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Abstract: Precision medicine gives individuals tailored medical treatment, with the genotype de-
termining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity.
Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs.
Factors that affect CYP function and expression have a major impact on treatment outcomes. There-
fore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug
metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden
of malaria and tuberculosis, and this review presents current general information on CYP enzymes
together with variation data concerning antimalarial and antituberculosis drugs, while focusing
on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25,
CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9,
CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated
in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine,
primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2,
and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as
bedaquiline and linezolid. Drug–drug interactions, induction/inhibition, and enzyme polymor-
phisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored.
Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of
their known effects provided structural insights, as understanding the mechanism of action of these
enzymes and how the different alleles influence enzyme function is invaluable to the advancement of
precision medicine.

Keywords: CYP metabolism; polymorphisms; SNPs; missense mutations; personalized medicine

1. Introduction

Precision medicine has been of interest to many scientists over recent years who en-
vision a world where each person or groups of people can receive the right medications
for their medical condition based on their genotype. Ideally, the genotype determines
the therapeutic strategy, the appropriate dosage and the likelihood of benefit or toxicity.
Additional factors affect patient response to medications such as age, sex, disease stage, and
environment. However, genetic makeup, [1–3] is a critical factor, as it directly determines
the likelihood to respond to a targeted therapy or how drugs are metabolized [2,4,5]. Phar-
macogenomics, therefore, forms an integral part of precision medicine since it combines
both pharmacology and genomics to determine how differences in the human genome,
especially the ones located at pharmacogenes, affect drug metabolism and efficacy [5–7].
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Such genomic differences are caused by genetic variations due to mutations such as single
nucleotide polymorphisms (SNPs), insertions and deletions, or copy number variations [8].
These polymorphisms may be population specific or selected for across different popula-
tions, leading to slight differences in the expressed proteins or enzymes responsible for
drug metabolism that are encoded by pharmacogenes [5,9,10]. The resultant effects of these
differences on enzyme activity may be visible as minimal to no therapeutic response in
some individuals while others may suffer from adverse drug reactions [7,11]. To minimize
harmful side effects, while maximizing the therapeutic effectiveness of drugs in each pa-
tient, it is important to understand the effects of genetic variations on pharmacogenes and
their associations with variable drug responses in different populations [12]. For instance,
identifying the proto-oncoprotein KRAS genotype of a patient provides information about
disease aggressiveness, which drugs to be prescribed (e.g., KRAS-G12C inhibitors sotorasib
and adagrasib), and drug sensitivity [13].

Functional characterization of pharmacogenes segregates them into three main classes:
drug transporters (e.g., P-glycoprotein 1 (P-gp), ATP binding cassette subfamily B member
1 (ABCB1)); drug metabolizers (cytochrome P450 enzymes (CYPs)); and drug targets (e.g.,
human epidermal growth factor receptor 2 (HER2)). There exists an intricate interplay
between these classes of pharmacogenes and genetic variations involving any of them can
potentially influence treatment outcomes or pharmacogenetic phenotypes [14–16].

The main drug metabolizing enzymes in humans belong to the CYP enzyme super-
family, and are actively involved in phase 1 metabolism of most therapeutic drugs and
xenobiotics [17]. CYP enzymes are highly polymorphic, with newly discovered alleles being
updated regularly in the Pharmacogene Variation (PharmVar) Consortium database [18].
Certain SNPs from CYP families have been shown to have a great impact on CYP func-
tion [19,20], while some have exerted no noticeable change in enzyme activity [1].

In this review, we first provide a general overview of CYP enzymes, and then focus
on the three human CYP families (CYP1, 2, and 3) that are particularly important in the
metabolism of drugs. We detail the enzymes of these three families, compare similarities
and differences between them and combine the data with the 3D structural information
where applicable. We further provide up to date variation data attached to these proteins.
Although the diversity of CYP enzymes within the African Continent is well appreciated,
with implications on drug resistance and adverse drug reactions [20,21], little is known
about the underlying mechanisms responsible for such observations. Hence, as a next
step, we outline the available data from the African perspective. Firstly, we convene on
CYPs that are particularly involved in the metabolism of drugs used in the treatment of
two important infectious diseases; malaria and tuberculosis, for which Africa shares the
greatest burden [21,22]. Secondly, we review Afrocentric polymorphisms of CYP enzymes
with specific focus on potential or known effects on antimalarial and antituberculosis
drugs; and discuss the connections between the variations and their positions with possible
explanations to their structural/functional effects. Collectively, in this review, by gathering
the existing information and by pointing out the current gaps from different aspects, we
aim to create a baseline understanding of CYP-drug-variation with specific emphases
on malarial or tuberculosis drugs as well as the alleles that are prevalent in the African
Continent. In the long term, we believe information shared here could contribute to the
development of suitable therapeutic drugs and drug combinations for the treatment of
prevailing infectious diseases within the Continent and elsewhere.

2. CYP Enzymes

CYP enzymes are a superfamily of heme-thiolate proteins that are present in all king-
doms of life [23]. They are essential for the production of steroids, cholesterol, prostacyclins,
and thromboxane A2 [1,17], and partake in the detoxification of foreign chemicals and the
metabolism of drugs [17,24,25]. In humans, they are mainly found within the mitochondria
and endoplasmic reticulum of liver cells; however, they can be located in many other
parts of the body including the kidneys, small intestine, placenta, and lungs [1,17]. There
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are 57 known human genes that encode for the different CYP enzymes, and these have
been classified into 18 protein families [26]. The enzymes in the first three families (CYP1,
CYP2, and CYP3) are responsible for the metabolism of 70–80% of clinical drugs [17,24] and
most foreign chemicals; however, within these families, only enzymes CYP1A1, CYP1A2,
CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4,
and CYP3A5 notably metabolize most of clinical drugs [1,27,28]. Most CYPs metabolize
more than one drug, and also, a drug is generally metabolized by more than one CYP
enzyme [19].

2.1. Human CYP Enzyme Nomenclature

The establishment of standardized CYP enzyme nomenclature dates back to 1987 [29].
At the time, enzymes which belonged to the P450 gene superfamily were classified
based on amino acid sequence similarities such that enzymes from different gene families
shared ≤36% similarity while those from the same subfamily had ≥70% similarity [29,30].
As more data became available, the classification and nomenclature of CYP enzymes also
evolved [29–31]. While the original nomenclature was built on only 65 characterized P450
genes [29], the final nomenclature is based on 221 P450 genes [32]. The current classification
of CYP enzymes relies more on phylogenetic tree clustering rather than the arbitrary se-
quence identity values which were subject to changes based on data availability [30,32,33].

The current nomenclature is as follows: CYPxyz, where CYP = Cytochrome P450 and
x = family (Arabic numeral), y = subfamily (Capital letter, if more than one exists), z = gene
name (Arabic numeral), and this is followed by the letter P if the gene in question is
a pseudogene [30,32].

After the CYP nomenclature was agreed upon to gene level, allele representation
remained ambiguous until later when the currently acceptable method was proposed for
CYP2D6 [32,34]. Here, the name is maintained to the gene level followed by an asterisk,
then the allele in Arabic numerals which may be followed by a capital letter denoting silent
mutations in the gene as follows: CYPxyz*ij, where CYPxyz is as defined above, i = allele
(Arabic numeral), j = silent mutation (Capital letter) [34–36]. Further updates have been
applied to this method, particularly representing the silent alleles as three decimal point
digits after the allele name as seen in the Pharmacogene Variation (PharmVar) Consortium
database [18]. The consensus/reference allele, usually representing the major proportion of
the population, confers normal activity of the CYP enzyme [35]. An allele is classified as
a pharmacogenetic polymorphism if it occurs at a frequency of at least 1% in a popula-
tion [19]. Sub-alleles are designated when an already-characterized sequence variant is
discovered with additional non-causative variant/s [35]. These sub-alleles are given letters
in addition to the number (e.g., CYP2B6*4A, CYP2B6*4B, CYP2B6*4C). However, when
more than one effective variant exists on the same allele, the given allelic number is based
on the variant causing the most serious effect, such as a splice defect (e.g., CYP2C19*2A).
Unique allele numbers (e.g., CYP2B6*6) are given to combinations of variants that also
occur on their own and are judged to be uniformly effective (e.g., different amino acid
substitutions). Importantly, for practical purposes, the earliest alleles ever reported are not
based on this nomenclature system as they have not been re-named.

2.2. Human CYP Enzyme Sequence, Structure, and Mechanism of Action

To understand ligand binding/selection and the general structure–function relation-
ship of human CYP enzymes, one must have knowledge of the sequential, structural, and
mechanistic features of CYPs.

Human CYP enzymes within families 1, 2, and 3 are known to have similar structure
and function. Enzyme sequences within these families contain about 400–500 amino
acids [28,37], and those that share ~40% sequence identity are grouped in the same family,
while those sharing over 55% sequence homology are subgrouped together into the same
sub-family [28,38]. According to [39] there are three conserved short regions/sequence
motifs throughout the CYP superfamily. The first conserved region is the (A/G)XXXT
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which is located in helix I [37,39]. This is the oxygen binding and activation motif that
contains the highly conserved threonine which plays an important role in the third step of
the catalytic cycle of CYP enzymes [39]. The second most conserved region in CYP enzymes
is the EXXR motif, which contains conserved glutamic acid and arginine that build a set
of salt-bridge interactions which form the final tertiary structure of the enzymes [39]. The
FXXGXXXCXG region is the third most conserved one in the CYP enzyme superfamily [40].
It is a heme-binding domain that contains phenylalanine, glycine, and cysteine, the three
most conserved residues in the CYP superfamily, of which the conserved cysteine plays the
role of the axial ligand to the heme [39,40].

