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Abstract: Available pyrrolylalkynones with tetrahydroindolyl, cycloalkanopyrrolyl, and
dihydrobenzo[g]indolyl moieties, acylethynylcycloalka[b]pyrroles, are readily annulated with ∆1-
pyrrolines (MeCN/THF, 70 ◦C, 8 h) to afford a series of novel pyrrolo[1′,2′:2,3]imidazo[1,5-a]indoles
and cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles functionalized with an acylethenyl group
in up to an 81% yield. This original synthetic approach contributes to the arsenal of chemical methods
promoting drug discovery. Photophysical studies show that some of the synthesized compounds,
e.g., benzo[g]pyrroloimidazoindoles, are prospective candidates for TADF emitters of OLED.

Keywords: acylethynylcycloalka[b]pyrroles; ∆1-pyrrolines; [3+2] annulation; pyrrolo[1′,2′:2,3]imidazo[1,5-
a]indoles; cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles

1. Introduction

Nitrogen-fused heterocycles in general and pyrroloimidazoles in particular are im-
portant structural motifs frequently found in a number of natural products and bioactive
molecules [1–12] (Figure 1), as well as contained in key components for optoelectronic
devices [13–15]. Such compounds act as extracellular signal-regulated kinase (ERK) in-
hibitors [6], anticancer drugs [7,8], nervous depressants and analgesics [9], antibiotics [10],
inhibitors of glucosamine deacetylase (LpxC) [11], neuropeptide S receptor (NPSR) antag-
onists [12], blue-emitting luminophores [13], TADF (thermally activated delayed fluores-
cence) emitters [14], and compounds with cell imaging properties [15].

The known approaches to the synthesis of pyrrolo[1,2-c]imidazoles include the inter-
molecular cyclocondensation of pyrrole, isocyanate and phosgene or thiophosgene [16,17],
benzotriazol-1-yl(1H-pyrrol-2-yl)methanone with ketone, isocyanate or isothiocyanate [18];
pyrrole-2-carboxylic acid, amine and carbonyl diimidazole [5,19], Rh(III)- and Pd(0)-
catalyzed C2-H functionalization of pyrroles with alkynes, alkenes and diazo
compounds [20,21]; post-Ugi cascade reaction [7]; and flash vacuum pyrolysis of imidazol-
1-ylacrylates [22].

Recently [23], we have serendipitously found that as a convenient platform for the
construction of a dipyrrolo[1,2-a:1′,2′-c]imidazole core, acylethynylpyrroles, readily avail-
able from the Al2O3-promoted cross-coupling of acylbromoacetylenes with pyrroles [24],
can be successfully employed. The similar condensed heterocyclic systems are of high
medicinal relevance as they are the principal structural units of compounds with antiviral
properties [1–3]. As a further development of this original catalyst-free [3+2] annula-
tion, here we disclose a convenient synthesis of pyrrolo[1′,2′:2,3]imidazo[1,5-a]indoles
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and cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles, so far unknown biochemically
related polycondensed heterocyclic systems comprising such life-sustaining motifs as
indole and pyrrole, from ∆1-pyrrolines and acylethynylpyrroles fused with cycloalkyl
groups, namely acylethynyltetrahydroindoles 1, -dihydrobenzo[g]indole 2, and cyclo-
hepta[b]pyrrole 3.
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Figure 1. Selected examples of biologically active compounds bearing pyrrolo[1,2-c]imidazole and
pyrrolo[1,2-a]imidazole cores.

2. Results and Discussion

As a model for primary optimization, the reaction of benzoylethynyltetrahydroindole
1a with pyrroline 4a, conveniently handled as its trimer, has been chosen (Table 1).

Table 1. Optimization of reaction conditions a.
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Entry Solvent Temperature/°C Time/h Conversion of 1a b 
(%) Yield of 5a b (%) 

1 MeOH 20–25 24 100 (11) c 
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3 THF 20–25 24 33 32 
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Entry Solvent Temperature/◦C Time/h Conversion
of 1a b (%)

Yield of 5a b

(%)

1 MeOH 20–25 24 100 (11) c

2 MeCN 20–25 24 12 12
3 THF 20–25 24 33 32
4 MeCN/THF 20–25 24 51 49
5 MeCN/THF 20–25 72 100 85 (80)
6 MeCN/THF 70 8 100 92 (81)

a Reactions were carried out on 0.5 mmol scale, solvent 1 mL. b Determined by 1H NMR with 2,3,5,6-
tetramethylbenzene (durene) as the internal standard (isolated yield in parentheses). c Major products are
acetyltetrahydroindole and methyl benzoate.

