Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex
Abstract
:1. Introduction
2. Results
2.1. Analysis of Diacylglycerol Lipase Enzymatic Activity and Pharmacological Assessment of Serine Hydrolase-Dependent Degradation of 2-AG in Nuclear Matrix Subfractions
2.1.1. Measurement of Diacylglycerol Lipase Enzymatic Activity
2.1.2. Serine Hydrolase Activity-Dependent 2-AG Degradation in the Nuclear Matrix
2.2. Distribution of 2-AG Metabolizing Enzymes in Subcellular and Subnuclear Fractions
2.2.1. Analysis of the Enrichment of Cortical Intact Nuclei in 2-AG Metabolizing Enzymes
2.2.2. Subnuclear Partitioning of 2-AG Metabolizing Enzymes
2.3. Pharmacological Characterization of the ABDH12-Dependent Hydrolysis of 2-AG in Nuclear Matrix Subfractions
3. Discussion
4. Materials and Methods
4.1. Drugs, Chemicals and Antibodies
4.2. Animals
4.3. Tissue Sampling and Biochemical Fractionation for Enzymatic, Western Blot and Double Immunofluorescence Assays
4.4. DGL Enzymatic Assays
4.5. Western Blot Assays
4.6. Double Immunofluorescence
4.7. Microscope Studies and Imaging
4.8. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heifets, B.D.; Castillo, P.E. Endocannabinoid Signaling and Long-Term Synaptic Plasticity. Annu. Rev. Physiol. 2009, 71, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanuš, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an Endogenous 2-Monoglyceride, Present in Canine Gut, That Binds to Cannabinoid Receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylgylcerol: A Possible Endogenous Cannabinoid Receptor Ligand in Brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Re, G.; Barbero, R.; Miolo, A.; di Marzo, V. Palmitoylethanolamide, Endocannabinoids and Related Cannabimimetic Compounds in Protection against Tissue Inflammation and Pain: Potential Use in Companion Animals. Vet. J. 2007, 173, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de Fonseca, F.; Navarro, M.; Gómez, R.; Escuredo, L.; Nava, F.; Fu, J.; Murillo-Rodríguez, E.; Giuffrida, A.; LoVerme, J.; Gaetani, S.; et al. An Anorexic Lipid Mediator Regulated by Feeding. Nature 2001, 414, 209–212. [Google Scholar] [CrossRef]
- Buczynski, M.W.; Parsons, L.H. Quantification of Brain Endocannabinoid Levels: Methods, Interpretations and Pitfalls. Br. J. Pharmacol. 2010, 160, 423–442. [Google Scholar] [CrossRef]
- Giuffrida, A.; Parsons, L.H.; Kerr, T.M.; de Fonseca, F.R.; Navarro, M.; Piomelli, D. Dopamine Activation of Endogenous Cannabinoid Signaling in Dorsal Striatum. Nat. Neurosci. 1999, 2, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Béquet, F.; Uzabiaga, F.; Desbazeille, M.; Ludwiczak, P.; Maftouh, M.; Picard, C.; Scatton, B.; le Fur, G. CB1 Receptor-Mediated Control of the Release of Endocannabinoids (as Assessed by Microdialysis Coupled with LC/MS) in the Rat Hypothalamus. Eur. J. Neurosci. 2007, 26, 3458–3464. [Google Scholar] [CrossRef]
- Caille, S.; Alvarez-Jaimes, L.; Polis, I.; Stouffer, D.G.; Parsons, L.H. Specific Alterations of Extracellular Endocannabinoid Levels in the Nucleus Accumbens by Ethanol, Heroin, and Cocaine Self-Administration. J. Neurosci. 2007, 27, 3695–3702. [Google Scholar] [CrossRef]