In contrast to prokaryotic CYPs, eukaryotic CYPs are membrane proteins. Specifically,
they are bitopic membrane proteins (spans the lipid bilayer only once) that are found
on the cytoplasmic side of the endoplasmic reticulum or on the matrix side of the inner
mitochondrial membrane [41]. They have an N-terminal transmembrane helical anchor that
extends across the membrane bilayer and is joined by a flexible linker to a large globular
domain that partly sits inside the membrane [42]. CYPs cannot function on their own and
must bind with a redox partner for electron transfer [43]. These complexes are difficult to
crystallize, resulting in limited protein–protein redox complexes in the Protein Data Bank
(PDB). During CYP electron transport, reducing equivalents from nicotinamide adenine
dinucleotide phosphate (NADPH) are transferred to molecular oxygen [44,45].

CYPs are typically divided into two major classes, class I and class II, based on
their cellular location and their redox partners. Class l encompasses mitochondrial and
bacterial CYPs which utilize two different redox partners: an iron–sulfur protein (ferre-
doxin/adrenodoxin) and a flavin-containing reductase (ferredoxin/adrenodoxin reductase).
On the other hand, class II CYPs are microsomal monooxygenases that accept electrons
from NADPH-cytochrome P450 oxidoreductase (POR). POR is a single polypeptide con-
sisting of one molecule of flavin adenine dinucleotide (FAD) and one molecule of flavin
mononucleotide (FMN) [43]. POR transfers electrons from the two-electron donor NADPH
to the CYP heme group, with the FAD functioning as a dehydrogenase flavin and FMN as
an electron carrier. The CYP enzymes reviewed in here belong to class II.

The fold structure of CYP enzymes is largely conserved throughout the superfam-
ily [37,46]. All known 3D structures of these proteins have a general shape that includes
14 helices and loops denoted A–L (A, B, B′, C, D, E, F, G, H, I, J, K, K′, L) [23] (Figure 1A).
Other helices such as A′, B”, F′, G′, J′, K”, and L′ have been observed to occur in the
CYP structure at times [46]. CYPs also contain 4 β-sheets—β1 (5 strands), β2 (2 strands),
β3 (3 strands), β4 (2 strands) in their structures, with two additional sheets, β5 and β6,
occurring sometimes [23,46]. Although the overall CYP structure is conserved, the size
and shape of the active site can differ [43]. The B–C and F–G helix regions are the least
conserved and contribute to substrate specificity, especially the B′ helix [43]. These regions
change conformations for ligand entry, and together with the F–G loop, form a “roof” for
the active site opposite to the heme “floor” [47,48]. The highest structural conservation in
CYPs is centered around the heme–thiolate oxygen activation chemistry [43] (Figure 1B).

The CYP active site is situated in the protein hydrophobic core which is linked to
the enzyme surface by channels [49,50] that substrates and O2 molecules enter, products
exit, and water molecules move [51]. CYP enzymes contain a prosthetic heme group in
their active site that is crucial for enzyme function during metabolism [43]. It is located
between helices I and L and is covalently linked to the enzyme through the sulfur atom of
a conserved cysteine residue that acts as the proximal axial thiolate ligand for the heme
iron [43,52,53] (Figure 1B). The heme is regarded as a reactive center to activate oxygen and
to oxidize the substrate [52]. Coordinated water gates controlled by the propionate side
chains of heme, and their salt bridge partners facilitate water movement [43]. A commonly
conserved acid/alcohol pair that is important for the P450 active cycle is situated on the
I-helix [54], whilst the loop before the L-helix houses the cysteine axial thiolate ligand [52].
The oxidative prowess of CYP enzymes is linked to the formation of a coupled high-
valent iron (IV)–oxo porphyrin π-cation radical species (Compound I) involving the iron
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ion of the enzyme’s heme group, dioxygen, two reducing, and two proton equivalents
supplied within the CYP enzyme’s catalytic cycle [51,55,56]. The highly conserved β-
bulge region (FXXGXXXCXG) containing the cysteine axial thiolate ligand is rigid so as to
maintain a hydrogen-bonding distance from two peptide NH groups (seen in all CYPs) [43],
even though the hydrogen-bonding geometry supports only one hydrogen-bond. These
hydrogen-bonds play a role in controlling the heme iron redox potential [57,58], which
would be too low for reduction by redox partners without the hydrogen-bonds. It is thought
that in order to sustain a physiologically accessible range for the redox potential, the protein
must have a satisfactory electrostatic environment around the cysteine ligand. While there
is evidence pointing to Compound I as the ultimate oxidant in CYP enzymes, the oxidative
versatility of the enzymes is likely linked to their plasticity, especially within the active site,
and the ability of the catalytic cycle to be initiated by the entry of an oxidisable substrate
into the active site [51]. On the other hand, unique features within the active sites/entry
channels of different CYP enzymes—such as those due to mutations—modulate the stereo-
and regioselectivity associated with their oxidation of different substrates and may result
in different oxidized products of the same substrate [51,59,60].
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Figure 1. (A) General structure of CYP enzymes. CYP2C8 (PDB ID: 2NNJ) is used to map the 12 major
helices denoted A-L in different colors. Substrate entrance site is highlighted in red and an arrow
pointing towards the entrance is in black. (B) Conserved catalytically important residues mapped
onto the CYP structure, and the cysteine that acts as a proximal axial thiolate ligand for the heme iron
is highlighted. Threonine in the conserved motif (A/G)XXT is colored in yellow, while glutamic acid
and arginine in the EXXR motif are colored in warm pink. Phenylalanine, glycine and cysteine in the
conserved motif FXXGXXXCXG are all colored in purple. (C) CYP2C8 enzyme residue numbers are
denoted, as an example, for the helices observed in CYP enzymes.

All CYP enzymes in the 18 human families identified are involved in phase 1 meta-
bolism [61,62], where they metabolize various endogenous and exogenous compounds such
as xenobiotics and environmental chemicals [63]. These enzymes function as monooxyge-
nases [64,65], carrying out the metabolism of drugs through oxidation reactions, including
hydroxylation, epoxidation, sulfoxidation, C–C bond cleavage, and desaturation reac-
tions [66–74]. The overall CYP canonical reaction comprises the reductive scission of the
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O–O bond of atmospheric dioxygen to release a single molecule of water with the transfer
of a single oxygen atom to the substrate [75,76]. The convoluted catalytic cycle has multiple
reactions with transient intermediates, where the product of one reaction is the substrate for
the next reaction by the same enzyme. During the mechanism, the heme iron changes spin
states [77] due to the binding of substrate, as the outer orbital has one or more unpaired
electrons giving it a higher energy state. The following is a short description of the typical
seven-step catalytic cycle seen in CYP enzymes (Figure 2) [51,78,79]:

Before the substrate enters the enzyme, the heme iron is coordinated to a water
molecule and is in a low-spin ferric resting state (S = 1/2). Step 1: The cycle starts when
the substrate first enters the active site and interacts with the resting state. The water
molecules leave the pocket [71] which detaches the aqua ligand resulting in the high-spin
FeIII–heme complex (S = 5/2). Step 2: The now more positive redox potential [80,81] allows
electron transfer from the reducing partner, to the now ferrous FeII complex. Step 3: As the
ferrous FeII complex is a good O2 binder, it takes up an O2 molecule and is transformed
into the oxyferrous complex. Step 4: As the oxyferrous complex is a good electron acceptor,
it is reduced and is transformed into the peroxo complex. Step 5: Around this time, the
water molecules that departed the active site pocket return through a water gate and create
a water channel that protonates the peroxo complex to give Compound 0 (Cpd 0) [51], which
is debated to be a putative oxidant [82]. Step 6: The negatively charged Cpd 0 is a good
Lewis base that accepts an extra proton, freeing a water molecule, and forms Compound I
(Cpd I) which is a ferryl (FeIV)-oxo-π porphyrin cation radical and the ultimate oxidant.
Step 7: Cpd I is thought to be responsible for the bond activation in the substrate via
hydrogen abstraction, leading to substrate oxidation [73]. The product now leaves the
pocket and a water molecule takes its place. The initial CYP enzyme resting/ferric state is
now re-established and set for another cycle.
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purple, green, and dark blue circles. Water is shown by a blue drop [51,78,79,83,84].



Int. J. Mol. Sci. 2023, 24, 3383 7 of 29

Dubey and Shaik 2019 [51] researched the determining factors that allow the sequence
of steps to occur, using molecular dynamics (MD) and quantum-mechanical/molecular-
mechanical (QM/MM) calculations on mostly bacterial CYPs, namely bacterial CYPBM3 and
CYPCAM, but also human CYP3A4. Substrate binding, O2 entrance, reductase attachment,
and gating were researched using MD simulations [85–88]. Water channel formation and
reorganization generally need about 100 ns of simulation time. Substrate binding and
protein–protein interactions need between 350–400 ns and 1000–1500 ns, respectively. MD
snapshots are used for their QM/MM calculations [73,74], which calculate the active species
and their chemical events and provide geometries, electronic structures, mechanisms, and
energies of the species in their native protein environment. It was discovered that the CYP
catalytic cycle is initiated by substrate binding and from then on each step is automatically
coordinated due to entropy rise [71] and switchable weak interactions [51].

