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Abstract: Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts
cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and trunca-
tions are common molecular underpinnings in the formation of aberrant protein conformations that
seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau
in Alzheimer’s disease, α-synuclein in Parkinson’s disease, and TAR DNA-binding protein (TDP-43)
in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and
possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of
protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications
of changes to the primary/secondary (mutations, posttranslational modifications, and truncations)
and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the
four aforementioned proteins. Understanding these aggregation mechanisms provides insights into
neurodegenerative diseases and their common underlying molecular pathology.

Keywords: neurodegenerative diseases; intrinsically disordered proteins; Aβ; tau; α-synuclein;
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1. Introduction

Neurodegenerative diseases (NDs) are characterized by the progressive damage and
dysfunction of neuronal cells. Despite exhibiting diverse clinical symptoms, these diseases share
many common pathologic features. ND pathogenesis is thought to involve protein misfolding
and aggregation within specific brain regions, which trigger neuroinflammation and oxidative
stress at sites of injury, subsequently leading to degeneration of neural tissues. Molecular
mechanisms responsible for the initial protein misfolding and the change from functional
protein to pathologic aggregates have been a major subject of research in recent years.

NDs are classified according to the clinical symptoms and the major component(s)
of protein deposits found in affected brain regions [1]. A vast majority of these diseases
are associated with a class of proteins known as intrinsically disordered proteins, or IDPs.
These proteins can be entirely unstructured or hybrids of structured domains and long
stretches of intrinsically disordered regions (IDRs). IDRs are primarily composed of polar or
charged amino acids, lacking sufficient hydrophobic residues that can mediate cooperative
folding [2]. IDPs exist in a dynamic equilibrium of multiple conformational states of varying
degrees of folding under physiological conditions [3–5]. The conformations adopted are
largely affected by factors such as amino acid sequence, embedded motifs, and charge
distribution/arrangement [6–8].

IDPs are highly prevalent in many proteomes, including that of humans, and play
important roles in cellular processes such as the regulation of transcription and transla-
tion [9,10], cell cycle control [11,12], and cell signaling [12,13]. Changes in the cellular
milieu and/or mutation(s) in IDPs can disrupt normal protein functions, resulting in
misfolding and aggregation/fibrillation [14,15]. Misfolded proteins can serve as conforma-
tional switches and/or seeds that proceed to self-propagation [16–19], taking on prion-like
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properties and causing cellular stress and damage [20,21]. Misfolded proteins can also
cross-seed and induce other proteins to aggregate [22–25]. IDPs associated with common
neurodegenerative diseases include amyloid beta (Aβ) and tau for Alzheimer’s disease
(AD), α-synuclein (α-syn) for Parkinson’s disease (PD), and TAR DNA-binding protein
(TDP-43) for amyotrophic lateral sclerosis (ALS) (Figure 1).
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helical N-terminus. TDP-43 (human, UniProt ID: Q13148) contains a long unstructured C-terminus. 
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identified to be the main component of neocortical plaques [34], a pathological hallmark 
of AD [35]. AlphaFold predicts Aβ-42 to be a primarily disordered peptide with a small 
helical region, whereas IUPred assigned a low disorder score. Experimentally, Aβ-42 ex-
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favored based on environmental conditions [36,37], suggesting that Aβ-42 can be induced 
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Figure 1. Predicted structure and disorder of Aβ, tau, α-syn, and TDP-43. Structures were pre-
dicted using AlphaFold [26], and calculations for disorder were determined using IUPRED2 [27–30].
IUPRED2 provides IUPred and ANCHOR scores for disordered proteins. ANCHOR predicts disorder
based on amino acid sequence, identifying potential binding sites that are disordered in isolation,
while IUPred predicts disorder based on energy estimation. IUPred scores from 0 to 0.5 are con-
sidered ordered while scores from 0.5 to 1 are considered disordered. Aβ-42 (human) was chosen
as the representative peptide for Aβ. Tau (human, UniProt ID: P10636) is highly disordered with
a C-terminal helical region. α-Syn (human, UniProt ID: P37840) has a disordered C-terminus and
α-helical N-terminus. TDP-43 (human, UniProt ID: Q13148) contains a long unstructured C-terminus.
(Note that these are predicted structures only and may not represent the major physiological protein
conformations. For example, α-syn has been shown to adopt more random coil-like structures in
physiological buffer conditions, with the elongated helical structure predicted using AlphaFold only
favored in the presence of ligands such as membrane vesicles [31–33]).