Although the reaction in MeOH was completed within 24 h at room temperature
(starting 1a was entirely consumed), the yield of product 5a did not exceed 11% (entry 1).
In this case, the major products were acetyltetrahydroindole and methyl benzoate (60%
and 72% yields). This result may be rationalized by a competitive nucleophilic addition
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of MeOH to 1a catalyzed by pyrroline 4a as a strong base. Nucleophilic addition of water
to adduct A and the subsequent decomposition of the intermediate B gives diketone C,
which adds a second molecule of MeOH and the intermediate D thus formed decomposes
to acetyltetrahydroindole and methyl benzoate (Scheme 1).
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Scheme 1. Proposed mechanism of ∆1-pyrroline-catalyzed reaction of acylethynyltetrahydroindole 1
with MeOH.

In MeCN (rt, 24 h), the reaction results in 12% yield of adduct 5a (entry 2) that can be
attributed to the limited solubility of the starting materials in the reaction medium. Solvent
screening revealed that a switch to MeCN/THF (1:1, v/v) gave better results (entries 2–4).
Only a 1:1 ratio of MeCN/THF provided a homogenic reaction mixture. Therefore, other
solvent ratios were not employed. After the short optimization of the reaction conditions,
we found that, upon heating (70 ◦C), the comparable yields (80–81%, Table 1, entries 5,
6) were achieved in a shorter time than at room temperature (8 h vs. 72 h). The reaction
conditions do not noticeably influence the ratio of E/Z isomers (~4:1). This prompted us
to study the reaction of tetrahydroindole 1 with pyrrolines 4b–e under similar conditions
(MeCN/THF, 70 ◦C, 8 h).

The experiments revealed that the reaction of tetrahydroindole 1a with pyrrolines
4b–d bearing the C2-alkyl group (Me, Et, Pri) under these conditions proceeded efficiently
to afford pyrrolo[1′,2′:2,3]imidazo[1,5-a]indoles 5b–d in good to high yields (Scheme 2).
There is a clear influence of the steric factors of the substituent at position 2 of pyrroline 4
on the yield of product 5: the more sterically compact methyl group compared to isopropyl
group gives the product in a higher yield (79% vs. 60%). The presence of a tert-butyl group
near the reaction center creates steric hindrance, preventing a more favorable orientation
of the reagents during the reaction. In this case, just a trace amount of the target product
5e was detectable (1H NMR spectrum) in the reaction mixture. In addition, the negative
effect of substituents in the pyrroline ring on the rate of cycloaddition and product yields
is associated not only with steric hindrance, but also with the electron-donating action
of alkyl substituents, which stabilizes the emerging positive charge in position 2 of the
pyrroline ring. At the same time, the electron-withdrawing substituent at the triple bond
of tetrahydroindole 1 had no noticeable effect: the reaction of benzoyl- 1a and thenoyl- 1b
derivatives with 2-methylpyrroline 4b proceeded under these conditions with comparable
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efficiency (79% and 72% yield). The synthesized pyrrolo[1′,2′:2,3]imidazo[1,5-a]indoles
5a–f were isolated as a mixture of the E- and Z-isomers in a 4:1 ratio.
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Scheme 2. Reaction of acylethynyltetrahydroindoles 1 with pyrrolines 4 (reactions were carried out
on 0.5 mmol scale in 1 mL of MeCN/THF (1:1, v/v). Isolated yield after column chromatography).

The reaction of dihydrobenzo[g]indole 2 with pyrroline 4 was expectedly somewhat
more reluctant than that with tetrahydroindole 1 (Scheme 3). Under analogous condi-
tions, unsubstituted pyrroline 4a provided the corresponding adduct 6a in a 70% yield
(conversion of 2 was 88%). In contrast to the similar reaction with tetrahydroindole (see
above), 2-alkylpyrrolines 4b–d led to the formation of pyrroloimidazoles 6b–d only in a
26–44% yield (vs. 60–79% with tetrahydroindole) (conversion of 2 was 35–56%). Pyrroline
4e with tert-butyl at the position 2 gave no even traces of the expected annulation product.
An obvious cause of the reaction inhibition is steric repulsion between the benzene ring
annulated with the tetrahydroindole moiety and the C2 substituent in pyrroline 4e.
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A similar effect of the C2 substituent on annulation was observed in the reaction of
benzoylethynylcyclohepta[b]pyrrole 3 with pyrroline 4 (Scheme 4). Pyrrole 3 reacted with
pyrroline 4a to form the expected tetracyclic adduct 7a in a 76% yield as an E/Z isomer
(4:1). In Me-pyrroline 4b, the yield of adduct 7b slightly decreased (conversion of the
starting pyrrole 3 was 82% vs. 90% with pyrroline 4a). The replacement of the methyl
group by ethyl or isopropyl ones in pyrroline 4 reduced the product yields to 32–34%.
This is probably due to the steric effect of the fused cycloheptyl moiety with a different
conformation to cyclohexyl.
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The structures of dipyrroloimidazoles 5–7 were proved by NMR (1H, 13C, 15N, including
2D correlations), IR spectroscopy, and mass spectrometry (See Supplementary Materials).