2.3. Existing Structural Information in the Protein Data Bank (PDB)

As of November 2022, Protein Data Bank (PDB) [89] has a total of 177 structures for
CYP 1, 2, and 3 family members. The enzymes CYP1A2, CYP2D6, and CYP3A4 were
among the first few enzymes within the CYP family to have structures in the database, with
the first structure being deposited in 2003. More than a decade later, many of the 23 human
CYP enzymes from families 1, 2, and 3 have structures available. Currently, the enzymes
with no structures within the database are CYP2A7, CYP2C18, CYP2F1, CYP2J2, CYP2S1,
CYP2U1, CYP2W1, and CYP3A43. The enzyme CYP3A4 has the largest structural data
available, with 87 structures in PDB. CYP2A6 and CYP2D6 have the second largest number
of structures available, with 14 structures each. The PDB also contains variants of CYP
enzymes within these three families such as CYP2C9 alleles *2, *3, *8, and *30. A summary
of the best structures for each enzyme in the three families is shown in Table S1.

The structures of CYP enzymes in PDB are either in an open, partially open or closed
conformation [83]. The open conformation is usually associated with ligand free proteins
and the closed conformations are proteins with a ligand bound; however, closed ligand-
free structures and partially open ligand-bound structures have been determined [83,84].
Variations in the pre-helix A, the B–C and F–G regions have been defined to cause the
different conformations of human CYP enzymes [83,84,90–92]. CYP2D6 in an open and
closed conformation as an example, is shown in Figure S1. When closed, the pre-helix
A G42 residue is 14.3 Å from helix F’ residue E222, but in an open conformation, the distance
between helix F’ E222 residue and the pre-helix A residue G42 increases by 0.6 Å to 14.9 Å,
thus opening the substrate channel for ease of access to the active site [84]. Subsequent
changes in the adjacent regions including the F and G helices, and the helix B-C loop that
contains helix B’ follow, creating a CYP2D6 open conformation structure [84].

Antimalarial and Antituberculosis Drugs Complexed with CYP Enzymes

Currently, 3D structural data of CYPs with antimalarial drugs are extremely scarce
and non-existent for the antituberculosis drugs. Furthermore, CYP structural information
with its functional proteins and membrane partners are not available. This information
deficiency hinders the attempts to understand the changes in the drug metabolism due to
specific variations.

Of the 177 structures available for human CYP enzymes in families 1, 2, and 3, only
two structures are complexed with antimalarial drugs: CYP2D6 with quinine (4WNV)
and CYP2D6 with Quinidine (4WNU). X-ray diffraction method was used to obtain the
complexes, and they were refined to resolutions of 2.26 Å and 2.35 Å for the quinidine and
quinine complexes, respectively [84]. These antimalarial drugs are inhibitors of CYP2D6
and are not naturally metabolized by this enzyme [84,93,94]. They are bound to the active
site of CYP2D6, and several differences in binding conformations were discovered [84].

Quinine is a the diastereomer of quinidine, and it is known that these two compounds
differ in configurations of the hydroxylated chiral carbon which connects the aromatic
quinolone moieties and the protonated and positively charged bicyclic quinuclidine rings
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of both compounds [84]. As seen in Figure 3, due to the configurational differences between
quinine and quinidine, the quinolone rings of the two compounds bind to significantly
different positions within the CYP2D6 active site, which leads to different poses overall
for the two compounds. Additionally, in the quinuclidine ring of the bound quinidine, the
protonated nitrogen is bound to a water molecule in the entrance channel and is positioned
almost equidistant between the negatively charged Glu-216 (4.9 Å) and Asp-301 (4.8 Å)
side chains [84]. The differences observed for the binding of quinidine (Figure 3A) and
quinine (Figure 3B) within CYP2D6, are contributing to the differences in inhibition of the
two compounds [84]. It has been reported that while quinine is a potent inhibitor, quinidine
is more potent [95]. More information on the complexes can be found in the article by
Wang et al. 2015 [84].
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2.4. Structural Differences in Human CYP 1, 2, 3 Enzymes

As indicated in the previous sections, the 3D structures of mammalian CYPs are
generally conserved; however, some sequence and structural variations in the B–C helix,
F–G helix, and L helix regions are known [96]. The differing shapes and sizes of the active
site cavities of human CYPs are a result of discrepancies of the F–G and B’ helices. The
dissimilarity of these regions causes some variability of enzyme function.

CYP family 1 enzymes generally metabolize polynuclear aromatic hydrocarbons,
and the structures of human CYP1A1 [92], 1A2 [96], and 1B1 [96] possess narrow active
site pockets that suit the size and planarity of polynuclear aromatic hydrocarbons. For
example, CYP1A2 has a preference for small planar aromatic or heterocyclic amine ligands,
engendered by active site-facing polar residues Thr118, Ser122, and Thr124 that are located
in the B’–C helices region, as well as residues Thr223 (F helix) and Asp320 (I helix) that
are found on the roof of the active cavity [96]. On the other hand, because CYP2A6 has
a smaller active site pocket, it prefers to bind small aromatic ligands [97] with the help of
the substrate-orienting residue Asn297 [98]. CYP2C9 prefers weakly acidic substrates [99]
due to its disordered arrangement of the F–G loop region and an additional turn at the
N-terminal side of helix A [100]. CYP2C9 has a smaller active site cavity than CYP2C8 but
bigger than CYP2A6 [101]. With a comparatively small active site pocket, CYP2E1 prefers
neutral compounds with low molecular weight and fatty acids [102]. In the CYP2E1 active
site cavity, a conserved Asp295 is critical for substrate recognition and ligand binding.
The very flexible CYP3A4 enzyme has a large binding cavity, allowing many structurally
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diverse ligands to bind [103]. This could be aided by the fact that the heme surface of
CYP3A4 enzymes is much more exposed to substrates [47,104]. CYP3A4 has comparatively
short F and G helices, and a cluster of large hydrophobic phenylalanine residues situated
on the roof of the active site in the ligand-free structure that are distorted upon ligand
binding [104–106]. The shorter CYP3A4 F-helix does not cross above the active site, meaning
the active site can expand and contract due to the positional fluctuations of helices F′ and
G′ as well as the flexibility of the long connector between helix F and F′ [105]. A high
sequence identity between CYP3A4 and CYP3A5 result in similar structure; however, the
CYP3A5 active site cavity has extra space between the helix F–F’ and helix G’–G connectors
due to the shorter Leu108 in CYP3A5 (Phe108 in CYP3A4), as well as the longer CYP3A5
Phe210 (Leu210 in CYP3A4) which increases the size of the upper region of the substrate
binding cavity [107].

3. CYP 1, 2, 3 Enzyme Families and Antimalarial Drugs

Antimalarial drugs are used either for chemoprevention or for the treatment of un-
complicated and severe malaria. Current indications include, sulfadoxine pyrimethamine
(SP) for intermittent preventive treatment in pregnancy (IPTp) and infants (IPTi), and
seasonal malaria chemoprevention (SMC) in children, with the latter including the addition
of amodiaquine, atovaquone + proguanil are also indicated as prophylaxis for travelers to
endemic areas [108]. Treatment of uncomplicated malaria is by use of artemisinine-based
combination therapies (ACT) including artemether + lumefantrine, artesunate + either
amodiaquine, mefloquine, SP, or pyronaridine, and dihydroartemisinin + piperaquine
while severe malaria requires prior intravenous or intramuscular artesunate administration
followed by oral ACT [108]. Finally, primaquine is recommended alongside ACT to reduce
transmission while quinine and clindamycin are recommended for the treatment of un-
complicated malaria in pregnancy [108]. Diverse toxicity profiles are associated with some
antimalarial drugs, for example quinine: rare cardiovascular toxicity and hypoglycemia,
mefloquine: dose-related serious neuropsychiatric toxicity, pyrimethamine + dapsone:
agranulocytosis, SP + amodiaquine: potentially fatal reactions, chloroquine + proguanil:
mouth ulcers and gastrointestinal upset, halofantrine: cardiotoxicity [109,110].

Antimalarial drug metabolism may result in bioactivation, altered toxicity, or prepa-
ration of the drug for excretion [111]. Like with other xenobiotics, phase I metabolism of
most antimalarial drugs is performed by CYP enzymes—particularly those belonging to
the CYP 1, 2 and 3 families [1,112–115].

CYP enzymes function by catalyzing the oxidation of organic substrates, rendering
the substrates more hydrophilic [51,55]. Following oxidation, the substrate either becomes
bio-activated—like with the prodrugs amodiaquine and proguanil [111,116], directly ex-
creted, or conjugated in phase II metabolism prior to excretion like with dapsone and
artemisinins [28,117,118]. CYP metabolism may also result in more toxic oxidized products
as seen with dapsone metabolism and hemolytic anemia and methemoglobinemia in hu-
mans [119]. Some of the antimalarial drugs on the market with known CYP enzymes as
metabolizers and their oxidized products are presented in Table 1.
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Table 1. Some CYP enzyme metabolized antimalarial drugs and their oxidized products.

Antimalarial Drug CYP Enzyme Metabolizer Mechanism of Action References

Amodiaquine CYP2C8

Metabolised to desethylamodiaquine
(DEAQ)—likely to proceed in two steps, a hydrogen
abstraction and hydroxylation at the adjacent carbon,
forming an unstable carbinolamide that rapidly
hydrolyzes to DEAQ and acetaldehyde.

[116]

Arteether CYP2B6, CYP3A4, CYP3A5
Arteether is deethylated to dihydroartemisinin
(DHA), the main bioactive metabolite of atermisinin
and its derivatives.