Aβ is a small, 39–43 amino acid peptide heavily implicated in AD. The peptide was
identified to be the main component of neocortical plaques [34], a pathological hallmark of
AD [35]. AlphaFold predicts Aβ-42 to be a primarily disordered peptide with a small helical
region, whereas IUPred assigned a low disorder score. Experimentally, Aβ-42 exists as a
mixture of random coils, α-helixes, and β-sheets, and specific conformations are favored
based on environmental conditions [36,37], suggesting that Aβ-42 can be induced to favor
conformations that are more aggregation prone. Tau is a microtubule-associated protein
that exists as various isoforms with varying numbers of microtubule binding domains and
29-amino-acid-long inserts [38]. The isoform shown in Figure 1 contains three microtubule-
binding repeats (tau-3R) and exhibits high disorder according to both AlphaFold and IUPred
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predictions. Tau is a major component of neurofibrillary tangles (NFTs) in AD [39]. α-Syn is
a 140 amino acid protein whose mutated forms were first discovered in relation to PD [40].
α-Syn encodes a helical N-terminus, a non-amyloidal component domain (NAC), and an
acidic, disordered C-terminal domain. TDP-43 is a 414 amino acid protein implicated in over
90% of ALS cases [41,42]. It contains a structured N-terminal domain, two RNA recognition
motifs (RRMs), and a disordered low complexity C-terminal domain (LCD).

The four aforementioned proteins undergo misfolding from their native states to form
β-sheet-rich structures ranging from small oligomers to large fibrillar aggregates in diseased
brains [43,44]. This review describes the molecular precursors responsible for misfolding and
aggregation of the aforementioned ND-associated IDPs, summarized in Figure 2.
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2. Mutation

AD, PD, and ALS occur in both sporadic and familial forms. The majority of ND cases
are sporadic, constituting approximately 97% of AD cases [45], 85% of PD cases [46], and
90–95% of ALS cases [47]. The remaining familial occurrences are caused by inheritable mu-
tations, which in disease-related proteins generally exhibit similar phenotypes: increased
aggregation propensities [48–50], altered protein populations [51–53] and proteasomal
regulation [51,54], and increased cytotoxicity in model organisms [55–57].

Many Aβ mutations are located on the APP gene, which encodes for the amyloid
precursor protein (APP) [58]. Most of the pathogenic mutations occur in a section of the
APP gene that encodes the proteolytic sites of β- and γ-secretases, which result in an
overall increased generation of Aβ [54,59]. Other APP mutations can affect the cleavage
process from APP to Aβ and generate truncated products exhibiting differential aggregation
propensities [52]. In particular, the Arctic APP mutant (APP E693G) displays high levels of
protofibrils as well as cognitive defects in mice [55,60,61].

Tau protein is encoded by the MAPT gene, with both exonic and intronic mutations
identified in tauopathies. Mutations generally promote tau aggregation by altering the ratio
of tau containing three tubulin-binding repeats (tau-3R) to four tubulin-binding repeats
(tau-4R), otherwise known as the 3R:4R tau ratio [48,49]. Tau-3R and tau-4R isoforms
exist in a one-to-one ratio in most regions of the brain; deviations from this ratio char-
acterize tauopathies [38]. Increased tau-4R expression has been found to promote tau
phosphorylation and oligomerization and induce behavioral abnormalities in a mouse
model expressing human tau [56]. Mutations also induce tau fragmentation and enhance
tau hyperphosphorylation [51,62]. Extensively studied tau mutants include G272V, P301L,
V337M, and R406W [63–66]; however, it should be noted that these mutants are associated
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with frontotemporal dementia (FTD), and not AD. No MAPT mutations have been associ-
ated with AD so far, suggesting that mechanisms underlying tau aggregation in AD may
be different from those involved in other tauopathies caused by MAPT mutations.