- Alvarez-Jaimes, L.; Stouffer, D.G.; Parsons, L.H. Chronic Ethanol Treatment Potentiates Ethanol-Induced Increases in Interstitial Nucleus Accumbens Endocannabinoid Levels in Rats. J. Neurochem. 2009, 111, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Yoshinaga, N.; Waku, K. Rapid Generation of 2-Arachidonoylglycerol, an Endogenous Cannabinoid Receptor Ligand, in Rat Brain after Decapitation. Neurosci. Lett. 2001, 297, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Stella, N.; Schweitzer, P.; Piomelli, D. A Second Endogenous Cannabinoid That Modulates Long-Term Potentiation. Nature 1997, 388, 773–778. [Google Scholar] [CrossRef]
- Hashimotodani, Y.; Ohno-Shosaku, T.; Tsubokawa, H.; Ogata, H.; Emoto, K.; Maejima, T.; Araishi, K.; Shin, H.-S.; Kano, M. Phospholipase Cβ Serves as a Coincidence Detector through Its Ca2+ Dependency for Triggering Retrograde Endocannabinoid Signal. Neuron 2005, 45, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-M.; Mangieri, R.; Stapleton, C.; Kim, J.; Fegley, D.; Wallace, M.; Mackie, K.; Piomelli, D. Stimulation of Endocannabinoid Formation in Brain Slice Cultures through Activation of Group I Metabotropic Glutamate Receptors. Mol. Pharmacol. 2005, 68, 1196–1202. [Google Scholar] [CrossRef]
- Jung, K.-M.; Astarita, G.; Zhu, C.; Wallace, M.; Mackie, K.; Piomelli, D. A Key Role for Diacylglycerol Lipase-α in Metabotropic Glutamate Receptor-Dependent Endocannabinoid Mobilization. Mol. Pharmacol. 2007, 72, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Katona, I. Molecular Composition of the Endocannabinoid System at Glutamatergic Synapses. J. Neurosci. 2006, 26, 5628–5637. [Google Scholar] [CrossRef]
- Lafourcade, M.; Elezgarai, I.; Mato, S.; Bakiri, Y.; Grandes, P.; Manzoni, O.J. Molecular Components and Functions of the Endocannabinoid System in Mouse Prefrontal Cortex. PLoS ONE 2007, 2, e709. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Fukaya, M.; Uchigashima, M.; Miura, E.; Kamiya, H.; Kano, M.; Watanabe, M. Localization of Diacylglycerol Lipase-Alpha around Postsynaptic Spine Suggests Close Proximity between Production Site of an Endocannabinoid, 2-Arachidonoyl-Glycerol, and Presynaptic Cannabinoid CB1 Receptor. J. Neurosci. 2006, 26, 4740–4751. [Google Scholar] [CrossRef] [PubMed]
- Uchigashima, M.; Narushima, M.; Fukaya, M.; Katona, I.; Kano, M.; Watanabe, M. Subcellular Arrangement of Molecules for 2-Arachidonoyl-Glycerol-Mediated Retrograde Signaling and Its Physiological Contribution to Synaptic Modulation in the Striatum. J. Neurosci. 2007, 27, 3663–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Uchigashima, M.; Yamasaki, M.; Katona, I.; Yamazaki, M.; Sakimura, K.; Kano, M.; Yoshioka, M.; Watanabe, M. Unique Inhibitory Synapse with Particularly Rich Endocannabinoid Signaling Machinery on Pyramidal Neurons in Basal Amygdaloid Nucleus. Proc. Natl. Acad. Sci. USA 2011, 108, 3059–3064. [Google Scholar] [CrossRef]
- Kim, J.; Isokawa, M.; Ledent, C.; Alger, B.E. Activation of Muscarinic Acetylcholine Receptors Enhances the Release of Endogenous Cannabinoids in the Hippocampus. J. Neurosci. 2002, 22, 10182–10191. [Google Scholar] [CrossRef]