[120]

Artelinic acid CYP3A4, CYP3A5 Artelinic acid is O-debenzylated to DHA [120,121]

Artemether CYP3A4, CYP1A2, CYP2B6 Artemether is demethylated to the bioactive
metabolite DHA [122–124]

Artemisinin CYP2A6, CYP2B6, CYP3A4

Artemisinin is not itself metabolized to DHA but acts
as the primary antimalarial. Upon reaction with Fe2+

it is converted first into oxygen centered free radicals
derived by reductive cleavage of its peroxide bridge,
which are then converted into carbon centered free
radicals by intramolecular hydrogen abstraction
from CH2 groups on the periphery of the artemisinin
by the O centered radicals.

[116,125,126]

Artesunate CYP2A6, CYP2B6 Rapidly hydrolyzed to the bioactive metabolite DHA [116,125–127]

Chloroquine CYP2C8, CYP2C19, CYP3A4,
CYP2D6, CYP3A4, CYP3A5

Chloroquine is dealkylated into
N-desethylchloroquine (DCQ) and
N-bis-desethylchloroquine (BDCQ), with DCQ being
the major metabolite.

[113,128,129]

Dapsone CYP2C9, CYP3A4

Unlike other antimalarials, the first metabolizing
enzyme of dapsone is N-acetyltransferase which
hydrolyses the drug to the active form monoacetyl
dapsone. CYP enzymes on the other hand hydrolyze
the drug to its N-hydroxy metabolites dapsone
hydroxylamine and monoacetyl hydroxylamine
which are harmful hemolytic metabolites.

[116,117,119,130,131]

Halofantrine and
Lumefantrine CYP3A4, CYP3A5

Halofantrine undergoes desbutylation to
N-desbutyl-halofantrine which possesses some
antimalarial activity while lumefantrine is
metabolized to desbutyl-lumefantrine and excreted
via bile and faces.

[115,132]

Mefloquine CYP1A2, CYP3A4 Metabolized into carboxymefloquine metabolite
which has little or no antimalarial activity. [121,133–135]

Primaquine CYP1A2, CYP3A4, CYP2D6

Three possible pathways exist for primaquine
metabolism and that involving CYP enzymes is
hydroxylation at different positions on the quinoline
ring, with mono-, di-, or even tri-hydroxylations
possible, and subsequent glucuronide conjugation of
the hydroxylated metabolites. The main metabolite
carboxyprimaquine comes about through
a monoamine oxidase catalyzed oxidative
deamination.

[116,136]

Proguanil CYP2C19 Oxidative metabolized to cycloguanil, which is the
active form of the drug [116,121,137]

Quinine CYP3A4 Undergoes hydroxylation to the main
metabolite 3-hydroxiquinine [28,121,138,139]

4. CYP 1, 2, 3 Enzyme Families and Antituberculosis Drugs

Months-long tuberculosis (TB) treatment involves the combination of several antituber-
culosis drugs to prevent the development of a resistant strain [2,140]. For drug-susceptible
TB, international guidelines have advised the combination of all first-line drugs isoniazid,
rifampicin, ethambutol, and pyrazinamide for 2 months followed by 4 months of isoni-
azid and rifampicin [141]. However, resistant strains of TB have emerged leading to the
development and usage of second line drugs [142,143]. For multi-drug resistant (MDR)
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TB, a 6-month “BPaLM” regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin
may be used in patients older than 14 years of age with MDR/rifampicin-resistant (RR)
TB who have not had previous exposure to bedaquiline, pretomanid, and linezolid [144].
Moxifloxacin can be omitted here (“BPaL”) if the TB is resistant to fluoroquinolones. A new
drug in the same class as linezolid that is currently in testing, namely sutezolid, could
have better therapeutic value than linezolid [145]. Unfortunately, with TB, drug associated
toxicity is common due to the amount of antibiotics used and the long treatment period.
Typically, second-line TB drugs are less effective and more toxic than the first-line drugs.

Drug-susceptible TB treatment has a 95% cure rate (in optimal conditions); however,
several unclear concerns exist such as the high variability of response, the likelihood of drug
underexposure, the high prevalence of drug-related toxicity, and the selection of multidrug-
resistant strains [141]. There is a scarcity of early biomarkers for predicting treatment
efficacy, cure, and the determination of patients needing prolonged treatment [146]. Inter-
individual variability in the pharmacokinetics of anti-tubercular drugs may be responsible
for the variability of response as it’s been shown to have major influence over the sterilizing
effect and selection of phenotypic resistance. Low maximum plasma concentrations are
linked to treatment failure, relapse, and acquired drug resistance, whereas high plasma
concentrations are linked to hepatoxicity [147,148]. Therefore individual/personalized
treatment based on patient pharmacogenetics is extremely important.

The frequency of hepatotoxicity in patients receiving anti-tubercular treatment is
between 2% and 28% [149]. Toxic metabolites play a role in hepatotoxicity, but specific
mechanism is not known. The human liver metabolizes most drugs, requiring several
reactions and drug metabolizing enzymes [150]. The rate-limiting step for the clearance
of drugs from the body are phase I metabolic reactions, then during phase II metabolic
reactions the drug and its metabolites associate with endogenous substances and are
released from the body. This action does have a detoxification effect; however, several
active metabolites that are simultaneously produced can cause liver damage.

First-line antituberculosis drugs undergo different pathways during metabolism, but
none have been discovered to be directly metabolized by any enzymes from the CYP
families. However, metabolism of the first-line antituberculosis drug isoniazid is indirectly
influenced by CYP2E1, as is discussed in the next article section

The second-line antituberculosis drug bedaquilineis mainly metabolized by N-demeth-
ylation via CYP3A4, and less so via CYP1A1, CYP2C8, CYP2C18, and CYP2C19 [151,152].
Bedaquiline is metabolized to N-desmethyl-bedaquiline, N-didesmethyl-bedaquiline, and
two hydroxyl metabolites [153,154]. Another study showed N-dealkylation of bedaquiline
to produce the aldehyde metabolite M5, primarily mediated by CYP3A4 [152,155]. Be-
daquiline has a novel mechanism of action towards mycobacterial ATP synthase [155];
however, despite being highly effective it has been linked to adverse cardiac and hepatic
drug reactions [155–157]. Recently, another second-line antituberculosis drug linezolid,
has been shown to be metabolized via CYP2J2 and CYP1B1, by 2-hydroxylation and de-
ethyleneation of the morpholine moiety of linezolid [158] It has been suggested that the
less studied CYP2J2 accounts for approximately 50% of linezolid hepatic metabolism [158].
The second-line antituberculosis drug delamanid is mostly metabolized by albumin and
to a lesser extent by CYP3A4. The entire metabolic profile of delamanid has not yet been
uncovered [159].

5. Inhibition and/or Activation of CYP Enzymes by Drugs, and
Drug–Drug Interactions

As seen earlier, CYP enzymes constitute the most important contributors to oxidative
metabolism of drugs, and their inhibited and/or induced activity is an important determi-
nant of several drug–drug interactions [160]. Some of the presently available antimalarial
and antitubercular drugs have been observed to inhibit or induce human CYP enzymes
which may cause drug–drug interactions that could either cause adverse drug reactions or
decrease the efficacy of the drugs metabolized by these enzymes [2,3,141,161,162].
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Recently, OZ439, a potent synthetic ozonide that is currently used for the treatment of
uncomplicated malaria was found to inhibit CYP3A4 through both direct and mechanism-
based inhibition [163]. Since CYP3A4 is involved in the metabolism of several antimalarial
drugs such as artemisinins and their derivatives, chloroquine, dapsone, halofantrine, lume-
fantrine, mefloquine, primaquine, and quinine (Table 1), a combination therapy involving
OZ439 and any of these drugs may not be advisable. Moreover, chloroquine has been
implicated in decreased activity of CYP2D6, suggesting autoinhibition of its metabolism by
this enzyme, while its less toxic derivative, hydroxychloroquine, also inhibited the enzyme
significantly [113]. More evidence over the years have suggested that artemisinin and its
relative drugs dihydroartemisinin, artesunate and artemether inhibit CYP1A2, 2B6, 2C19,
and 3A4 [113,160,164–167]. CYP1A2 and CYP2C19 were noticeably inhibited by artemisinin
and dihydroartemisinin, and in healthy individuals, CYP2D6 activity was 66% inhibited
in vivo by artemisinin [160,167,168]. The activity of CYP2B6 was also reported to be inhib-
ited by artemisinin derivatives in vitro [164,169]; however, inhibition by artemisinin itself
proved to be weak [164]. Thus, while some artemisinins may be autoinhibitive to one of
their metabolising enzymes CYP2B6, a combination of artemisinins with either mefloquin,
primaquin, chloroquine, or proguanil may prove counterproductive.

Induction of human CYP enzymes has also been described, with evidence of artemisinin
as a potent inducer of CYP1A2, CYP2A6, and CYP3A4 transcription and activity [164].
Artemisinin induces CYP enzyme expression, by activating two closely related nuclear
hormone receptors responsible for the transcriptional regulation of CYP enzyme expres-
sion [170,171]. These are the pregnane X receptor (PXR) and the constitutive androstane re-
ceptor (CAR) which undergo either separate or cooperate induction by the artemisinin [170,171].