α-Syn was first implicated in NDs when the A53T mutation was identified in autoso-
mal dominant PD [40]. Autosomal dominant forms of PD are associated with N-terminal
missense mutations, such as A53T, A53E, A30P, and E46K. [67–69]. Mutants A53T and A30P
of α-syn have been shown to be structurally defective for membrane binding [31,32,70,71]
and exhibit enhanced self-aggregation propensity and kinetics [72]. Mutant A30P α-syn
has also been shown to exhibit 2-state folding thermodynamics, compared to the 3-state
folding behavior of wild-type α-syn [71]. Wild-type α-syn is capable of assembling into
two types of dimers, with one dimeric form more favored than the other [73]. Mutants
A53T, A30P, and E46K have been demonstrated to promote dimerization and enhance the
formation of the less favored dimeric structure [73]. The structural heterogeneity of α-syn
dimers is suggested to indicate different aggregation pathways. More recently discovered
mutations, A18T and A29S, were found to aggregate faster than wild-type α-syn, with the
A18T mutant having faster aggregation kinetics compared to A29S [74].

Numerous mutations in the TARDBP gene have been identified as being associated
with ALS. These TDP-43 mutations can increase aggregation propensity, enhance cytoplas-
mic mislocalization, and alter protein stability [50,75]. Most ALS-associated mutations
appear in exon 6 of the TARDBP gene, which encodes for the intrinsically disordered C-
terminal region of TDP-43. The most well-studied TDP-43 mutations include A315T, Q331K,
M337V, and D169G, for which several ALS disease models have also been established [50].
Recombinantly expressed TDP-43 containing ALS-linked mutations were found to have
increased aggregation in vitro and promoted cytotoxicity in yeast cells [57]. Peptides from
the TDP-43 amyloidogenic core region (residues 286–366) containing ALS-associated muta-
tions also form amyloid-like fibrils [76,77]. TDP-43 A315T mutant has been found to form
amyloid fibrils in vitro and cause cell death when added to cultured neuronal cells [77].
Additional information regarding mutations, as well as reviews that discuss the role of
mutations in NDs in-depth, can be found in Table 1.

Table 1. Mutations associated with NDs.

Protein Mutation Citation

Aβ E693G [55,60,61]
* [78]

tau G272V [65,66,79]
P301L [64–66,79]
V279M [64]
V337M [64,79]
R406W [65,79]

* [80]

α-Syn A53T [40,67,68]
A53E [81]
A30P [67,69]
E46K [67]

* [82]

TDP-43 A315T [83]
Q331K [75]
M337V [75]
D169G [83,84]

* [50]
* In-depth review and additional mutations.

3. Posttranslational Modification

Posttranslational modifications (PTMs) are frequently used to regulate IDP function,
localization, and turnover [85,86]. Aberrant PTMs disrupt Aβ, tau, α-syn, and TDP-43
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functions and are linked to neurodegeneration. The mechanisms by which PTM leads to
disease pathology are largely dependent on the type of PTM and the protein involved. In
general, however, PTMs, such as phosphorylation and acetylation, alter charge properties,
affect binding interactions [87], folding and conformational stability [88], and oligomeriza-
tion states [89], all of which exhibit the ability to modulate aggregation. Pathologic PTMs
include phosphorylation, ubiquitination, acetylation, and glycosylation.

PTMs of Aβ have been demonstrated to increase its aggregation rate. Phosphorylation
of residue S8 increases the stability of the β-sheet conformation of Aβ [90,91], and phos-
phorylated Aβ have been detected in the brains of transgenic mice and AD patients [88]. In
Drosophila, phosphorylated Aβ induced higher toxicity compared to non-phosphorylated
Aβ [90]. In addition to phosphorylation, glycation also stimulates amyloid aggregation.
Aβ in amyloid deposits are glycated [92]; advanced glycation of Aβ can seed and ac-
celerate aggregation of soluble Aβ peptide [93,94]. Cerebral spinal fluid of AD patients
contain abnormally O-glycosylated Aβ peptides of 15–17 residue size [95], suggesting that
glycosylation may play a role in Aβ clearance [96].