The above experimental data evidence that, like in the previous work [23], the nu-
cleophilic attack of the pyrroline nitrogen at the triple bond plays a key role here. The
proton transfer from the pyrrole NH moiety to the vinyl carbanionic center in intermedi-
ate A delivers pyrrolate-centered intermediate B. The free rotation along the C−C bond
allows a conformation suitable for the formation of a C2−N covalent bond to afford a
pyrroloimidazole scaffold of products 5–7 (Scheme 5, on the example of products 5).
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In a number of publications ([25] and ref. cite therein) concerning the reactions of
nitrogen nucleophiles (pyridines, quinolones, indolizines, etc.) with activated alkynes, the



Int. J. Mol. Sci. 2023, 24, 3404 6 of 16

reversible formation of 1,3(4)-dipolar complexes (zwitterions) as key intermediates was
proved to occur. As follows from Scheme 5, this step is implied to be a major one in the
reaction studied and therefore its mechanism does not likely differ much in other details
from the commonly accepted ones.

As suggested in article [23], the concerted [3+2] cycloaddition is also not excluded.
Benzo[g]indole scaffold is used in the synthesis of fluorescent organic molecules that

have wide biomedical and technical applications [26,27]. Our interest in the photophysics
of the synthesized benzo[g]pyrroloimidazoindoles 6 is instigated by the presence of intense
long-wavelength (λabs(max)~410 nm, ε ≈ 40,000 M−1 cm−1) electronic absorption bands
with maxima in the violet region and blue photoluminescence, which could make them
attractive materials in optoelectronics for blue organic light-emitting diodes (OLEDs). It is
clear that the optoelectronics-related properties of benzo[g]pyrroloimidazoindoles 6a–d are
associated with the benzo[g]indole fragment in their structure, as most conjugated and en-
riched p-electrons. Since compounds 6a–d differ from each other only by alkyl substituent,
their photophysical properties should not be noticeably different. In this work, preliminary
experimental and theoretical studies of the spectral and photophysical properties were per-
formed using (E)-2-(5,6,10,11,12,12a-hexahydro-8H-benzo[g]pyrrolo[2’,1’:2,3]imidazo[1,5-
a]indol-8-ylidene)-1-phenylethan-1-one (6a) as an example.

In liquid media, despite the ππ*-character and strong oscillator strength of the fluores-
cent S1 state (f = 1.09), as well as the favorable relative position of the forbidden state S2
(nOπ*+ππ*, f = 0.04), the fluorescence quantum yield (ΦF) of the synthesized compound
turned out to be low (Tables 2 and 3, Figure 2). This is most likely explained by the effective
intersystem crossing (ISC) between the fluorescent S1 (ππ*ST, 3.54 eV) and the closest to it
lower energy triplet state T4, (nOπ*+ππ*, 3.43 eV) with different orbital types according to
El Sayed’s rules [28] (Table 3, Figure 2).

Table 2. Spectroscopic and photophysical properties of 6a.

Solvent λabs(max)/nm ε /M−1 cm−1 λem(max)/nm ∆νST/cm−1 ΦF
a

Dioxane 413 38,050 470 3100 0.08
MeCN 411 40,850 478 3400 0.07

a Relative to the anthracene (ΦF = 0.27 in EtOH).

Table 3. Excitation energies, oscillator strengths, and dominant molecular orbital configurations of
vertical S0 → Si (i = 1, 2) and S0 → Ti (i = 1–4) transitions for 6a calculated at the TD-CAM-B3LYP
level of theory in MeCN.