Like with antimalarial drugs, antituberculosis drugs such as isoniazid, rifampicin and
ciprofloxacin have also been implicated in the inhibition or induction of CYP enzymes. Iso-
niazid is an inhibitor of CYP enzymes CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2E1, and
CYP3A4 [161], while ciprofloxacin inhibits CYP1A2, CYP2D6, and CYP3A4, and because of
this inhibition, metabolism by these CYP enzymes is slowed down and a buildup of their
substrates within the body occurs [2,3,161,172]. This is particularly unfavorable, as enzyme
inhibition can cause potentially serious adverse events [3,161]. Administering isoniazid
and ciprofloxacin alongside antimalarials such as mefloquin, primaquin, artemisinin, and
all the CYP3A4 metabolized drugs highlighted above may result in adverse reactions.

In contrast to isoniazid and ciprofloxacin, rifampicin is a well-known inducer of
several CYP enzymes in the CYP2A, CYP2B, CYP2C, and CYP3A family subgroups, but
evidence has highlighted the high induction of CYP3A4 specifically [2,161]. The induction
of these CYP enzymes results in an increased elimination of administered drugs, and this
often results in reduced pharmacological effects [2,172]. For instance coadministration of
amodiaquine and rifampicin in healthy volunteers resulted in significant decreases in the
critical pharmacokinetic parameters of the drug, as opposed to increases in those of the
main metabolite desethylamodiaquine, leading to a significant increase in the metabolic
ratio from 1.55 to 2.68 [173]. No other TB drugs have been documented to inhibit or
induce the CYP enzyme system; however, there were some investigations carried out
on pyrazinamide and ethionamide to identify any inhibition of CYP enzymes by these
drugs [174]. The results from that study revealed that although the three drugs (isoniazid,
pyrazinamide and ethionamide) are closely related chemically, they do not all inhibit CYP
enzymes to the same degree and thus pyrazinamide and ethionamide were disregarded as
inhibitors of CYP enzymes [174].

Isoniazid and its metabolic intermediates are regarded as the major source of hep-
atotoxicity in TB patients [175,176]. Isoniazid goes through hepatic metabolism by the
N-acetyltransferase (NAT) enzyme system [177,178], being acetylated by NAT to acetyl-
isoniazid and then biotransformed by hydrolysis via amidase to monoacetylhydrazine [2,179]
(Figure 4). Monoacetylhydrazine is associated with hepatotoxicity and the most important
detoxifying step to prevent this is a further acetylation step that produces the non-toxic
product diacetylhydrazine [180,181]. However, in slow acetylators, extra monoacetyl-
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hydrazine is thought to be oxidized by CYP2E1 to toxic reactive metabolites instead of
conversion to non-toxic diacetylhydrazine via NAT [182]. Moreover, when acetylation of
isoniazid is slow it will be biotransformed to the toxic compound hydrazine and then most
likely oxidized by CYP2E1 to produce reactive acetyl onium ions and acetyl radicals leading
to hepatotoxicity [175,183,184]. Although probable, there is currently no explicit evidence of
CYP2E1 oxidizing hydrazine and monoacetylhydrazine [185–187]. The enzyme glutathione
s-transferase (GST) is an intracellular free radical scavenger that detoxifies the toxic reac-
tive metabolites generated from antituberculosis drugs and other xenobiotics. Therefore,
individuals with slower NAT2 activity, faster CYP2E1 activity, and slower GST activity
are the most likely to experience hepatotoxicity from antituberculosis drugs [141,188–191].
Additionally, because rifampicin induces CYP2E1 [192] and isoniazid hydrolases [193],
the incidence of hepatotoxicity has been found to be higher when isoniazid is combined
with rifampicin.
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The complexity increases when the HIV antiretroviral drug efavirenz is introduced.
Efavirenz is transformed into inactive metabolites by CYP2B6, and less so by CYP2A6 [194].
Rifampicin induces CYP2B6 and should decrease efavirenz in the plasma [195]. Con-
trarily, a few patients prescribed with rifampicin and isoniazid have seen their efavirenz
plasma levels increase (especially patients with slower activity CYP2B6 and NAT2 geno-
types) [196–198]. This could be due to high isoniazid concentrations inhibiting CYP2A6 in
NAT2 slow acetylators, as CYP2A6 activity is important for efavirenz clearance in CYP2B6
slow metabolizers [196,198,199].

6. Polymorphism in CYP Enzymes with Specific Focus on Antimalarial and
Antituberculosis Drugs

The genes coding for CYP enzymes are highly polymorphic across populations, and
this might lead to different enzyme activities impacting the efficacy of the drugs that they
metabolize. The enzyme activity might increase, decrease or becomes nonexistent in some
cases [7,11]. CYP gene variation engenders phenotypes classified as ultra-rapid, extensive,
intermediate and poor metabolizers [35]. Extensive metabolizers have two “normal activity”
alleles, generally called the *1 or consensus/reference allele. An ultra-rapid metabolizer
usually has duplicated or multi-duplicated gene copies of the same allele (although this may
not always be the case), intermediate and poor metabolizers have one and two defective
alleles (e.g., gene inactivation or deletion), respectively [200–202].

CYP families 2 and 3 are implicated the most in terms of differences in metabolism
due to variants. For example, a small study of adverse effects of CYP2A6 alleles and
the antimalarial prodrug artesunate showed considerably higher adverse effects in pa-
tients with CYP2A6*1B variants [127]. CYP2A6*1B has a known ultra-rapid metabolism
phenotype, which suggests that these patients experience adverse effects because of the
accumulation of the active metabolite dihydroartemisinin. The polymorphism of CYP2C8
has resulted in missense mutations in alleles CYP2C8*2 and CYP2C8*3 that have been
widely studied [133]. CYP2C8*2 occurs more frequently in African populations, while
CYP2C8*3 is more frequent in Caucasians. Both of these alleles of CYP2C8 have been
associated with slower metabolism, where there is a 50% reduction in enzyme activity
in CYP2C8*2 and an 85% activity reduction in CYP2C8*3, as compared with the wild
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type/reference allele [203]. CYP2C8 along with CYP2B6, CYP3A4, and CYP3A5 metabolize
drugs used in artemisinin-based combination therapy for malaria, and alleles such as
CYP2C8*2, CYP2C8*3, CYP2B6*6, CYP3A4*1B, and CYP3A5*3 may affect patient response
to this treatment [21]. The presence of alleles CYP2B6*6 and CYP3A4*1B vary significantly
between African populations: 22% to 51% and 50% to 80%, respectively [204]. CYP2B6*6 is
linked to a poor metabolizer phenotype for the antimalarial drug artemether [205]. Chloro-
quine is mostly metabolized by CYP2C8, but also by CYP2C9 and CYP3A5. The genetic
variants of these enzymes may influence chloroquine pharmacokinetics [128]. For example,
it has been seen that persons having “normal” CYP2C8 alleles (extensive metabolizers)
have fewer gametocytes compared to persons with reduced-activity CYP2C8 alleles (*2,
*3, and *4). CYP2C19 is known to metabolize proguanil and chlorproguanil, and its alleles
CYP2C19*2 and CYP2C19*3 are largely associated with poor metabolism of these antimalar-
ial drugs [111]. On the other hand, the CYP2C19*17 allele increases CYP2C19 expression
and activity. Regarding treatment with the drug primaquine, there is evidence of patients
with CYP2D6 poor-metabolizer alleles (*2, *4, *5, *10, *17, and *41) having therapeutic
failure [206]. Lastly, CYP3A4 and CYP3A5 enzymes with poor-metabolizer phenotypes
(CYP3A4*22, CYP3A5*3, CYP3A5*6, and CYP3A5*7) have been linked with quinine adverse
reactions [207–209]. The impact of CYP genetic variants on antimalarial drugs and their
clinical implications has also been reviewed in a recent article by Soyinka et al. 2022 [210].

With regards to TB, clearance of bedaquiline was 52% faster in Africans using a popu-
lation pharmacokinetic model [211], which may be due to Africans expressing significantly
more CYP3A5 compared to other populations [212]. Although bedaquiline is metabo-
lized by CYP3A4, substrate specificity frequently overlaps between CYP3A4 and CYP3A5.
A recent study found that in South Africans treated for MDR-TB, CYP3A5*3 was linked
to slower bedaquiline clearance. The CYP3A5*3 allele results in nonfunctional CYP3A5
protein [213,214]. Several review articles mention that in East Asian populations, CYP2E1
RsaI/PstI polymorphisms are linked to an elevated risk of developing antituberculosis drug-
induced liver injury [3,215–218]. In patients having the CYP2E1 RsaI/PstI c1/c1 genotype,
isoniazid has a lower inhibitory effect on CYP2E1 activity compared to other genotypes,
and therefore these patients have an increased chance of extra hepatotoxin production
which then causes liver injury [216,218,219]. Moreover, the CYP2E1 rs2031920 variant geno-
type increases CYP2E1 activity, creating extra hepatotoxic metabolites of antituberculosis
drugs (especially isoniazid) [220,221]. Conversely, some studies have found no significant
connection between CYP2E1 genotype and antituberculosis drug-hepatoxicity [222,223].
In addition to CYP2E1, there may be a link between hepatotoxicity and polymorphisms
in genes coding for CYP2C19: rs4244285 and rs4986893 polymorphisms may cause loss
of gene functions and subsequently antituberculosis drug-induced liver injury [224]. Hy-
permethylation of CYP2E1 and CYP2D6 may increase the chance of liver injury from
antituberculosis drugs as well [225,226].

Afrocentric Missense Mutations

In line with high genetic diversity in the Continent compared to the rest of the world,
CYP enzymes have also been shown to have greater diversity in Africa, possessing novel
unique alleles [20,227,228]. Furthermore, comparative studies have identified population
structuring at CYP genes, possibly associated with intra-African differences in response
to drug therapies as well as the high rates of adverse drug reactions registered in the
Continent [20,204,229]. This highlights the need for optimization of drug therapy and drug
development in Africa.