Tau hyperphosphorylation is responsible for its loss of physiological functions, gain
in toxicity, and aggregation in the form of NFTs. Specifically, residues S396, S404, and
S422 have been found abnormally hyperphosphorylated in diseased brains [97], and it has
been suggested that phosphorylation at these residues may influence tau aggregation [98].
Hyperphosphorylation has also been shown to impair microtubule binding [87], which
could lead to microtubule destabilization and compromised cytoskeletal integrity. Tau
acetylation was first recognized in ND mouse models [99,100]. Acetylation of K280 weakens
the binding of tau to negatively charged microtubules, potentially destabilizing microtubule
networks [101,102]. Ubiquitin has been identified in tau inclusions extracted from the
brains of tauopathy patients; however, the role of ubiquitination in ND is not yet known.
While ubiquitin is a component of tau aggregates found in the brains of AD patients, tau
phosphorylation precedes its ubiquitination in the NFTs of AD patients [103,104]. This
suggests that ubiquitin may be linked to tau after the formation of the fibrillar inclusions.
However, other groups have reported that both mono- and polyubiquitination contribute to
the formation of insoluble protein inclusions present in neurodegenerative diseases [105,106],
and that tau ubiquitination in cell cultures increases aggregation [107].

Addition of side chain modifiers has also been shown to modulate α-syn toxicity.
Physiological levels of phosphorylated α-syn are relatively low; however, threonine, serine,
and tyrosine hyperphosphorylation are commonly found in pathologically aggregated
α-syn [108,109]. Most phosphorylated residues are located in the C-terminus of α-syn,
which is thought to be involved in α-syn pathology. S129, in particular, is phosphorylated
in >90% of PD patients and is used as a pathological marker [108]. Ubiquitinated α-syn
is often present in inclusions of PD patients in conjunction with phosphorylation [110].
Sumoylation [111,112], nitration [113], and glycosylation [114] of α-syn have also been
observed in association with α-syn toxicity.

The two most pathologically significant PTMs in TDP-43 are phosphorylation and
ubiquitination. TDP-43 phosphorylation is a signature of ALS pathology; S409/S410 phos-
phorylation, in particular, are distinctly observed in ALS patients [115]. Phosphorylation is
associated with cytoplasmic mislocalization and aggregation of TDP-43 in neurons [116,117].
TDP-43 has also been found in the ubiquitinated state in ALS brain inclusions [42]. Ubiqui-
tination facilitates TDP-43 cytoplasmic accumulation into inclusions without any detectable
evidence of its degradation [118,119]. Additionally, acetylation may serve a pivotal role in
mediating TDP-43 function and dysfunction [120].

PTM is an ever-expanding field of research. Although the PTMs most discussed in-
depth in this review were phosphorylation and ubiquitination, many other PTMs affect these
proteins and other disease-related IDPs. Table 2 provides references to additional resources
that discuss the roles of PTM addition for each protein. Further investigation of other covalent
modifications is warranted to build a more comprehensive picture of how the cells regulate
behaviors of ND-associated proteins and how aberrant regulations can be rescued.
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Table 2. PTMs associated with NDs.

Protein PTM Residue Citation

Aβ
Phosphorylation S8 [90]

Glycation N-term/K residues [92]
Glycosylation Y10 [121]

* [122]

tau
Phosphorylation S396 [97]

S404 [97]
S422 [97]

Acetylation K280 [99]
Ubiquitination K48 [103]

K63 [105]
* [123]

α-Syn

Phosphorylation S129 [108]
Ubiquitination K6 [124]

K12 [124]
K23 [124]

* [124]

TDP-43
Phosphorylation S409 [115]

S410 [115]
Ubiquitination K48 [125]

K63 [125]
* [125]

* In-depth review with information about additional PTMs.

