Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Consequences of High-Incidence Mutations on Structural–Functional Stability
2.2. Mutation-Induced Destabilization of Key Functional Mtb-RNAP Domains
2.3. Mutational Disruption of the RIF-BP, RIF ‘Active Orientation’ and Binding Affinity
2.4. Mutation-Associated Destabilization of Catalytic Nucleic Acids Cross-Link to Active RIF’s Disorientation
3. Materials and Methods
3.1. Data Retrieval and Protein Preparation
3.2. Structural Modelling of Wildtype (wt) and Mutant (mt) Mtb-RNAPs
3.3. Molecular Dynamics (MD) Simulations and RIF Affinity Determination
3.4. Comparative Essential Dynamics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CoM | Center of mass |
ED | Essential dynamics |
MD | Molecular dynamics |
mt | Mutant |
Mtb | Mycobacterium tuberculosis |
Rg | Radius of gyration |
RIF | Rifampicin |
RNAP | RNA polymerase |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
RRDR | RIF-resistance-determining region |
wt | Wild type |
References
- WHO. Global Tuberculosis Report 2021: Supplementary Material; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol. 2022, 20, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Dolan, L.; Piggott, L.M.; McLaughlin, A.M. New developments in tuberculosis diagnosis and treatment. Breathe 2022, 18, 210149. [Google Scholar] [CrossRef] [PubMed]
- Forrest, G.N.; Tamura, K. Rifampin Combination Therapy for Nonmycobacterial Infections. Clin. Microbiol. Rev. 2010, 23, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Piccaro, G.; Giannoni, F.; Filippini, P.; Mustazzolu, A.; Fattorini, L. Activities of Drug Combinations against Mycobacterium tuberculosis Grown in Aerobic and Hypoxic Acidic Conditions. Antimicrob. Agents Chemother. 2013, 57, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Sensi, P. History of the Development of Rifampin. Rev. Infect. Dis. 1983, 5, S402–S406. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Siddiqi, N.; Rubin, E.J. Differential Antibiotic Susceptibilities of Starved Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother. 2005, 49, 4778–4780. [Google Scholar] [CrossRef] [PubMed]
- Sala, C.; Dhar, N.; Hartkoorn, R.C.; Zhang, M.; Ha, Y.H.; Schneider, P.; Cole, S.T. Simple Model for Testing Drugs against Nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2010, 54, 4150–4158. [Google Scholar] [CrossRef]
- Koch, A.; Mizrahi, V.; Warner, D.F. The impact of drug resistance on Mycobacterium tuberculosis physiology: What can we learn from rifampicin? Emerg. Microbes Infect. 2014, 3, 1–11. [Google Scholar] [CrossRef]
- Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell 2001, 104, 901–912. [Google Scholar] [CrossRef]
- Lin, W.; Mandal, S.; Degen, D.; Liu, Y.; Ebright, Y.W.; Li, S.; Feng, Y.; Zhang, Y.; Mandal, S.; Jiang, Y.; et al. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol. Cell 2017, 66, 169–179. [Google Scholar] [CrossRef]
- Murakami, K.S. Structural Biology of Bacterial RNA Polymerase. Biomolecules 2015, 5, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Ebright, R.H. RNA Polymerase: Structural Similarities between Bacterial RNA Polymerase and Eukaryotic RNA Polymerase II. J. Mol. Biol. 2000, 304, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Darst, S.A. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 2001, 11, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 2002, 12, 89–97. [Google Scholar] [CrossRef]
- Lane, W.J.; Darst, S.A. Molecular Evolution of Multisubunit RNA Polymerases: Sequence Analysis. J. Mol. Biol. 2010, 395, 671–685. [Google Scholar] [CrossRef]
