nm] | |
CE system {2Cu + Zn + Sn + 4S} | a = 5.49 | 8 | a = 5.44 c = 10.77 | 14 |
MS system {Cu2S + ZnS + SnS + S} | a = 5.54 | 10 | a = 5.43 c = 10.78 | 16 |
Powders in CE System | Powders in MS System | |||
---|---|---|---|---|
Prekesterite | Kesterite | Prekesterite | Kesterite | |
O-content (SD) [wt%] | 5.06 (0.005) | 1.65 (0.01) | 3.85 (0.26) | 5.36 (0.22) |
H-content (SD) [wt%] | 0.37 (0.01) | 0.04 (0.002) | 0.12 (0.01) | 0.07 (0.01) |
Sintered Prekesterite Powders | Sintered Kesterite Powders | |||||
---|---|---|---|---|---|---|
a [Å] | Dav [nm] | Cubic Phase Content [%] | a [Å] | Dav [nm] | Cubic Phase Content [%] | |
CE system | 5.41 | 11 | 89 | 5.42 | 46 | 74 |
MS system | 5.41 | 20 | 96 | 5.43 | 21 | 85 |
Pellets in CE System Prepared From Nanopowders of | Pellets in MS System Prepared From Nanopowders of | |||
---|---|---|---|---|
Prekesterite | Kesterite | Prekesterite | Kesterite | |
O-content (SD) [wt%] | 3.94 (0.44) | 1.75 (0.04) | 6.75 (0.08) | 9.25 (0.14) |
H-content (SD) [wt%] | 0.13 (0.03) | 0.02 (0.01) | 0.44 (0.01) | 0.30 (0.004) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lejda, K.; Janik, J.F.; Perzanowski, M.; Stelmakh, S.; Pałosz, B. Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method. Int. J. Mol. Sci. 2023, 24, 3159. https://doi.org/10.3390/ijms24043159
Lejda K, Janik JF, Perzanowski M, Stelmakh S, Pałosz B. Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method. International Journal of Molecular Sciences. 2023; 24(4):3159. https://doi.org/10.3390/ijms24043159
Chicago/Turabian StyleLejda, Katarzyna, Jerzy F. Janik, Marcin Perzanowski, Svitlana Stelmakh, and Bogdan Pałosz. 2023. "Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method" International Journal of Molecular Sciences 24, no. 4: 3159. https://doi.org/10.3390/ijms24043159
APA StyleLejda, K., Janik, J. F., Perzanowski, M., Stelmakh, S., & Pałosz, B. (2023). Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method. International Journal of Molecular Sciences, 24(4), 3159. https://doi.org/10.3390/ijms24043159