- Ohno-Shosaku, T.; Shosaku, J.; Tsubokawa, H.; Kano, M. Cooperative Endocannabinoid Production by Neuronal Depolarization and Group I Metabotropic Glutamate Receptor Activation. Eur. J. Neurosci. 2002, 15, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Shosaku, T.; Matsui, M.; Fukudome, Y.; Shosaku, J.; Tsubokawa, H.; Taketo, M.M.; Manabe, T.; Kano, M. Postsynaptic M1 and M3 Receptors Are Responsible for the Muscarinic Enhancement of Retrograde Endocannabinoid Signalling in the Hippocampus. Eur. J. Neurosci. 2003, 18, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Blankman, J.L.; Simon, G.M.; Cravatt, B.F. A Comprehensive Profile of Brain Enzymes That Hydrolyze the Endocannabinoid 2-Arachidonoylglycerol. Chem. Biol. 2007, 14, 1347–1356. [Google Scholar] [CrossRef]
- Muccioli, G.G. Endocannabinoid Biosynthesis and Inactivation, from Simple to Complex. Drug Discov. Today 2010, 15, 474–483. [Google Scholar] [CrossRef]
- di Marzo, V.; Melck, D.; Bisogno, T.; de Petrocellis, L. Endocannabinoids: Endogenous Cannabinoid Receptor Ligands with Neuromodulatory Action. Trends Neurosci. 1998, 21, 521–528. [Google Scholar] [CrossRef]
- di Marzo, V.; Maccarrone, M. FAAH and Anandamide: Is 2-AG Really the Odd One Out? Trends Pharmacol. Sci. 2008, 29, 229–233. [Google Scholar] [CrossRef]
- Irvine, R.F. Nuclear Lipid Signalling. Nat. Rev. Mol. Cell Biol. 2003, 4, 349–361. [Google Scholar] [CrossRef]
- Martelli, A.M.; Manzoli, L.; Cocco, L. Nuclear Inositides: Facts and Perspectives. Pharmacol. Ther. 2004, 101, 47–64. [Google Scholar] [CrossRef]
- Montaña, M.; García del Caño, G.; López de Jesús, M.; González-Burguera, I.; Echeazarra, L.; Barrondo, S.; Sallés, J. Cellular Neurochemical Characterization and Subcellular Localization of Phospholipase C Β1 in Rat Brain. Neuroscience 2012, 222, 239–268. [Google Scholar] [CrossRef]
- Osborne, S.L.; Thomas, C.L.; Gschmeissner, S.; Schiavo, G. Nuclear PtdIns(4,5)P2 Assembles in a Mitotically Regulated Particle Involved in Pre-MRNA Splicing. J. Cell Sci. 2001, 114, 2501–2511. [Google Scholar] [CrossRef] [PubMed]
- Tabellini, G.; Bortul, R.; Santi, S.; Riccio, M.; Baldini, G.; Cappellini, A.; Billi, A.M.; Berezney, R.; Ruggeri, A.; Cocco, L.; et al. Diacylglycerol Kinase-θ Is Localized in the Speckle Domains of the Nucleus. Exp. Cell Res. 2003, 287, 143–154. [Google Scholar] [CrossRef]
- Dent, M.A.R.; Segura-Anaya, E.; Alva-Medina, J.; Aranda-Anzaldo, A. NeuN/Fox-3 Is an Intrinsic Component of the Neuronal Nuclear Matrix. FEBS Lett. 2010, 584, 2767–2771. [Google Scholar] [CrossRef]
- García del Caño, G.; Aretxabala, X.; González-Burguera, I.; Montaña, M.; López de Jesús, M.; Barrondo, S.; Barrio, R.J.; Sampedro, C.; Goicolea, M.A.; Sallés, J. Nuclear Diacylglycerol Lipase-α in Rat Brain Cortical Neurons: Evidence of 2-Arachidonoylglycerol Production in Concert with Phospholipase C-β Activity. J. Neurochem. 2015, 132, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Shonesy, B.C.; Wang, X.; Rose, K.L.; Ramikie, T.S.; Cavener, V.S.; Rentz, T.; Baucum, A.J.; Jalan-Sakrikar, N.; Mackie, K.; Winder, D.G.; et al. CaMKII Regulates Diacylglycerol Lipase-α and Striatal Endocannabinoid Signaling. Nat. Neurosci. 2013, 16, 456–463. [Google Scholar] [CrossRef]