- Lane, W.J.; Darst, S.A. Molecular Evolution of Multisubunit RNA Polymerases: Structural Analysis. J. Mol. Biol. 2010, 395, 686–704. [Google Scholar] [CrossRef]
- Sutherland, C.; Murakami, K.S. An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase. EcoSal Plus 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Mathew, R.; Ramakanth, M.; Chatterji, D. Deletion of the Gene rpoZ, Encoding the ω Subunit of RNA Polymerase, in Mycobacterium smegmatis Results in Fragmentation of the β′ Subunit in the Enzyme Assembly. J. Bacteriol. 2005, 187, 6565–6570. [Google Scholar] [CrossRef]
- Mathew, R.; Chatterji, D. The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol. 2006, 14, 450–455. [Google Scholar] [CrossRef]
- Basu, R.S.; Warner, B.A.; Molodtsov, V.; Pupov, D.; Esyunina, D.; Fernández-Tornero, C.; Kulbachinskiy, A.; Murakami, K.S. Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme. J. Biol. Chem. 2014, 289, 24549–24559. [Google Scholar] [CrossRef]
- Chamberlin, J.M. RNA Polymerase—An Overview. RNA Polym. 1976, 17, 17–67. [Google Scholar]
- Travers, A.A.; Burgess, R.R. Cyclic Re-use of the RNA Polymerase Sigma Factor. Nature 1969, 222, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Mooney, R.A.; Darst, S.A.; Landick, R. Sigma and RNA polymerase: An on-again, off-again relationship? Mol. Cell 2005, 20, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.P. Resistance to rifampicin: A review. J. Antibiot. 2014, 67, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Molodtsov, V.; Scharf, N.T.; Stefan, M.A.; Garcia, G.A.; Murakami, K.S. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found inMycobacterium tuberculosis. Mol. Microbiol. 2017, 103, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Stefan, M.A.; Ugur, F.S.; Garcia, G.A. Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β′ Subunit. Antimicrob. Agents Chemother. 2018, 62, e00164-18. [Google Scholar] [CrossRef] [PubMed]
- Zaw, M.T.; Emran, N.A.; Lin, Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampic-in-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 2018, 11, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; An, X.; Liu, H.; Wang, S.; Xiao, T.; Liu, H. Uncovering the Resistance Mechanism of Mycobacterium tuberculosis to Rifampicin due to RNA Polymerase H451D/Y/R Mutations from Computational Perspective. Front. Chem. 2019, 7, 819. [Google Scholar] [CrossRef]
- Singh, A.; Grover, S.; Sinha, S.; Das, M.; Somvanshi, P.; Grover, A. Mechanistic Principles behind Molecular Mechanism of Rifampicin Resistance in Mutant RNA Polymerase Beta Subunit of Mycobacterium tuberculosis. J. Cell Biochem. 2017, 118, 4594–4606. [Google Scholar] [CrossRef]
- Srivastava, G.; Tripathi, S.; Kumar, A.; Sharma, A. Molecular insight into multiple RpoB clinical mutants of Mycobacterium tuberculosis: An attempt to probe structural variations in rifampicin binding site underlying drug resistance. Int. J. Biol. Macromol. 2018, 120, 2200–2214. [Google Scholar] [CrossRef]
- Amusengeri, A.; Khan, A.; Tastan Bishop, Ö. The Structural Basis of Mycobacterium tuberculosis RpoB Drug-Resistant Clinical Mutations on Rifampicin Drug Binding. Molecules 2022, 27, 885. [Google Scholar] [CrossRef] [PubMed]
- Flandrois, J.-P.; Lina, G.; Dumitrescu, O. MUBII-TB-DB: A database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinform. 2014, 15, 107. [Google Scholar] [CrossRef] [PubMed]