Transition EV/eV λ/nm f Main
Configuration Coefficient Character qCT

a/e DCT
b/Å ∆µ c/D

S0 → S1 3.54 350.1 1.09 H→ L d 0.6697 ππ*CT 0.61 2.22 6.5

→ S2 3.78 328.1 0.04
H-5→ L
H-3→ L
H-2→ L

0.2949
0.4860
0.2772

nOπ*+ππ* 0.82 0.68 2.7

→ T1 2.33 532.0 0 H-1→ L
H→ L

0.2571
0.5835 ππ*LE 0.58 0.33 0.9

→ T2 2.77 448.0 0 H-1→ L
H→ L+1

0.5372
−0.3247 - - - -

→ T3 3.28 378.5 0 H-3→ L
H-2→ L

0.4390
0.2977 - - - -

→ T4 3.43 361.5 0 H-5→ L
H-5→ L+1

0.4618
−0.2559 nOπ*+ππ* 0.55 0.83 2.2

a qCT—fraction of electron charge transferred. b DCT—distance of charge transfer. c ∆µ—dipole moment variation
at excitation. d H—HOMO, L—LUMO.
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On the other hand, it is known that in solid media organic molecules with a small
singlet–triplet (S-T) gap and a donor–acceptor (D-A) character can exhibit thermally acti-
vated delayed fluorescence (TADF) [29,30]. The mechanism is based on the thermal upcon-
version of the triplet excitons into singlets via the reverse intersystem crossing. TADF has
gained considerable interest in recent years, since the materials exhibiting TADF can act as
high-performance emitters in OLEDs [31,32]. Since quantum chemical calculations (Table 3)
predict that benzo[g]pyrroloimidazoindoles have small S-T splitting (∆EST = 0.11 eV for 6a),
as well as the fact that they are D-A type compounds (donor–pyrrole ring and acceptor–
benzoyl fragment), then according to the literature criteria, these compounds can be good
candidates for TADF emitters for OLEDs. In this regard, in the near future we plan to
carry out spectral-luminescence and kinetic studies of benzo[g]pyrroloimidazoindoles in
solid media.

3. Materials and Methods
3.1. General Information

NMR spectra were recorded from solutions in CDCl3 on Bruker DPX-400 and AV-
400 spectrometers (Bruker, Billerica, MA, USA) (400.1 MHz for 1H, 100.6 MHz for 13C,
and 40.5 MHz for 15N). Chemical shifts (δ) were quoted in parts per million (ppm). The
residual solvent peak, δH 7.27 and δC 77.10, was used as a reference. Coupling constants
(J) were reported in hertz (Hz). The following abbreviations were used to express the
multiplicates: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), dt (doublet of
triplet), dq (doublet of quartet), m (multiplet), nr (narrow), br (broad). The 15N chemical
shifts were referenced to CH3NO2. The configurational assignment and the substituent
location for the compounds 5–7 are based on 2D (NOESY, 1Н-13C HSQC, 1Н-13C HMBC,
1Н-15N HMBC) NMR spectroscopy data.

UV/Vis absorption spectra were measured on a Lambda-35 (Perkin-Elmer, Waltham,
MA, USA) spectrophotometer. Fluorescence spectra were measured on a FLSP-920 com-
bined steady-state and time-resolved fluorescence spectrometer (Edinburgh Instrument,
Livingston, UK). All the solvents employed for the spectroscopic measurements were
of UV spectroscopic grade (Merck, Rahway, NJ, USA). For fluorescence measurements,
dilute solutions with an absorbance of less than 0.1 (at 1 cm optical path length) at the
absorption maximum were used. The fluorescence measurements were performed with a
90◦ standard geometry. The fluorescence quantum yields (ΦF) of 6a were evaluated relative
to anthracene (ΦF = 0.27 in EtOH as the reference and was corrected from the dependence
of the refractive index of the solvent [33]). The temperature for fluorescence measurements
was kept constant at 298 K. All quantum chemistry calculations were carried out using
the Gaussian 09.B.01 program package [34]. The ground-state (S0) geometry optimizations
and the vertical excitations S0 → Si (i = 1–5) at the S0 geometry were calculated with the
TD-CAMB3LYP method, with a split valence with polarization SVP basis set. An analysis
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of the nature of the transitions, fraction of electron charge transferred (qCT), distance of
charge transfer (DCT), and dipole moment variation at excitation (∆µ) was carried out using
Multiwfn 3.8. software [35].

IR spectra were obtained on a Varian 3100 IF-IR spectrometer (Digilab LLC, USA)
(400–4000 cm−1) as thin films dispersed from CDCl3. Mass spectra of synthesized com-
pounds were recorded on a GCMS-QP5050A spectrometer from Shimadzu Company.
High-resolution mass spectral analyses were performed from acetonitrile solution with
0.1% HFBA on an HPLC Agilent 1200/Agilent 6210 TOF instrument equipped with an
electrospray ionization (ESI) source (Agilent, USA). Melting points (uncorrected) were
measured on a melting point apparatus SGW-X-4 (China). Thin-layer chromatography
was carried out on Merck silica gel 60 F254 pre-coated aluminum foil sheets which were
visualized using UV light (254 nm). Column chromatography was carried out using
slurry-packed Alfa Aesar silica gel (SiO2), 70–230 mesh, pore size 60 Å.

3.2. Preparation and Characterization of Substrates

Pyrrolines 4a [36] and 4c–e [37] were prepared by following the same procedure
as described in the literature. 2-Methyl-1-pyrroline 4b was purchased from commer-
cial sources (Alfa Aesar, Haverhill, MA, USA). Starting acylethynyltetrahydroindole 1a,b
and acylethynyldihydrobenzo[g]indole 2 were obtained from corresponding pyrroles and
acylbromoacetylenes in the presence of Al2O3 according to published methods [24,38].
3-(1,4,5,6,7,8-Hexahydrocyclohepta[b]pyrrol-2-yl)-1-phenylprop-2-yn-1-one 3 was prepared
for the first time from 1,4,5,6,7,8-hexahydrocyclohepta[b]pyrrole [39] and benzoylbro-
moacetylene.