- Saario, S.M.; Salo, O.M.H.; Nevalainen, T.; Poso, A.; Laitinen, J.T.; Järvinen, T.; Niemi, R. Characterization of the Sulfhydryl-Sensitive Site in the Enzyme Responsible for Hydrolysis of 2- Arachidonoyl-Glycerol in Rat Cerebellar Membranes. Chem. Biol. 2005, 12, 649–656. [Google Scholar] [CrossRef]
- Li, W.; Blankman, J.L.; Cravatt, B.F. A Functional Proteomic Strategy to Discover Inhibitors for Uncharacterized Hydrolases. J. Am. Chem. Soc. 2007, 129, 9594–9595. [Google Scholar] [CrossRef]
- Pan, B.; Wang, W.; Long, J.Z.; Sun, D.; Hillard, C.J.; Cravatt, B.F.; Liu, Q. Blockade of 2-Arachidonoylglycerol Hydrolysis by Selective Monoacylglycerol Lipase Inhibitor 4-Nitrophenyl 4-(Dibenzo[d][1,3]Dioxol-5-Yl(Hydroxy)Methyl)Piperidine-1-Carboxylate (JZL184) Enhances Retrograde Endocannabinoid Signaling. J. Pharmacol. Exp. Ther. 2009, 331, 591–597. [Google Scholar] [CrossRef]
- Navia-Paldanius, D.; Savinainen, J.R.; Laitinen, J.T. Biochemical and Pharmacological Characterization of Human α/β-Hydrolase Domain Containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 2012, 53, 2413–2424. [Google Scholar] [CrossRef] [Green Version]
- Agutter, P.; Richardson, J. Nuclear Non-Chromatin Proteinaceous Structures: Their Role in the Organization and Function of the Interphase Nucleus. J. Cell Sci. 1980, 44, 395–435. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Coffey, D.S.; Shaper, J.H. Considerations in the Isolation of Rat Liver Nuclear Matrix, Nuclear Envelope, and Pore Complex Lamina. Exp. Cell Res. 1981, 132, 105–123. [Google Scholar] [CrossRef]
- Deutsch, D.G.; Omeir, R.; Arreaza, G.; Salehani, D.; Prestwich, G.D.; Huang, Z.; Howlett, A. Methyl Arachidonyl Fluorophosphonate: A Potent Irreversible Inhibitor of Anandamide Amidase. Biochem. Pharmacol. 1997, 53, 255–260. [Google Scholar] [CrossRef]
- Saario, S.M.; Savinainen, J.R.; Laitinen, J.T.; Järvinen, T.; Niemi, R. Monoglyceride Lipase-like Enzymatic Activity Is Responsible for Hydrolysis of 2-Arachidonoylglycerol in Rat Cerebellar Membranes. Biochem. Pharmacol. 2004, 67, 1381–1387. [Google Scholar] [CrossRef]
- García del Caño, G.; Montaña, M.; Aretxabala, X.; González-Burguera, I.; López de Jesús, M.; Barrondo, S.; Sallés, J. Nuclear Phospholipase C-Β1 and Diacylglycerol Lipase-α in Brain Cortical Neurons. Adv. Biol. Regul. 2014, 54, 12–23. [Google Scholar] [CrossRef]
- Freund, T.F.; Katona, I.; Piomelli, D. Role of Endogenous Cannabinoids in Synaptic Signaling. Physiol. Rev. 2003, 83, 1017–1066. [Google Scholar] [CrossRef]
- Karlsson, M.; Contreras, J.A.; Hellman, U.; Tornqvist, H.; Holm, C. CDNA Cloning, Tissue Distribution, and Identification of the Catalytic Triad of Monoglyceride Lipase. J. Biol. Chem. 1997, 272, 27218–27223. [Google Scholar] [CrossRef]
- Dinh, T.P.; Carpenter, D.; Leslie, F.M.; Freund, T.F.; Katona, I.; Sensi, S.L.; Kathuria, S.; Piomelli, D. Brain Monoglyceride Lipase Participating in Endocannabinoid Inactivation. Proc. Natl. Acad. Sci. USA 2002, 99, 10819–10824. [Google Scholar] [CrossRef]
- Dinh, T.P.; Kathuria, S.; Piomelli, D. RNA Interference Suggests a Primary Role for Monoacylglycerol Lipase in the Degradation of the Endocannabinoid 2-Arachidonoylglycerol. Mol. Pharmacol. 2004, 66, 1260–1264. [Google Scholar] [CrossRef]