4. Truncation

Protein truncation is one of the most common pathological modifications of IDPs.
Truncations in IDPs can alleviate steric hindrance involved with protein folding, inducing
structural changes that can lead to protein misfolding [126]. The truncated forms exhibiting
perturbed aggregation behavior can act as seeds for nucleation and partake in self-assembly
that results in the formation of insoluble structures. Moreover, truncation is known to
impede vital functions of IDPs, leading to both loss-of-function and toxic gain-of-function.
A plethora of studies have demonstrated that truncated forms of neuronal IDPs are the
driving force in various neurodegenerative proteinopathies [51,127,128].

Aβ peptides are generated by the cleavage of APP via β- and γ-secretases [129]. In
nonneuronal cells, the majority of APP proteins are initially cleaved by α-secretase. This
nonamyloidogenic cleavage occurs within the Aβ domain and prevents the production
of Aβ [130]. In contrast, through the amyloidogenic pathway, β-secretase mediates the
initial cleavage of APP, which is subsequently processed by γ-secretase to produce Aβ

peptides [131,132]. The amyloidogenic cleavage occurs within the transmembrane domain
of APP and generates C-terminally truncated peptides of various sizes, ranging from 38 to
42 amino acids. The levels of generated peptides are used to distinguish AD from other
NDs [133,134]. The Aβ species most strongly implicated in AD is Aβ-42. Aβ-42 exhibits
enhanced aggregation propensity compared to other Aβ peptides [135]. Although healthy
individuals can also generate Aβ peptides, higher levels of Aβ-42 are detected in AD
patients’ brain samples [133,136], and AD patients have been observed to generate longer
Aβ forms compared to unafflicted individuals [127].

Truncated tau species are derived from proteolytic processing via proteases, of which
caspases and calpains are of particular interest. Specific cleavage products of caspases
−2, −3, and −6 have been linked to AD. A truncated form of tau generated by caspase-
2 cleavage at D314 has been found in AD brains [51,137]. Caspase-3 cleavage at D421
generates a tau-421 species; elevated levels of caspase-3 and tau-421 have been observed
in AD [51,138]. Tau-421 colocalizes with NFTs in human AD brain and correlates with
NFT formation and cognitive impairment in aged mice [139]. Tau can also be cleaved by
caspase-6 to produce tau-13 and tau-402 truncations. Active caspase-6 and tau-402 were



Int. J. Mol. Sci. 2023, 24, 3380 7 of 17

observed in NFTs and neuritic plaques in the AD brain [140]. In addition, tau-402 levels
in cerebrospinal fluid correlate with impaired cognitive performance in AD patients [141].
Calpains are calcium-dependent cysteine proteases, and calpain-mediated tau cleavage
generates several truncated tau isoforms such as tau-45–230 and tau-243–441 [142,143].
Increased levels of tau-45–230 have been identified in AD brain samples, and elevated
tau-243–441 levels are observed in transgenic tau Tg601 mouse model [143].

α-Syn inclusions in human brain contain C-terminally truncated α-syn protein, which
may be generated by proteasome degradation or calpain cleavage [144,145]. C-terminally
truncated α-syn fibrillizes in vitro [146], and mice expressing this α-syn species in dopamin-
ergic neurons demonstrate neuronal aggregates with either granular or fibrillar morpholo-
gies [147]. Caspase cleavage of α-syn generates 1–121 α-syn. This truncated peptide
assembles into fibrils and demonstrates prion-like seeding [128,148].

The C-terminal region of TDP-43 is highly disordered and comprises a glycine-rich
region. Highly cytotoxic C-terminal fragments of sizes 25–35 kDa that are produced from
aberrant caspase cleavage of TDP-43 are the prominent species found in the inclusion
bodies identified from ALS-affected brains [149,150]. The C-terminal region of TDP-43 also
contains a short, highly dynamic and unstable helix–turn–helix region in residues 311–360.
Peptides containing this region form amyloid-like fibrils in vitro, which can exhibit prion-
like toxicity in cells [76,151]. Table 3 provides additional resources that discuss different
protein truncations and their roles in NDs.

Table 3. Truncations associated with NDs.