All CYP alleles related to the CYP enzymes in families 1, 2, and 3 that metabolize
antimalarial and antituberculosis drugs were obtained from the PharmVar website (https:
//www.pharmvar.org/genes; accessed on 17 November 2022) in November 2022, and
a full list of the alleles has been provided in Table S2. Of these, the alleles with the highest
frequency in African populations and/or the alleles highly restricted to African populations,
according to the recent comprehensive study by Zhou and Lauschke 2022 [230], were chosen

https://www.pharmvar.org/genes
https://www.pharmvar.org/genes
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from the list (Figure 2 and Table 2). The highest frequency being the allele in each sub-family
that occurs most frequently in Africans (besides the reference allele), and highly restricted
being the alleles that occur in Africans at least 4x the frequency of any other population
type. These Afrocentric alleles were mapped to CYP enzyme structure (Figure 5), and
a documentation of their known structural effects and functional consequences are provided
(Table 2). A high proportion of Africans possess CYP2D6 alleles that are almost exclusive to
the African population. A few notable alleles highly restricted to Africans are CYP2A6*17
(10.9%; second highest frequency of only 0.9% in Middle Eastern population), CYP2B6*18
(7%; second highest frequency of only 0.6% in Middle Eastern population), CYP2C9*9 (7.5%;
second highest frequency of only 0.9% in Middle Eastern population), CYP2D6*17 (20.5%;
second highest frequency of only 0.7% in admixed Americans), and CYP2D6*29 (8.9%;
second highest frequency of only 0.4% in admixed Americans). The admixed American
individuals with these CYP2D6 alleles are most likely African Americans. Moreover, worth
mentioning, CYP2A6 alleles *23, *25, and *28 are almost exclusively found in Africans. All
allele frequencies across all populations are available in the article by Zhou and Lauschke,
2022 [230].

A visual representation of where these 22 missense mutations are located on the gen-
eral CYP structure is shown in Figure 5. Two of these Afrocentric missense mutations are
situated near the catalytically important region that contains the conserved glutamic acid
and arginine (EXXR) and decrease enzyme activity. As stated earlier, these two residues
build salt bridge interactions which form the final tertiary structure of CYP enzymes [39].
The CYP2C9*5 missense mutation D360E is situated two residues away from the conserved
EXXR region (Table 2) and was shown in molecular dynamics simulations to break the
hydrogen bond between D360 and S478 (helix K and loop β4) leading to local structure
destabilization [239]. Both aspartic acid and glutamic acid are negatively charged residues;
however, glutamic acid is larger than aspartic acid. The other mutation, V365M from
CYP2A6*17, forms part of the CYP2A6 active site region [231] and is four residues away
from the conserved EXXR signature region (Figure 5A). Both valine and methionine are
non-polar hydrophobic residues; however, methionine is larger and contains a sulfur
atom [231]. The most frequent and restricted Afrocentric allele, CYP2D6*17 (20.5%; second
highest frequency of only 0.7% in admixed Americans), contains mutation T107I that is
located in substrate recognition site 1 (B′-helix) and causes changes in hydrogen bonds
with surrounding residues within the active site cavity [247]. The hydrophilic threonine has
an alcoholic side chain pointing down towards heme, whereas the hydrophobic isoleucine
has a long aliphatic side chain points away from active site [246]. This CYP2D6*17 allele
decreases enzyme activity, most likely due to the T107I mutation, as allele CYP2D6*2 con-
tains the same mutations as CYP2D6*17 except for T107I but results in normal activity. Very
concerning is allele CYP2B6*18, which is the only commonly found CYP2B6 missense mu-
tation that causes enzyme inactivation [236,237], and it is highly restricted to Africans [230].
This allele contains mutation I328T (non-polar hydrophobic isoleucine to polar hydrophilic
threonine) that is located in the substrate binding region. Another important Afrocen-
tric allele, CYP2D6*29 (decreased enzyme function), contains substrate-binding region
mutations V136I and V338M, with V136I also possibly contributing to cytochrome P450
reductase binding [245,248]. Expression studies reveal that both the V136I and the V338M
mutations affect catalytic activity, and the effect is stronger when present together as seen
in CYP2D6*29 [249].
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Table 2. CYP alleles with missense mutations that have the highest frequency in African populations and/or are highly restricted to African populations [18,230].
Known structural effects and functional consequences of the mutations are included.

CYP Enzyme Antimalarial/Antituberculosis
Drug Metabolized Allele Frequency in African

Populations (%)
Amino Acid Mutation

Position
Functional

Consequence Residue/Mutation Notes

CYP2A6 Artemisinin, artesunate

CYP2A6*17 10.9 V365M -

Located in CYP2A6 substrate recognition site SRS-5 forming part of
the active site region and some side chains that point into the heme

pocket, suggesting this residue may be important for substrate
specificity. In vitro enzyme assays and metabolism studies showed
no effect of the mutation on the stability of the enzyme. Both valine

and methionine are non-polar hydrophobic residues; however,
methionine is larger and contains a sulfur atom [231].

CYP2A6*23 1.4 R203C Decreased

Residue located on α-helix F in substrate recognition site 2/3.
Change from large basic residue to medium sized polar residue.

Molecular modeling suggests Arg203 could orient important binding
residue Phe209 [232,233].

CYP2A6*25 1.4 F118L -
During molecular dynamics simulation, the F118L mutant side chain

moves away from the heme and affects secondary structure
formation and interaction with heme and substrates [234].

CYP2A6*28 1.5 N418D
E419D - N418D and E419D cause a structural change in the substrate access

channel and the substrate binding site [234].

CYP2B6
Artemisinin, artesunate,

arteether

CYP2B6*6 32 Q172H; K262R Decreased Q172H and K262R are not located at the active site and have not been
identified in substrate recognition sites [235].

CYP2B6*18 7 I328T Inactive
Results in no detectable protein or activity in vitro [236]. Designated

as a null allele [237]. The only commonly found inactive CYP2B6
missense mutation, and highly restricted to Africa [230].

CYP2C8 Chloroquine, amodiaquine,
bedaquiline CYP2C8*2 15.2 I269F Decreased

Residue located on enzyme surface. Larger residue change. Possible
effect on enzyme folding and interaction with cytochrome P450

reductase [238].

CYP 2C9 Dapsone

CYP 2C9*5 1.1 D360E Decreased

In molecular dynamics simulations, D360E broke the hydrogen bond
between D360 and S478 (helix K and loop β4) leading to local
structure destabilization. Glutamic acid is larger than aspartic

acid [239].

CYP 2C9*8 6 R150H Decreased

R150 is highly conserved. Located on protein surface at D-helix
region, away from the active site. The structure of the

CYP2C9*8-losartan complex has ~60◦ rotation of the H150 sidechain
in an alternate conformation compared to the sidechain of R150 [240].

Possible involvement of R150H in the salt bridge network with the
neighboring residues, suggesting the change to histidine at this

solvent-exposed region may no longer coordinate similar ionic and
electrostatic interactions and may result in destabilization of the

structure [241]. Possible that this change could influence reductase
binding [242].

CYP 2C9*9 7.5 H251R Normal
H251R is located near the C-terminal end of helix G and hydrogen

bonds to D262 on helix H. Arginine has a longer side chain than
histidine [242].
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Table 2. Cont.

CYP Enzyme Antimalarial/Antituberculosis
Drug Metabolized Allele Frequency in African

Populations (%)
Amino Acid Mutation

Position
Functional

Consequence Residue/Mutation Notes

CYP 2C19 Proguanil, quinine, dapsone,
bedaquiline

CYP 2C19*9 1.3 R144H
I331V Decreased

The R144H mutation could affect enzyme structure and function.
The conserved arginine is located in the D helix and is part of

a complex salt bridge with conserved Ser180 in the E helix and the
backbone of the turn before helix H. The arginine could help stabilize

the structure of the enzyme and may also be a part of the hinge for
the F–G loop [243]. Docking experiments suggest that I331 is
involved in ligand binding. The I331V mutant has differing
lipophilicity in the binding pocket or active cavity [239,244].

CYP 2C19*13 1.8 I331V
R410C Normal

Residue 410 located on enzyme surface. Change from large basic
residue to medium sized polar residue. Mutation has neutral effect

on enzyme activity.

CYP 2C19*15 1.9 I19L
I331V Normal

The I19L mutation with residue 19 is part of signal-anchor sequence,
located in truncated N-terminal region. Mutation has neutral

effect [245].

CYP 2D6 Chloroquine

CYP 2D6*2 22.5 R296C
S486T Normal

R296C is located in substrate recognition site 4 (I-helix) important for
catalytic proton delivery. Kinetics data indicate that R296C in
CYP2D6*2 causes enhanced ligand binding possibly due to

morphological changes Change from medium-sized basic residue to
small polar residue. [246]. S486T mutation is located in substrate
recognition site (β4-2 sheet) and is very close to active site and

heme [239]. Kinetics data indicate that S486T in CYP2D6*2 causes
enhanced ligand binding possibly due to morphological

changes [246].

CYP 2D6*17 20.5
T107I
R296C
S486T

Decreased

T107I is located in substrate recognition site 1 (B′-helix). Substitution
of hydrophilic Threonine to hydrophobic Isoleucine. Threonine has

alcoholic side chain pointing down towards heme, whereas
Isoleucine long aliphatic side chain points away from active site [246].