- Hashimotodani, Y.; Ohno-Shosaku, T.; Kano, M. Presynaptic Monoacylglycerol Lipase Activity Determines Basal Endocannabinoid Tone and Terminates Retrograde Endocannabinoid Signaling in the Hippocampus. J. Neurosci. 2007, 27, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Marrs, W.R.; Blankman, J.L.; Horne, E.A.; Thomazeau, A.; Lin, Y.H.; Coy, J.; Bodor, A.L.; Muccioli, G.G.; Hu, S.S.-J.; Woodruff, G.; et al. The Serine Hydrolase ABHD6 Controls the Accumulation and Efficacy of 2-AG at Cannabinoid Receptors. Nat. Neurosci. 2010, 13, 951–957. [Google Scholar] [CrossRef]
- Dinh, T.P.; Freund, T.F.; Piomelli, D. A Role for Monoglyceride Lipase in 2-Arachidonoylglycerol Inactivation. Chem. Phys. Lipids 2002, 121, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Murataeva, N.; Straiker, A.; Mackie, K. Parsing the Players: 2-Arachidonoylglycerol Synthesis and Degradation in the CNS. Br. J. Pharmacol. 2014, 171, 1379–1391. [Google Scholar] [CrossRef]
- Goparaju, S.K.; Ueda, N.; Yamaguchi, H.; Yamamoto, S. Anandamide Amidohydrolase Reacting with 2-Arachidonoylglycerol, Another Cannabinoid Receptor Ligand. FEBS Lett. 1998, 422, 69–73. [Google Scholar] [CrossRef]
- Kim, J.; Alger, B.E. Inhibition of Cyclooxygenase-2 Potentiates Retrograde Endocannabinoid Effects in Hippocampus. Nat. Neurosci. 2004, 7, 697–698. [Google Scholar] [CrossRef]
- Slanina, K.A.; Schweitzer, P. Inhibition of Cyclooxygenase-2 Elicits a CB1-Mediated Decrease of Excitatory Transmission in Rat CA1 Hippocampus. Neuropharmacology 2005, 49, 653–659. [Google Scholar] [CrossRef]
- Straiker, A.; Mackie, K. Cannabinoid Signaling in Inhibitory Autaptic Hippocampal Neurons. Neuroscience 2009, 163, 190–201. [Google Scholar] [CrossRef]
- Kingsley, P.J.; Rouzer, C.A.; Morgan, A.J.; Patel, S.; Marnett, L.J. Aspects of Prostaglandin Glycerol Ester Biology. In Advances in Experimental Medicine and Biology; Honn, K.V., Zeldin, D.C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1161, pp. 77–88. [Google Scholar]
- O’Banion, M.K. Cyclooxygenase-2: Molecular Biology, Pharmacology, and Neurobiology. Crit. Rev. Neurobiol. 1999, 13, 45–82. [Google Scholar] [CrossRef]
- Kozak, K.R.; Rowlinson, S.W.; Marnett, L.J. Oxygenation of the Endocannabinoid, 2-Arachidonylglycerol, to Glyceryl Prostaglandins by Cyclooxygenase-2. J. Biol. Chem. 2000, 275, 33744–33749. [Google Scholar] [CrossRef]
- Sang, N.; Zhang, J.; Chen, C. COX-2 Oxidative Metabolite of Endocannabinoid 2-AG Enhances Excitatory Glutamatergic Synaptic Transmission and Induces Neurotoxicity. J. Neurochem. 2007, 102, 1966–1977. [Google Scholar] [CrossRef]
- Hu, S.S.-J.; Bradshaw, H.B.; Chen, J.S.-C.; Tan, B.; Walker, J.M. Prostaglandin E2 Glycerol Ester, an Endogenous COX-2 Metabolite of 2-Arachidonoylglycerol, Induces Hyperalgesia and Modulates NFκB Activity. Br. J. Pharmacol. 2008, 153, 1538–1549. [Google Scholar] [CrossRef]