1,4,5,6,7,8-Hexahydrocyclohepta[b]pyrrole (0.676 g, 5.0 mmol) and 1-benzoyl-2- bro-
moacetylene (1.045 g, 5.0 mmol) were ground together at rt with 17.0 g (10-fold amount) of
Al2O3 (chromatography grade, Merck, pH 6.8–7.8) in a porcelain mortar for 1–2 min. The re-
action mixture self-heated (5–8 ◦C) and within 10 min turned from yellow to orange-brown.
After 3 h, the reaction products were extracted sequentially with hexane (50 mL), n-hexane–
Et2O (2:1–1:2) (150 mL), and Et2O (100 mL). The fractions were further chromatographed
on a column (Al2O3) to yield ethynylpyrrole 3.

3-(1,4,5,6,7,8-Hexahydrocyclohepta[b]pyrrol-2-yl)-1-phenylprop-2-yn-1-one (3). Yel-
low crystals, 0.986 g, 75%, mp 131–132 ◦C.

1H NMR (400.1 MHz, CDCl3) δ: 8.54 (br s, 1H, NH), 8.16–8.14 (m, 2H, Ho, Ph), 7.60–
7.56 (m, 1H, Hp, Ph), 7.50–7.46 (m, 2H, Hm, Ph), 6.65 (d, J = 2.4 Hz, 1H, H-3, pyrrole),
2.72–2.70 (m, 2H, CH2), 2.58–2.56 (m, 2H, CH2), 1.86–1.80 (m, 2H, CH2), 1.72–1.64 (m, 4H,
2CH2).

13C NMR (100.6 MHz, CDCl3): 177.7, 139.2, 139.2, 137.2, 133.5, 129.3 (2C), 128.5 (2C),
125.2, 122.6, 105.4, 93.7, 32.9, 29.5, 28.9, 28.2, 27.4.

IR (KBr): ν = 3285 (NH), 2152 (C≡C), 1613 (C=O).
Found: C, 81.98%; H, 6.53%; N, 5.28%. Calcd. for C18H17NO: C, 82.10%; H, 6.51%; N,

5.32%.

3.3. General Procedure for the Synthesis of Compounds 5–7

To a solution of ethynylpyrrole 1–3 (0.5 mmol) in the mixed solvent of MeCN (0.5 mL)
and THF (0.5 mL), pyrroline 4 (0.5 mmol) was added and the resulting mixture was stirred
at 70 ◦C in an oil bath for 8 h. Then, the solvents were removed under reduced pressure,
and residue was purified by column chromatography (SiO2, eluent: hexane/Et2O 1:1, v/v)
to give adducts 5–7.

2-(1,2,3,3a,5,6,7,8-Octahydro-10H-pyrrolo[1′,2′:2,3]imidazo[1,5-a]indol-10-ylidene)-1-
phenylethan-1-one (5a). Yield 129 mg, 81%. E/Z-ratio ~4:1. Yellow solid, mp 172–174 ◦C
(hexane).

1Н NMR (400.1 MHz, CDCl3): 7.98–7.96 (m, 2H, Ho, Ph), 7.48 (s, 1H, H-9), 7.46–7.39
(m, 3H, Hm,p, Ph), 5.91 (s, 1H, =CH), 5.43 (dd, J = 8.3, 5.6 Hz, 1H, H-3a), 3.61–3.56 (m, 1H,
H-1), 3.36 (dt, J = 9.7, 7.9 Hz, 1H, H-1), 2.64–2.56 (m, 4H, H-5, H-8), 2.39–2.22 (m, 3H, H-2,
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H-3), 1.88–1.73 (m, 4H, H-6, H-7), 1.58–1.48 (m, 1H, H-3)—E-isomer; 7.98–7.96 (m, 2H, Ho,
Ph), 7.46–7.39 (m, 3H, Hm,p, Ph), 6.21 (s, 1H, H-9), 6.20 (s, 1H, =CH), 5.61 (dd, J = 7.8, 6.0
Hz, 1H, H-3a), 4.32–4.27 (m, 1H, H-1), 3.10 (dt, J = 10.1, 8.6 Hz, 1H, H-1), 2.66–2.54 (m,
4H, H-5, H-8), 2.39–2.22 (m, 3H, H-2, H-3), 1.88–1.73 (m, 4H, H-6, H-7), 1.58–1.58 (m, 1H,
H-3)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.2 (C=O), 155.0 (C-10), 141.7 (Ci, Ph), 130.9 (C-
9a), 130.6 (Cp, Ph), 128.7 (C-4a), 128.2 (Cm, Ph), 127.5 (Co, Ph), 124.6 (C-8a), 111.3 (C-9), 90.3
(=CH), 76.9 (C-3a), 48.5 (C-1), 30.5 (C-3), 26.8 (C-2), 23.5, 23.4, 22.9, 22.3 (C-5–8)—E-isomer;
186.5 (C=O), 153.6 (C-10), 141.4 (Ci, Ph), 132.9 (C-9a), 130.8 (Cp, Ph), 128.4 (C-4a), 128.2 (Cm,
Ph), 127.6 (Co, Ph), 125.0 (C-8a), 101.6 (C-9), 88.1 (=CH), 79.5 (C-3a), 51.4 (C-1), 31.4 (C-3),
26.9 (C-2), 23.5, 23.4, 22.8, 22.0 (C-5–8)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −265.7 (N-11), −206.3 (N-4)—E-isomer; −257.6 (N-11),
−206.3 (N-4)—Z-isomer.