Protein Truncation Citation

Aβ Aβ-38 [133]
Aβ-40 [133]
Aβ-42 [133,134]

* [121]

tau tau-314 [51,137]
tau-421 [51,138]
tau-13 [140]

tau-402 [140]
tau-45–230 [141]

tau-243–441 [143]
* [152]

α-Syn 1–121 [128,148]
* [53]

TDP-43 TDP-90–414 [149]
TDP-220–414 [149,153]

* [154]
* In-depth review and information about additional truncations.

5. Toxic Oligomerization

Significant evidence suggests that smaller, soluble misfolded oligomers may be the
true cause of neurodegeneration [155–157]. Misfolded oligomers are a group of species that
exist in a range of sizes, from dimers to protofibrillar structures [158–160]. These oligomeric
species are highly dynamic and exist in equilibrium with monomers and fibrils. Some
oligomers may be intermediates for amyloid fibril formation while others might be termi-
nal, off-pathway products [160,161]. The heterogeneity, thermodynamic interconversion
between species, and aggregation propensity of these oligomers have made it very difficult
to obtain high-resolution structural information, as well as to determine which are the most
relevant oligomeric structures for disease [157,159].

The Aβ oligomer hypothesis was introduced in 1998 and suggested that the damage
found in AD patient brains is caused by oligomeric species [162]. Since then, oligomeric
species of various sizes have been identified in human brains and in brains from APP
transgenic mice, although the characterization of these oligomers has been hindered by their
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metastability and heterogeneity [159]. Oligomeric species that are ‘on-pathway’ and ‘off-
pathway’ to fibril formation have been observed [163]. Some oligomers (>50 kDa) identified
by mass spectrometry are toxic and off-pathway of amyloid formation [164,165] while other,
smaller species (<50 kDa) that react with anti-fibril antibodies readily form fibrils and are
less associated with toxicity [166,167]. Aβ can also assemble into intermediate structures
known as protofibrils, which are large (>100 kDa) on-pathway species for fibrillation [168].
These Aβ protofibrillar species, which have been shown to induce neurotoxicity in rat
cortical neurons [168] and impair cognitive and behavioral functions (such as spatial–
temporal pattern separation and learning in mice [169]), are associated with inflammatory
responses, and have been detected in AD brains [170].

Oligomeric tau may also be the toxic species in tauopathies. Hyperphosphorylated tau
assembles into oligomers prior to NFT formation. Hyperphosphorylated tau monomers
have lowered affinity to microtubules and increased affinity for other tau monomers to
form oligomeric tau that is detergent-soluble. These tau oligomers potentiate neuronal
damage, leading to neurodegeneration and traumatic brain injury [89,171,172]. In AD
brain samples, tau oligomers were found at a fourfold greater concentration compared to
healthy control samples [173]. When the oligomer grows, it adapts a β-sheet structure and
transforms into a detergent-insoluble aggregate with granular appearance, which elongates
into tau fibrils and ultimately forms NFTs [174]. This process suggests that tau oligomers
may be involved in neuronal dysfunction prior to NFT formation [175].

α-Syn matures from monomer to amyloid fibrils rich in β-sheets through several
intermediate oligomeric species [176,177]. Single-molecule studies of α-syn have identified
conformations that can initiate pathologic aggregation [31,71,178]. Findings have suggested
that certain α-syn oligomers or protofibrils may be toxic [179,180]. The initial observation
that the mutant A30P α-syn monomers were consumed more rapidly but fibrillized more
slowly than WT α-syn suggests that the oligomeric intermediary species may be pathologic,
rather than the fibrillar forms [176,177]. Direct in vivo data supporting the toxic protofibril
hypothesis are still relatively limited, and most of the evidence is circumstantial.

TDP-43 oligomerization and its potential neurotoxic properties have also been studied.
In normal brains, TDP-43 exist as dimers in the nucleus of neurons [181,182]. However,
there are reports of pathologic TDP-43 oligomers, which may be structurally distinct from
the nuclear oligomers. The N-terminal domain regulates dimerization [181,183], and the
N-terminal region (residues 3–183) acts as an intermolecular interacting domain for an
86 kDa species that was observed in an immunoblot of extracts from deceased ALS patient
brains [184]. Full-length TDP-43, not only certain domains, has also been shown to form
stable, spherical cytotoxic oligomers in neuronal cells [185]. These TDP-43 oligomers can
also cross-seed Aβ-42 peptide, demonstrating a structural conversion that can occur among
common amyloid species [185,186]. Furthermore, such TDP-43 oligomeric aggregates were
detected in brain sections of TDP-43 mouse models as well as ND patients [185].