- Straiker, A.; Wager-Miller, J.; Hu, S.; Blankman, J.; Cravatt, B.; Mackie, K. COX-2 and Fatty Acid Amide Hydrolase Can Regulate the Time Course of Depolarization-Induced Suppression of Excitation. Br. J. Pharmacol. 2011, 164, 1672–1683. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E. Cannabinoids Go Nuclear: Evidence for Activation of Peroxisome Proliferator-Activated Receptors. Br. J. Pharmacol. 2007, 152, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, X.; Zhang, J.; Chen, C. Inhibition of COX-2 Expression by Endocannabinoid 2-Arachidonoylglycerol Is Mediated via PPAR-γ. Br. J. Pharmacol. 2011, 163, 1533–1549. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.-J.; Na, H.-K.; Park, J.-M.; Lee, H.-N.; Kim, W.; Yoon, I.-S.; Kim, D.-D. 15-Deoxy-Δ12,14-Prostaglandin J2, an Electrophilic Lipid Mediator of Anti-Inflammatory and pro-Resolving Signaling. Biochem. Pharmacol. 2011, 82, 1335–1351. [Google Scholar] [CrossRef]
- Raman, P.; Kaplan, B.L.F.; Thompson, J.T.; vanden Heuvel, J.P.; Kaminski, N.E. 15-Deoxy-Delta12,14-Prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor Gamma. Mol. Pharmacol. 2011, 80, 201–209. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, M.; Wang, P.; Zhang, L.; Yuan, C.; Qi, J.; Qiao, Y.; Kuo, P.C.; Gao, C. Peroxisome Proliferator-Activated Receptor γ Negatively Regulates IFN-β Production in Toll-like Receptor (TLR) 3- and TLR4-Stimulated Macrophages by Preventing Interferon Regulatory Factor 3 Binding to the IFN-β Promoter. J. Biol. Chem. 2011, 286, 5519–5528. [Google Scholar] [CrossRef]
- Gray, E.; Ginty, M.; Kemp, K.; Scolding, N.; Wilkins, A. The PPAR-Gamma Agonist Pioglitazone Protects Cortical Neurons from Inflammatory Mediators via Improvement in Peroxisomal Function. J. Neuroinflamm. 2012, 9, 561. [Google Scholar] [CrossRef]
- Corona, J.C.; Duchen, M.R. PPARγ as a Therapeutic Target to Rescue Mitochondrial Function in Neurological Disease. Free Radic. Biol. Med. 2016, 100, 153–163. [Google Scholar] [CrossRef]
- Sun, H.; Huang, Y.; Yu, X.; Li, Y.; Yang, J.; Li, R.; Deng, Y.; Zhao, G. Peroxisome Proliferator-activated Receptor Gamma Agonist, Rosiglitazone, Suppresses CD40 Expression and Attenuates Inflammatory Responses after Lithium Pilocarpine-induced Status Epilepticus in Rats. Int. J. Dev. Neurosci. 2008, 26, 505–515. [Google Scholar] [CrossRef]
- Díaz-Alonso, J.; Paraíso-Luna, J.; Navarrete, C.; del Río, C.; Cantarero, I.; Palomares, B.; Aguareles, J.; Fernández-Ruiz, J.; Bellido, M.L.; Pollastro, F.; et al. VCE-003.2, a Novel Cannabigerol Derivative, Enhances Neuronal Progenitor Cell Survival and Alleviates Symptomatology in Murine Models of Huntington’s Disease. Sci. Rep. 2016, 6, 29789. [Google Scholar] [CrossRef]
- Nakano, T.; Hozumi, Y.; Ali, H.; Saino-Saito, S.; Kamii, H.; Sato, S.; Kayama, T.; Watanabe, M.; Kondo, H.; Goto, K. Diacylglycerol Kinase ζ Is Involved in the Process of Cerebral Infarction. Eur. J. Neurosci. 2006, 23, 1427–1435. [Google Scholar] [CrossRef]
- Tanaka, T.; Okada, M.; Hozumi, Y.; Tachibana, K.; Kitanaka, C.; Hamamoto, Y.; Martelli, A.M.; Topham, M.K.; Iino, M.; Goto, K. Cytoplasmic Localization of DGKζ Exerts a Protective Effect against P53-Mediated Cytotoxicity. J. Cell Sci. 2013, 126, 2785–2797. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.R.; Gupta, R.A.; Moody, J.S.; Ji, C.; Boeglin, W.E.; Dubois, R.N.; Brash, A.R.; Marnett, L.J. 15-Lipoxygenase Metabolism of 2-Arachidonylglycerol. Generation of a Peroxisome Proliferator-Activated Receptor Alpha Agonist. J. Biol. Chem. 2002, 277, 23278–23286. [Google Scholar] [CrossRef]