IR (film): ν = 1631 (C=O), 1578 (C=C) cm−1.
MS (EI): m/z (%) = 318 (M+, 47%), 213 (55), 146 (14), 145 (13), 105 (PhCO+, 100), 77 (Ph+,

90), 51 (22), 44 (11), 41 (23).
HRMS (ESI-TOF): found 319.1811. Calcd. for [C21H22N2O+H]+ 319.1810.
2-(3a-Methyl-1,2,3,3a,5,6,7,8-octahydro-10H-pyrrolo[1′,2′:2,3]imidazo[1,5-a]indol-10-

ylidene)-1-phenylethan-1-one (5b). Yield 131 mg, 79%. E/Z-ratio ~4:1. Pale yellow solid,
mp 149–152 ◦C (hexane).

1Н NMR (400.1 MHz, CDCl3): 7.98–7.95 (m, 2H, Ho, Ph), 7.49 (s, 1H, H-9), 7.43–7.40 (m,
3H, Hm,p, Ph), 5.88 (s, 1H, =CH), 3.64–3.59 (m, 1H, H-1), 3.45–3.38 (m, 1H, H-1), 2.76–2.58
(m, 4H, H-5, H-8), 2.34–2.20 (m, 3H, H-2, H-3), 1.95–1.92 (m, 1H, H-3), 1.82–1.74 (m, 4H,
H-6, H-7), 1.61 (s, 3H, Me-3a)—E-isomer; 7.98–7.95 (m, 2H, Ho, Ph), 7.43–7.40 (m, 3H, Hm,p,
Ph), 6.18 (s, 1H, H-9), 6.16 (s, 1H, =CH), 4.33–4.28 (m, 1H, H-1), 3.19–3.12 (m, 1H, H-1),
2.76–2.58 (m, 4H, H-5, H-8), 2.34–2.20 (m, 3H, H-2, H-3), 1.95–1.92 (m, 1H, H-3), 1.82–1.74
(m, 4H, H-6, H-7), 1.68 (s, 3H, Me-3a)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.2 (C=O), 154.5 (C-10), 141.8 (Ci, Ph), 130.7
(C-9a), 130.5 (Cp, Ph), 128.3 (C-4a), 128.1 (Cm, Ph), 127.4 (Co, Ph), 124.8 (C-8a), 111.1 (C-9),
90.2 (=CH), 84.8 (C-3a), 48.4 (C-1), 35.2 (C-3), 26.9 (Me-3a), 25.6 (C-2), 23.5, 23.3, 23.1, 22.4
(C-5–8)—E-isomer; 186.2 (C=O), 153.2 (C-10), 141.6 (Ci, Ph), 132.0 (C-9a), 130.5 (Cp, Ph),
129.7 (C-4a), 128.3 (Cm, Ph), 127.5 (Co, Ph), 125.1 (C-8a), 101.2 (C-9), 87.9 (C-3a), 87.7 (=CH),
51.3 (C-1), 36.2 (C-3), 27.0 (Me-3a), 25.8 (C-2), 23.6, 23.3, 23.0, 22.2 (C-5–8)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −255.1 (N-11), −194.4 (N-4)—E-isomer; −244.9 (N-11),
−194.4 (N-4)—Z-isomer.

IR (film): ν = 1632 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 332 (M+, 29%), 227 (100), 105 (PhCO+, 34), 77 (Ph+, 45).
HRMS (ESI-TOF): found 333.1968. Calcd. for [C22H24N2O+H]+ 333.1967.
2-(3a-Ethyl-1,2,3,3a,5,6,7,8-octahydro-10H-pyrrolo[1′,2′:2,3]imidazo[1,5-a]indol-10-

ylidene)-1-phenylethan-1-one (5c). Yield 111 mg, 64%. E/Z-ratio ~4:1. Light yellow
solid, mp 148–151 ◦C (hexane).