Causes changes in hydrogen bonds with surrounding residues
within the active site cavity [247].

CYP 2D6*29 8.9

V136I
R296C
V338M
S486T

Decreased

V136 is located between substrate recognition sites 1 and 2 in
helix C [248]. In contact with cytochrome P450 reductase. Neutral

effect on protein stability [245]. V338M is located between substrate
recognition sites 4 and 5 at the end of helix J [248]. Neutral effect on
protein stability [245]. Expression studies reveal that both the V136I
and the V338M mutations affect catalytic activity, and the effect is
stronger when present together as seen in CYP2D6*29. Both valine

and methionine are non-polar hydrophobic residues; however,
methionine is larger and contains a sulfur atom [249].

CYP3A4

Quinine, quinidine,
chloroquine, mefloquine,
primaquine, halofantrine,

lumefantrine, dapsone,
artemisinin, artemether,
arteether, artelinic, acid,
delaminid, bedaquiline

CYP3A4*15 2.6 R162Q -
Mutation related to rapid metabolism of quinine in vitro. Change

from large basic residue to medium-sized polar hydrophilic
residue [250].
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gion is not available on all crystalized CYP enzymes to date. 
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Figure 5. Afrocentric missense mutations and their location within the general CYP enzyme structure.
(A) Mutations more frequent in African populations and highly restricted to African populations
mapped to CYP2D6 (PDB ID 3TDA). Mutations in all Afrocentric alleles were mapped to their
corresponding positions in CYP2D6 and colored orange. The (A/G)XXT region is shaded green,
while the EXXR region is shown in the color purple, and the FXXGXXXCXG conserved domain is
in blue. (B) Mutations in close proximity to known important residues in the active site and in the
substrate channel. Active site residues of CYP2D6 shown in red, and residues in the substrate channel
shown in cream. Mutation I19L could not be mapped to CYP2C19*15 as this region is not available
on all crystalized CYP enzymes to date.

7. Conclusions and Future Perspectives

Cytochrome P450 (CYP) enzyme families constitute the main pharmacogenes of hu-
mans, among which families 1, 2, and 3 are implicated in the phase I metabolism of most
therapeutic or clinical drugs. An understanding of the mechanism of action of these en-
zymes is invaluable to the advancement of precision medicine. This review covers current
knowledge on CYP enzymes in general, and more specifically on the first three CYP enzyme
families with a focus on prevalent African alleles, particularly linking to two infectious
diseases of poverty—malaria and tuberculosis—of which Africa has the highest burden.

Afrocentric alleles that may affect malaria treatment and the implicated antimalari-
als include: CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28 (artemisinin, artesunate),
CYP2B6*6, CYP2B6*18 (artemisinin, artesunate, arteether), CYP2C8*2 (chloroquine), CYP2C9*5,
CYP2C9*8, CYP2C9*9 (dapsone), CYP2C19*9, CYP2C19*13, CYP2C19*15 (dapsone, quinine,
proguanil), CYP2D6*2, CYP2D6*17, CYP2D6*29 (chloroquine), and CYP3A4*15 (arteether,
artemisinin, artemether, artelinic acid, chloroquine dapsone, halofantrine, lumefantrine,
mefloquine, primaquine, quinine, quinidine).

Although there are reports on CYP enzymes that are involved in the metabolism
of different antimalarial drugs, currently there is no literature regarding if first-line an-
tituberculosis drugs are metabolized by any CYP enzymes. However, two second-line
antituberculosis drugs bedaquiline and linezolid are known to be metabolized by CYP
enzymes; the former mostly by CYP3A4 and the latter by CYP2J2 and CYP1B1. On another
note, the first-line antituberculosis drug isoniazid is a known inhibitor while rifampicin is
an inducer of several CYP enzymes, resulting in altered pharmacological effects of drugs
that are metabolized by these CYPs. Further, variants of CYP2E1 and CYP2C19 have been
implicated in altered isoniazid metabolism. Additionally, drug–drug interactions that
influence the metabolism of antituberculosis, antimalarial, and other drugs, were explored.

As a first step to understand the mechanism by which these SNPs influence enzyme
function, identified Afrocentric missense mutations were mapped to a CYP structure,
and their known structural effects and functional consequences tabled. These afrocen-
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tric missence mutations indicate that they might play an important role in altering the
metabolism of antimalarials amodiaquine, arteether, artelinic acid, artemether, artemisinin,
artesunate, chloroquine, dapsone, halofantrine, lumefantrine, mefloquine, primaquine,
proguanil, and quinine, as well as antituberculosis drugs bedaquiline and delamanid and
thus need to be investigated further.

Several studies that have investigated the mechanism by which some CYP enzyme
SNPs influence enzyme activity were covered in this review. These studies point to
structural changes due to mutations as a major cause of the observed differences in the
metabolism of these enzymes. Detailed structural studies will be required to fully elucidate
the mechanisms by which these SNPs alter enzyme activity—with implications on precision
medicine—especially as new mutants and phenotypic data are becoming available.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24043383/s1.

Author Contributions: Conceptualization, Ö.T.B.; supervision, Ö.T.B.; writing—original draft, C.R.C.,
W.V. and R.B.T.; writing—review and editing, C.R.C., W.V., R.B.T., B.S. and Ö.T.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Grants, Innovation and Product Development unit of
the South African Medical Research Council with funds received from Novartis and GSK R&D (Grant
# GSKNVS1/202101/002) under the Project Africa Genomic Research Approach for Diversity and
Optimizing Therapeutics (GRADIENT) program. R.T.B is funded by GRADIENT as a postdoctoral
fellow. C.R.C and W.V are funded as a PhD and postdoctoral fellow, respectively, by the National
Research Foundation of South Africa (Grant Numbers: 130411 and 138566) and GRADIENT. The
contents of this publication are solely the responsibility of the authors and do not necessarily represent
the official views of the funders.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors appreciate Rhodes University, South Africa, from where this work
was conducted.

Conflicts of Interest: The authors declare no conflict of interest exists regarding the publication of
this paper.

References
1. Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and

impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [CrossRef] [PubMed]
2. Sarkar, S.; Ganguly, A. Current Overview of Anti-Tuberculosis Drugs: Metabolism and Toxicities. Mycobact. Dis. 2016, 6, 1000209.

[CrossRef]
3. Liu, X.; Ren, S.; Zhang, J.; Xu, D.; Jiang, F.; Jiang, P.; Feng, J.; Deng, F. The association between cytochrome P450 polymorphisms

and anti-tuberculosis drug-induced liver injury: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 6518–6534.
[CrossRef] [PubMed]

4. Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.-Q. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to
Precision Medicine. Genom. Proteom. Bioinform. 2016, 14, 298–313. [CrossRef]

5. Hassan, R.; Allali, I.; Agamah, F.E.; Elsheikh, S.S.M.; Thomford, N.E.; Dandara, C.; Chimusa, E.R. Drug response in association
with pharmacogenomics and pharmacomicrobiomics: Towards a better personalized medicine. Brief. Bioinform. 2020, 22, bbaa292.
[CrossRef]

6. Johnson, J.A. Ethnic Differences in Cardiovascular Drug Response. Circulation 2008, 118, 1383–1393. [CrossRef]
7. Wilke, R.A.; Lin, D.W.; Roden, D.M.; Watkins, P.B.; Flockhart, D.; Zineh, I.; Giacomini, K.M.; Krauss, R.M. Identifying genetic risk

factors for serious adverse drug reactions: Current progress and challenges. Nat. Rev. Drug Discov. 2007, 6, 904–916. [CrossRef]
8. Bergström, A.; McCarthy, S.A.; Hui, R.; Almarri, M.A.; Ayub, Q.; Danecek, P.; Chen, Y.; Felkel, S.; Hallast, P.; Kamm, J.; et al.

Insights into human genetic variation and population history from 929 diverse genomes. Science 2020, 367, eaay5012. [CrossRef]
9. Schärfe, C.P.I.; Tremmel, R.; Schwab, M.; Kohlbacher, O.; Marks, D.S. Genetic variation in human drug-related genes. Genome Med.

2017, 9, 117. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms24043383/s1
https://www.mdpi.com/article/10.3390/ijms24043383/s1
http://doi.org/10.1016/j.pharmthera.2012.12.007
http://www.ncbi.nlm.nih.gov/pubmed/23333322
http://doi.org/10.4172/2161-1068.1000209
http://doi.org/10.21037/apm-21-1224
http://www.ncbi.nlm.nih.gov/pubmed/34154362
http://doi.org/10.1016/j.gpb.2016.03.008
http://doi.org/10.1093/bib/bbaa292
http://doi.org/10.1161/CIRCULATIONAHA.107.704023
http://doi.org/10.1038/nrd2423
http://doi.org/10.1126/science.aay5012
http://doi.org/10.1186/s13073-017-0502-5


Int. J. Mol. Sci. 2023, 24, 3383 20 of 29

10. Hoehe, M.R.; Kroslak, T. Genetic variation and pharmacogenomics: Concepts, facts, and challenges. Dialog. Clin. Neurosci. 2004,
6, 5–26. [CrossRef]

11. Weinshilboum, R. Inheritance and Drug Response. N. Engl. J. Med. 2003, 348, 529–537. [CrossRef]
12. Katara, P.; Yadav, A. Pharmacogenes (PGx-genes): Current understanding and future directions. Gene 2019, 718, 144050. [CrossRef]

[PubMed]
13. Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2021, 29, 875–878. [CrossRef]

[PubMed]
14. Benet, L.Z. The Drug Transporter-Metabolism Alliance: Uncovering and Defining the Interplay. Mol. Pharm. 2009, 6, 1631–1643.