- Delerive, P.; Fruchart, J.C.; Staels, B. Peroxisome Proliferator-Activated Receptors in Inflammation Control. J. Endocrinol. 2001, 169, 453–459. [Google Scholar] [CrossRef]
- O’Sullivan, S.E. An Update on PPAR Activation by Cannabinoids. Br. J. Pharmacol. 2016, 173, 1899. [Google Scholar] [CrossRef] [PubMed]
- Okine, B.N.; Gaspar, J.C.; Finn, D.P. PPARs and Pain. Br. J. Pharmacol. 2019, 176, 1421. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.; Smith, S.E.; Liimatta, M.B.; Beidler, D.; Sadagopan, N.; Dudley, D.T.; Young, T.; Wren, P.; Zhang, Y.; Swaney, S.; et al. Mechanistic and Pharmacological Characterization of PF-04457845: A Highly Potent and Selective Fatty Acid Amide Hydrolase Inhibitor That Reduces Inflammatory and Noninflammatory Pain. J. Pharmacol. Exp. Ther. 2011, 338, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Cisar, J.S.; Weber, O.D.; Clapper, J.R.; Blankman, J.L.; Henry, C.L.; Simon, G.M.; Alexander, J.P.; Jones, T.K.; Ezekowitz, R.A.B.; O’Neill, G.P.; et al. Identification of ABX-1431, a Selective Inhibitor of Monoacylglycerol Lipase and Clinical Candidate for Treatment of Neurological Disorders. J. Med. Chem. 2018, 61, 9062–9084. [Google Scholar] [CrossRef]
- Aira, Z.; Buesa, I.; Gallego, M.; Garcia del Cano, G.; Mendiable, N.; Mingo, J.; Rada, D.; Bilbao, J.; Zimmermann, M.; Azkue, J.J. Time-Dependent Cross Talk between Spinal Serotonin 5-HT2A Receptor and MGluR1 Subserves Spinal Hyperexcitability and Neuropathic Pain after Nerve Injury. J. Neurosci. 2012, 32, 13568–13581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Yang, X.; Liu, Y.-N.; Suo, Z.-W.; Shi, L.; Zheng, C.-R.; Yang, H.-B.; Li, S.; Hu, X.-D. GABAergic Disinhibition Induced Pain Hypersensitivity by Upregulating NMDA Receptor Functions in Spinal Dorsal Horn. Neuropharmacology 2011, 60, 921–929. [Google Scholar] [CrossRef]
- Thompson, R.J. Studies on RNA Synthesis in Two Populations of Nuclei from the Mammalian Cerebral Cortex. J. Neurochem. 1973, 21, 19–40. [Google Scholar] [CrossRef]
- Echeazarra, L.; García del Caño, G.; Barrondo, S.; González-Burguera, I.; Saumell-Esnaola, M.; Aretxabala, X.; López de Jesús, M.; Borrega-Román, L.; Mato, S.; Ledent, C.; et al. Fit-for-Purpose Based Testing and Validation of Antibodies to Amino- and Carboxy-Terminal Domains of Cannabinoid Receptor 1. Histochem. Cell Biol. 2021, 156, 479–502. [Google Scholar] [CrossRef] [PubMed]
- Fey, E.G.; Krochmalnic, G.; Penman, S. The Nonchromatin Substructures of the Nucleus: The Ribonucleoprotein (RNP)-Containing and RNP-Depleted Matrices Analyzed by Sequential Fractionation and Resinless Section Electron Microscopy. J. Cell Biol. 1986, 102, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Payrastre, B.; Nievers, M.; Boonstra, J.; Breton, M.; Verkleij, A.J.; van Bergen en Henegouwen, P.M. A Differential Location of Phosphoinositide Kinases, Diacylglycerol Kinase, and Phospholipase C in the Nuclear Matrix. J. Biol. Chem. 1992, 267, 5078–5084. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.; Steingrüber, N.; Jergas, B.; Redmer, A.; Kurz, C.M.; Buchalla, R.; Lutz, B.; Zimmer, A.; Schlicker, E. Cannabinoid CB1 Receptor Activation, Pharmacological Blockade, or Genetic Ablation Affects the Function of the Muscarinic Auto- and Heteroreceptor. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012, 385, 385–396. [Google Scholar] [CrossRef] [PubMed]