1Н NMR (400.1 MHz, CDCl3): 7.98–7.96 (m, 2H, Ho, Ph), 7.47 (s, 1H, H-9), 7.43–7.41
(m, 3H, Hm,p, Ph), 5.91 (s, 1H, =CH), 3.57–3.43 (m, 2H, H-1), 2.65–2.64 (m, 4H, H-5, H-8),
2.29–2.17 (m, 3H, H-2, H-3), 2.04–1.85 (m, 3H, H-3, CH2Me), 1.81–1.75 (m, 4H, H-6, H-7),
0.50 (t, J = 7.2 Hz, 3H, MeCH2)—E-isomer; 7.98–7.96 (m, 2H, Ho, Ph), 7.43–7.41 (m, 3H, Hm,p,
Ph), 6.16 (s, 2H, H-9, =CH), 4.24–4.18 (m, 1H, H-1), 3.26–3.19 (m, 1H, H-1), 2.64–2.58 (m, 4H,
H-5, H-8), 2.29–2.17 (m, 3H, H-2, H-3), 2.04–1.85 (m, 7H, H-3, H-6, H-7, CH2Me), 0.50 (t,
J = 7.2 Hz, 3H, MeCH2)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.3 (C=O), 155.5 (C-10), 141.9 (Ci, Ph), 131.2
(C-9a), 130.5 (Cp, Ph), 128.5 (C-4a), 128.1 (Cm, Ph), 127.5 (Co, Ph), 124.9 (C-8a), 110.9 (C-9),
90.2 (=CH), 87.9 (C-3a), 48.6 (C-1), 34.8 (MeCH2), 30.8 (C-3), 26.9 (C-2), 23.6, 23.5, 23.2, 22.5
(C-5–8), 6.6 (MeCH2)—E-isomer; 186.1 (C=O), 153.9 (C-10), 141.7 (Ci, Ph), 133.5 (C-9a), 130.7
(Cp, Ph), 128.5 (C-4a), 128.1 (Cm, Ph), 127.6 (Co, Ph), 125.1 (C-8a), 100.9 (C-9), 90.9 (C-3a),
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87.5 (=CH), 51.4 (C-1), 35.6 (CH2Me), 31.2 (C-3), 26.9 (C-2), 23.7, 23.4, 23.1, 22.3 (C-5–8), 6.6
(MeCH2)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −259.8 (N-11), −199.7 (N-4)—E-isomer; −251.0 (N-11),
−199.7 (N-4)—Z-isomer.

IR (film): ν = 1630 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 346 (M+, 43%), 331 (33), 242 (19), 241 (100), 105 (PhCO+, 32), 77 (Ph+,

55), 41 (15).
HRMS (ESI-TOF): found 347.2119. Calcd. for [C23H26N2O+H]+ 347.2123.
2-(3a-Isopropyl-1,2,3,4a,5,6,7,8-octahydro-10H-pyrrolo[1′,2′:2,3]imidazo[1,5-a]indol-10-

ylidene)-1-phenylethan-1-one (5d). Yield 108 mg, 60%. E/Z-ratio ~4:1. Yellow solid, mp
135–138 ◦C (hexane/ethyl acetate).

1Н NMR (400.1 MHz, CDCl3): 7.99–7.97 (m, 2H, Ho, Ph), 7.46 (s, 1H, H-9), 7.44–7.41 (m,
3H, Hm,p, Ph), 6.00 (s, 1H, =CH), 3.65–3.59 (m, 1H, H-1), 3.53–3.47 (m, 1H, H-1), 2.66–2.59
(m, 4H, H-5, H-8), 2.41–2.28 (m, 2H, H-3), 2.21–2.06 (m, 3H, H-2, CHMe2), 1.94–1.74 (m,
4H, H-6, H-7), 1.06 (d, J = 6.7 Hz, 3H, MeCH), 0.41 (d, J = 6.0 Hz, 3H, MeCH)—E-isomer;
7.99–7.97 (m, 2H, Ho, Ph), 7.44–7.41 (m, 3H, Hm,p, Ph), 6.20 (s, 1H, H-9), 6.16 (s, 1H, =CH),
4.03–3.96 (m, 1H, H-1), 3.41–3.34 (m, 1H, H-1), 2.66–2.59 (m, 4H, H-5, H-8), 2.41–2.28 (m,
2H, H-2), 2.21–2.06 (m, 3H, H-3, CHMe2), 1.94–1.74 (m, 4H, H-6, H-7), 1.14 (d, J = 6.8 Hz,
3H, MeCH), 0.41 (d, J = 6.0 Hz, 3H, MeCH)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.3 (C=O), 156.6 (C-10), 141.8 (Ci, Ph), 131.2
(C-9a), 130.5 (Cp, Ph), 128.7 (C-4a), 128.1 (Cm, Ph), 127.4 (Co, Ph), 125.3 (C-8a), 110.8 (C-10),
91.5 (=CH), 90.8 (C-3a), 51.9 (C-1), 37.7 (CHMe2), 32.3 (C-3), 26.7 (C-2), 23.5, 23.4, 23.3, 22.8
(C-5–8), 17.7 (CHMe), 15.9 (CHMe)—E-isomer; 186.0 (C=O), 154.8 (C-10), 141.5 (Ci, Ph),
133.4 (C-9a), 130.6 (Cp, Ph), 128.7 (Cm, Ph), 127.9 (C-4a), 127.5 (Co, Ph), 125.4 (C-8a), 100.7
(C-9), 93.6 (C-3a), 87.9 (=CH), 53.8 (C-1), 37.8 (CHMe2), 32.8 (C-3), 26.8 (C-2), 23.7, 23.4, 23.2,
22.7 (C-5–8), 17.7 (CHMe), 15.7 (CHMe)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −256.4 (N-11), −194.4 (N-4)—E-isomer; −255.1 (N-11),
−194.4 (N-4)—Z-isomer.