- Miotto, P.; Tessema, B.; Tagliani, E.; Chindelevitch, L.; Starks, A.M.; Emerson, C.; Hanna, D.; Kim, P.S.; Liwski, R.; Zignol, M.; et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur. Respir. J. 2017, 50, 1701354. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.; Halse, T.A.; Kohlerschmidt, D.; Lapierre, P.; Modestil, H.A.; Kearns, C.H.; Dworkin, F.F.; Rakeman, J.L.; Escuyer, V.; Musser, K.A. Low-Level Rifampin Resistance and rpoB Mutations in Mycobacterium tuberculosis: An Analysis of Whole-Genome Sequencing and Drug Susceptibility Test Data in New York. J. Clin. Microbiol. 2021, 59, e01885-20. [Google Scholar] [CrossRef] [PubMed]
- Tastan Bishop, Ö.; Kroon, M. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. J. Mol. Model. 2011, 17, 3163–3172. [Google Scholar] [CrossRef] [PubMed]
- David, C.C.; Jacobs, D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol. 2014, 1084, 193–226. [Google Scholar] [CrossRef] [PubMed]
- Amamuddy, O.S.; Verkhivker, G.M.; Tastan Bishop, Ö. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 Mpro. J. Chem. Inf. Model. 2020, 60, 5080–5102. [Google Scholar] [CrossRef]
- Okeke, C.J.; Musyoka, T.M.; Amamuddy, O.S.; Barozi, V.; Tastan Bishop, Ö. Allosteric pockets and dynamic residue network hubs of falcipain 2 in mutations including those linked to artemisinin resistance. Comput. Struct. Biotechnol. J. 2021, 19, 5647–5666. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, B. Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem. Sci. 2022, 47, 710–724. [Google Scholar] [CrossRef]
- Mishanina, T.V.; Palo, M.Z.; Nayak, D.; Mooney, R.A.; Landick, R. Trigger loop of RNA polymerase is a positional, not acid–base, catalyst for both transcription and proofreading. Proc. Natl. Acad. Sci. USA 2017, 114, E5103–E5112. [Google Scholar] [CrossRef]
- Saecker, R.M.; Record, M.T.; Dehaseth, P.L. Mechanism of Bacterial Transcription Initiation: RNA Polymerase-Promoter Binding, Isomerization to Initiation-Competent Open Complexes, and Initiation of RNA Synthesis. J. Mol. Biol. 2011, 412, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bushnell, D.A.; Westover, K.D.; Kaplan, C.D.; Kornberg, R.D. Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis. Cell 2006, 127, 941–954. [Google Scholar] [CrossRef] [PubMed]
- King, R.A.; Markov, D.; Sen, R.; Severinov, K.; Weisberg, R.A. A Conserved Zinc Binding Domain in the Largest Subunit of DNA-dependent RNA Polymerase Modulates Intrinsic Transcription Termination and Antitermination but Does Not Stabilize the Elongation Complex. J. Mol. Biol. 2004, 342, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, H.; Saecker, R.M.; Campbell, E.A. Transcription initiation in mycobacteria: A biophysical perspective. Transcription 2020, 11, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Tuske, S.; Sarafianos, S.G.; Wang, X.; Hudson, B.; Sineva, E.; Mukhopadhyay, J.; Birktoft, J.J.; Leroy, O.; Ismail, S.; Clark, A.D.; et al. Inhibition of Bacterial RNA Polymerase by Streptolydigin: Stabilization of a Straight-Bridge-Helix Active-Center Conformation. Cell 2005, 122, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Sandgren, A.; Strong, M.; Muthukrishnan, P.; Weiner, B.K.; Church, G.M.; Murray, M.B. Tuberculosis Drug Resistance Mutation Database. PLoS Med. 2009, 6, e1000002. [Google Scholar] [CrossRef]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.W.S.; Vranken, W.F. ACPYPE-AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Free Download: BIOVIA Discovery Studio Visualizer-Dassault Systèmes. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 22 October 2021).