Target | Dilution | Host/Clonality | Isotype | Antigen | Reference | |
---|---|---|---|---|---|---|
IF | WB | |||||
ABHD12 | 1:200 | 1:2500 | Goat polyclonal | Affinity purified (ns) | C-REFLGKSEPEHQH peptide | Sigma-Aldrich, SAB2500016 |
COX2 | 1:200 | 1:2500 | Goat polyclonal | IgG | Peptide located at the C-terminus of human COX2 | Sta Cruz Biotech., sc-1745 |
DGLα | 1:250 | 1:1000 | Rabbit polyclonal | Affinity purified (ns) | Peptide corresponding to the 42 amino acids of the C-termninal end of mouse DGLα | Frontier Science, DGLα-Rb-Af380-1 |
FAAH | − | 1:1000 | Goat polyclonal | IgG | Peptide mapping near the N-terminus of human FAAH | Sta Cruz Biotech., sc-26427 |
GRP78/BiP | − | 1:2000 | Rabbit polyclonal | IgG | Peptide corresponding the 55 C-terminal aas of GRP78/BiP | Abcam, ab21685 |
Histone H3 | − | 1:500 | Rabbit polyclonal | IgG | Peptide corresponding to aas 1–20 of histone H3 | Chemicon, 382157 |
MGL | 1:200 | 1:1000 | Goat polyclonal | IgG | Peptide corresponding to aas 17–29 of human MGL | Abcam, ab77398 |
Na+/K+ ATPase | − | 1:5000 | Mouse monoclonal | IgG1 | α1 subunit of Na+/K+ -ATPase purified from lamb liver | Sigma-Aldrich, A-277 |
NeuN/Fox-3 | 1:1000 | 1:2000 | Mouse monoclonal | IgG1 | Nuclei purified from mouse brain | Chemicon, MAB377 |
NPCx | 1:4000 | 1:5000 | Mouse monoclonal | IgG1 | Protein mixture of the nuclear pore complexes | Abcam, ab24609 |
Thy1/CD90 | − | 1:6000 | Rabbit monoclonal | IgG | Epitope located near the N-terminus of human Thy1/CD90 | Abcam, ab92574 |
β-tubulin | − | 1:1000 | Mouse monoclonal | IgG1 | Epitope between aas 281–446 at the C-terminus of β-tubulin | Sigma-Aldrich, T4026, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aretxabala, X.; García del Caño, G.; Barrondo, S.; López de Jesús, M.; González-Burguera, I.; Saumell-Esnaola, M.; Goicolea, M.A.; Sallés, J. Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex. Int. J. Mol. Sci. 2023, 24, 3165. https://doi.org/10.3390/ijms24043165
Aretxabala X, García del Caño G, Barrondo S, López de Jesús M, González-Burguera I, Saumell-Esnaola M, Goicolea MA, Sallés J. Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex. International Journal of Molecular Sciences. 2023; 24(4):3165. https://doi.org/10.3390/ijms24043165
Chicago/Turabian StyleAretxabala, Xabier, Gontzal García del Caño, Sergio Barrondo, Maider López de Jesús, Imanol González-Burguera, Miquel Saumell-Esnaola, María Aranzazu Goicolea, and Joan Sallés. 2023. "Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex" International Journal of Molecular Sciences 24, no. 4: 3165. https://doi.org/10.3390/ijms24043165
APA StyleAretxabala, X., García del Caño, G., Barrondo, S., López de Jesús, M., González-Burguera, I., Saumell-Esnaola, M., Goicolea, M. A., & Sallés, J. (2023). Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex. International Journal of Molecular Sciences, 24(4), 3165. https://doi.org/10.3390/ijms24043165