[CrossRef] [PubMed]
15. Henriques, B.C.; Yang, E.H.; Lapetina, D.; Carr, M.S.; Yavorskyy, V.; Hague, J.; Aitchison, K.J. How Can Drug Metabolism and

Transporter Genetics Inform Psychotropic Prescribing? Front. Genet. 2020, 11. [CrossRef]
16. Petzinger, E.; Geyer, J. Drug transporters in pharmacokinetics. Naunyn. Schmiedeberg. Arch. Pharmacol. 2006, 372, 465–475.

[CrossRef]
17. Lynch, T.; Price, A. The Effect of Cytochrome P450 Metabolism on Drug Response, Interactions, and Adverse Effects.

Am. Fam. Physician 2007, 76, 391–396.
18. Gaedigk, A.; Ingelman-Sundberg, M.; Miller, N.A.; Leeder, J.S.; Whirl-Carrillo, M.; Klein, T.E.; PharmVar Steering Committee.

The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature
Database. Clin. Pharmacol. Ther. 2018, 103, 399–401. [CrossRef]

19. Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic Cytochrome P450 Enzymes
(CYPs) and Their Role in Personalized Therapy. PLoS ONE 2013, 8, e82562. [CrossRef]

20. Rajman, I.; Knapp, L.; Morgan, T.; Masimirembwa, C. African Genetic Diversity: Implications for Cytochrome P450-mediated
Drug Metabolism and Drug Development. eBioMedicine 2017, 17, 67–74. [CrossRef]

21. Marwa, K.J.; Schmidt, T.; Sjögren, M.; Minzi, O.M.; Kamugisha, E.; Swedberg, G. Cytochrome P450 single nucleotide polymor-
phisms in an indigenous Tanzanian population: A concern about the metabolism of artemisinin-based combinations. Malar. J.
2014, 13, 420. [CrossRef]

22. World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; World Health Organization:
Geneva, Switzerland, 2020. Available online: https://reliefweb.int/attachments/5adfc2b9-0e73-3c8b-97cd-c197b6864385/WMR-
2020-v5-double-embargoed.pdf (accessed on 17 November 2022).

23. Meunier, B.; de Visser, S.P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev.
2004, 104, 3947–3980. [CrossRef] [PubMed]

24. Ingelman-Sundberg, M. Human drug metabolising cytochrome P450 enzymes: Properties and polymorphisms.
Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 369, 89–104. [CrossRef]

25. McDonnell, A.M.; Dang, C.H. Basic Review of the Cytochrome P450 System. J. Adv. Pract. Oncol. 2013, 4, 263–268. [CrossRef]
[PubMed]

26. Goh, L.L.; Lim, C.W.; Sim, W.C.; Toh, L.X.; Leong, K.P. Analysis of Genetic Variation in CYP450 Genes for Clinical Implementation.
PLoS ONE 2017, 12, e0169233. [CrossRef] [PubMed]

27. Ohkawa, H.; Inui, H. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals
and plants. Pest Manag. Sci. 2014, 71, 824–828. [CrossRef]

28. Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and
Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [CrossRef]

29. Nebert, D.W.; Adesnik, M.; Coon, M.J.; Estabrook, R.W.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F. The P450
Gene Superfamily: Recommended Nomenclature; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 1987.

30. Nebert, D.W.; Nelson, D.R.; Adesnik, M.; Coon, M.J.; Estabrook, R.W.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.;
Kemper, B.; et al. The P450 Superfamily: Updated Listing of All Genes and Recommended Nomenclature for the Chromosomal Loci; Mary
Ann Liebert, Inc.: Larchmont, NY, USA, 1989.

31. Nebert, D.W.; Nelson, D.R.; Coon, M.J.; Estabrook, R.W.; Feyereisen, R.; Fujii-Kuriyama, Y.; Gonzalez, F.J.; Guengerich, F.P.;
Gunsalus, I.C.; Johnson, E.F.; et al. The P450 Superfamily: Update on New Sequences, Gene Mapping, and Recommended Nomenclature;
Mary Ann Liebert, Inc.: Larchmont, NY, USA, 1991.

32. Nelson, D.; Kamataki, T.; Waxman, D.; Guengerich, F.P.; Estabrook, R.W.; Feyereisen, R.; Gonzalez, F.J.; Coon, M.J.; Gunsalus, I.C.;
Gotoh, O.; et al. The P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, Early Trivial Names of Enzymes,
and Nomenclature; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 1993.

33. Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes
from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice
variants. Pharmacogenetics 2004, 14, 1–18. [CrossRef]

34. Daly, A.K.; Brockmoller, J.; Broly, F.; Eichelbaum, M.; Evans, W.; Gonzalez, F.J.; Huang, J.-D.; Idle, J.R.; Ingelman-Sundberg, M.;
Ishizaki, T.; et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996, 6, 193–201. [CrossRef]

35. Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: A peer-reviewed database
of CYP variants and their associated effects. Hum. Genom. 2010, 4, 278–281. [CrossRef]

http://doi.org/10.31887/DCNS.2004.6.1/mhoehe
http://doi.org/10.1056/NEJMra020021
http://doi.org/10.1016/j.gene.2019.144050
http://www.ncbi.nlm.nih.gov/pubmed/31425740
http://doi.org/10.1038/s41417-021-00383-9
http://www.ncbi.nlm.nih.gov/pubmed/34471232
http://doi.org/10.1021/mp900253n
http://www.ncbi.nlm.nih.gov/pubmed/19874004
http://doi.org/10.3389/fgene.2020.491895
http://doi.org/10.1007/s00210-006-0042-9
http://doi.org/10.1002/cpt.910
http://doi.org/10.1371/journal.pone.0082562
http://doi.org/10.1016/j.ebiom.2017.02.017
http://doi.org/10.1186/1475-2875-13-420
https://reliefweb.int/attachments/5adfc2b9-0e73-3c8b-97cd-c197b6864385/WMR-2020-v5-double-embargoed.pdf
https://reliefweb.int/attachments/5adfc2b9-0e73-3c8b-97cd-c197b6864385/WMR-2020-v5-double-embargoed.pdf
http://doi.org/10.1021/cr020443g
http://www.ncbi.nlm.nih.gov/pubmed/15352783
http://doi.org/10.1007/s00210-003-0819-z
http://doi.org/10.6004/jadpro.2013.4.4.7
http://www.ncbi.nlm.nih.gov/pubmed/25032007
http://doi.org/10.1371/journal.pone.0169233
http://www.ncbi.nlm.nih.gov/pubmed/28046094
http://doi.org/10.1002/ps.3871
http://doi.org/10.3390/ijms222312808
http://doi.org/10.1097/00008571-200401000-00001
http://doi.org/10.1097/00008571-199606000-00001
http://doi.org/10.1186/1479-7364-4-4-278


Int. J. Mol. Sci. 2023, 24, 3383 21 of 29

36. Sim, S.C.; Ingelman-Sundberg, M. Update on Allele Nomenclature for Human Cytochromes P450 and the Human Cytochrome
P450 Allele (CYP-Allele) Nomenclature Database. Methods Mol. Biol. 2013, 987, 251–259. [CrossRef]

37. Danielson, P.B. The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans. Curr. Drug Metab.
2002, 3, 561–597. [CrossRef] [PubMed]

38. Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on
a Fascinating Enzyme Family. J. Xenobiotics 2021, 11, 94–114. [CrossRef] [PubMed]

39. Nguyen, K.-T.; Nguyen, N.-L.; Tung, N.; Nguyen, H.; Milhim, M.; Le, T.-T.; Lai, T.-H.; Phan, T.-T.; Bernhardt, R. A Novel
Thermostable Cytochrome P450 from Sequence-Based Metagenomics of Binh Chau Hot Spring as a Promising Catalyst for
Testosterone Conversion. Catalysts 2020, 10, 1083. [CrossRef]

40. Sarparast, M.; Dattmore, D.; Alan, J.; Lee, K.S.S. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegen-
eration. Nutrients 2020, 12, 3523. [CrossRef] [PubMed]

41. Machalz, D.; Pach, S.; Bermudez, M.; Bureik, M.; Wolber, G. Structural insights into understudied human cytochrome P450
enzymes. Drug Discov. Today 2021, 26, 2456–2464. [CrossRef]

42. Mustafa, G.; Nandekar, P.P.; Mukherjee, G.; Bruce, N.J.; Wade, R.C. The Effect of Force-Field Parameters on Cytochrome
P450-Membrane Interactions: Structure and Dynamics. Sci. Rep. 2020, 10, 1–11. [CrossRef]

43. Poulos, T.L.; Johnson, E.F. Structures of Cytochrome P450 Enzymes. Cytochrome P450: Structure, Mechanism, and Biochemistry;
Springer: Cham, Switzerland, 2015; pp. 3–32. [CrossRef]

44. Guengerich, F.P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [CrossRef] [PubMed]
45. Textbook of Biochemistry with Clinical Correlations, 7th Edition|Wiley. In: Wiley.com. Available online: https://www.wiley.com/

en-us/Textbook+of+Biochemistry+with+Clinical+Correlations%2C+7th+Edition-p-9780470281734 (accessed on 26 August 2022).
46. Midlik, A.; Navrátilová, V.; Moturu, T.R.; Koča, J.; Svobodová, R.; Berka, K. Uncovering of cytochrome P450 anatomy by

SecStrAnnotator. Sci. Rep. 2021, 11, 1–12. [CrossRef] [PubMed]
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