6. Biomolecular Condensation

Biomolecular condensates (BMCs) include membraneless organelles, which are small
compartments that are not encased in lipid membranes. BMC formation can be driven by
liquid–liquid phase separation (LLPS)—a process by which a solution demixes into two liq-
uid states: one phase concentrated in macromolecules and another dilute phase. [187–189].
It should be noted that while IDPs typically show increased tendency to phase separate,
disorder is not a prerequisite for phase separation. Structured domains can also be in-
duced to phase separate [190]. BMCs congregate and concentrate proteins and nucleic
acids that are involved in diverse processes, including RNA metabolism, DNA damage
response, and signal transduction. Although these condensates play many physiologi-
cal roles [191,192], their aberrant behaviors may be associated with disease, especially
neurodegeneration [193–195].

In the case of Aβ, recruitment into BMCs may actually be protective. A recent study by
Kuffner et al. demonstrated that Aβ-42 was recruited into a liquid droplet along with other
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scaffold proteins of membraneless organelles. Although Aβ-42 concentration increased in
the sequestered phase, its aggregation was inhibited [196]. This result suggests that another
role of BMCs is to sequester aggregation-prone proteins as a protective measure.

Tau phase separation plays a role in its biological and pathological functions. Tau
decreases the critical concentration for tubulin assembly [197]. In the presence of tau
condensates, tubulin assembly is further facilitated, indicating that tau condensates may
act as nucleation sites for microtubules [191]. Phase separation may also initiate tau
aggregation, as phosphorylated tau has higher phase separation propensity [193,198]. Tau
phase separation has also been shown to be inhibited by acetylation [199]. These studies
suggest that tau BMCs serve a functional role that can be modulated by PTMs, although
further studies are required to fully elucidate the regulation of BMCs.

α-Syn has been shown to phase separate in vitro in the presence of molecular crowd-
ing agents, although at high critical concentrations and after prolonged incubation [200].
Mutations and PTMs significantly lower this critical concentration and decrease the time
necessary to form droplets [194]. These observations suggest that the phase separation
properties of α-syn are more closely related to its aggregation.

TDP-43 BMCs have both functional and dysfunctional relevance. TDP-43 is a compo-
nent of stress granules, transient repositories of proteins and RNAs that form when cells
are exposed to internal or external stressors [192,195]. TDP-43 is also found in insoluble cy-
toplasmic inclusions that are hypothesized to originate from stress granules [195]. In vitro
studies of TDP-43 have shown that phase separation facilitates aggregation of the unstruc-
tured C-terminus [201], and that fibrillation and phase separation can be decoupled [202].
ALS-relevant TDP-43 mutants disrupt phase separation and enhance aggregation, though
with irregular morphology [203].

7. Conclusions

With the emergence of IDP roles in vital cell functions, as well as their implications
in various diseases, the field of IDP research has been rapidly expanding within recent
decades. This review sought to summarize the molecular mechanisms that underlie the
major IDPs associated with the most common neurodegenerative diseases. Mutations,
aberrant PTMs, and truncations contribute to the pathologic properties of ND-associated
proteins Aβ and tau, α-syn, and TDP-43, respectively, associated with AD, PD, and ALS.
The capability of each protein to assemble into cytotoxic oligomeric species that may evolve
into the aggregated hallmarks of their respective diseases as well as the functional and
dysfunctional duality of their biomolecular condensates demonstrate that the pathway from
functional to pathological is not straightforward, rather winding with multiple avenues for
regulation and therapy. While this review is primarily focused on four specific proteins,
these trends can be observed in other IDPs associated with neurodegenerative diseases
such as TIA-1, hnRNP, FUS, ataxin, and SOD1. Continued research in this field will allow us
to further understand the pathology of neurodegenerative diseases and develop effective
therapeutic strategies.
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