- Barozi, V.; Musyoka, T.M.; Amamuddy, O.S.; Tastan Bishop, Ö. Deciphering Isoniazid Drug Resistance Mechanisms on Dimeric Mycobacterium tuberculosis KatG via Post-molecular Dynamics Analyses Including Combined Dynamic Residue Network Metrics. ACS Omega 2022, 7, 13313–13332. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. pandas: A Foundational Python Library for Data Analysis and Statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- Waskom, M.L. seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Amamuddy, O.S.; Glenister, M.; Tshabalala, T.; Tastan Bishop, Ö. MDM-TASK-web: MD-TASK and MODE-TASK web server for analyzing protein dynamics. Comput. Struct. Biotechnol. J. 2021, 19, 5059–5071. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.K.; Penkler, D.L.; Amamuddy, O.S.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics 2017, 33, 2768–2771. [Google Scholar] [CrossRef] [PubMed]
Systems | ΔEvdW (kcal/mol) | ΔEele (kcal/mol) | ΔEgb (kcal/mol) | ΔEsurf (kcal/mol) | ΔGgas (kcal/mol) | ΔGsolv (kcal/mol) | ΔGbind (kcal/mol) |
---|---|---|---|---|---|---|---|
wt | −62.9 ± 3.3 | −32.5 ± 3.4 | 59.0 ± 1.0 | −7.2 ± 0.07 | −95.4 ± 4.8 | 51.8 ± 1.1 | −43.6 ± 4.9 |
I65T | −40.6 ± 3.5 | −26.9 ± 5.7 | 52.3 ± 4.0 | −5.5 ± 0.04 | −67.6 ± 6.7 | 46.8 ± 4.0 | −20.8 ± 7.8 |
D441V | −58.0 ± 3.3 | −15.3 ± 2.6 | 46.1 ± 1.3 | −7.0 ± 0.05 | −73.2 ± 4.2 | 39.1 ± 1.3 | −34.1 ± 4.4 |
H451D | −63.0 ± 3.3 | −24.5 ± 4.8 | 55.6 ± 1.9 | −7.6 ± 0.05 | −87.6 ± 5.8 | 48.0 ± 1.9 | −39.5 ± 6.1 |
H451L | −57.2 ± 3.5 | −44.3 ± 2.3 | 66.3 ± 0.8 | −6.9 ±0.06 | −101.5 ± 4.2 | 59.4 ± 0.8 | −42.1 ± 4.2 |
H451N | −45.5 ± 3.0 | −30.3 ± 4.6 | 49.2 ± 2.8 | −5.2 ± 0.06 | −75.8 ± 5.6 | 44.0 ± 2.8 | −31.8 ± 6.2 |
H451R | −60.0 ± 3.3 | −65.3 ± 3.0 | 82.1 ± 1.4 | −7.3 ± 0.04 | −125.3 ± 4.5 | 74.8 ± 1.4 | −50.5 ± 4.7 |
H451Y | −55.4 ± 3.0 | −30.5 ± 1.9 | 56.3 ± 0.9 | −6.9 ± 0.05 | −85.9 ± 3.6 | 49.5 ± 0.9 | −36.4 ± 3.7 |
S456L | −64.2 ± 3.5 | −43.2 ± 3.7 | 71.4 ± 1.7 | −7.7 ± 0.01 | −107.3 ± 5.1 | 63.7 ± 1.7 | −43.6 ± 5.4 |
D551E | −67.4 ± 3.3 | −55.3 ± 3.6 | 77.3 ± 1.9 | −8.8 ± 0.1 | −122.7 ± 4.9 | 68.6 ± 1.9 | −54.1 ± 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monama, M.Z.; Olotu, F.; Tastan Bishop, Ö. Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int. J. Mol. Sci. 2023, 24, 3313. https://doi.org/10.3390/ijms24043313
Monama MZ, Olotu F, Tastan Bishop Ö. Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. International Journal of Molecular Sciences. 2023; 24(4):3313. https://doi.org/10.3390/ijms24043313
Chicago/Turabian StyleMonama, Mokgerwa Zacharia, Fisayo Olotu, and Özlem Tastan Bishop. 2023. "Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants" International Journal of Molecular Sciences 24, no. 4: 3313. https://doi.org/10.3390/ijms24043313
APA StyleMonama, M. Z., Olotu, F., & Tastan Bishop, Ö. (2023). Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. International Journal of Molecular Sciences, 24(4), 3313. https://doi.org/10.3390/ijms24043313