IR (film): ν = 1634 (C=O), 1579 (C=C).
MS (EI): m/z (%) = 360 (M+, 38%), 317 (95), 255 (100), 105 (PhCO+, 81), 77 (Ph+, 74),

41 (21).
HRMS (ESI-TOF): found 361.2280. Calcd. for [C24H28N2O+H]+ 361.2280.
2-(3a-Methyl-1,2,3,3a,5,6,7,8-octahydro-10H-pyrrolo[1′,2′:2,3]imidazo[1,5-a]indol-10-

ylidene)-1-(thiophen-2-yl)ethan-1-one (5f). Yield 122 mg, 72%. E/Z-ratio ~4:1. Orange
solid, mp 82–84 ◦C (hexane).

1Н NMR (400.1 MHz, CDCl3): 7.64 (dd, J = 3.7, 1.0 Hz, 1H, H-3′), 7.45 (dd, J = 4.9,
1.0 Hz, 1H, H-5′), 7.44 (s, 1H, H-9), 7.08 (dd, J = 4.9, 3.7 Hz, 1H, H-4′), 5.79 (s, 1H, =CH),
3.65–3.59 (m, 1H, H-1), 3.42 (dt, J = 10.9, 8.3 Hz, 1H, H-1), 2.72–2.58 (m, 4H, H-5, H-8),
2.36–2.20 (m, 3H, H-2, H-3), 1.96–1.89 (m, 1H, H-3), 1.83–1.74 (m, 4H, H-6, H-7), 1.61 (s,
3H, Me-3a)—E-isomer; 7.64 (dd, J = 3.7, 1.0 Hz, 1H, H-3′), 7.45 (dd, J = 4.9, 1.0 Hz, 1H,
H-5′), 7.08 (dd, J = 4.9, 3.7 Hz, 1H, H-4′), 6.20 (s, 1H, H-9), 6.09 (s, 1H, =CH), 4.33–4.27 (m,
1H, H-1), 3.25–3.18 (m, 1H, H-1), 2.72–2.58 (m, 4H, H-5, H-8), 2.36–2.20 (m, 3H, H-2, H-3),
1.96–1.89 (m, 1H, H-3), 1.83–1.74 (m, 4H, H-6, H-7), 1.66 (s, 3H, Me-3a)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 179.6 (C=O), 154.3 (C-10), 148.9 (C-2′), 130.0 (C-5′),
129.7 (C-9a), 128.4 (C-4a), 127.8 (C-3′), 127.6 (C-4′), 125.0 (C-8a), 111.4 (C-9), 89.8 (=CH), 84.9
(C-4a), 48.5 (C-1), 35.2 (C-3), 26.9 (C-2), 25.6 (Me-3a), 23.5, 23.3, 23.1, 22.4 (C-5–8)—E-isomer;
178.6 (C=O), 152.8 (C-10), 149.1 (C-2′), 131.9 (C-9a), 130.0 (C-5′), 128.0 (C-4a), 127.6 (C-3′,
C-4′), 125.2 (C-8a), 101.4 (C-9), 88.0 (C-3a), 87.1 (=CH), 51.5 (C-1), 36.1 (C-3), 27.0 (C-2), 25.8
(Me-3a), 23.6, 23.3, 23.0, 22.3 (C-5–8)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −254.4 (N-11), −192.5 (N-4)—E-isomer; −246.5 (N-11),
−192.4 (N-4)—Z-isomer.

IR (film): ν = 1618 (C=O), 1535 (C=C).
MS (EI): m/z (%) = 338 (M+, 21%), 227 (100), 111 (58), 83 (10), 41 (15), 39 (25).
HRMS (ESI-TOF): found 339.1531. Calcd for [C20H22N2OS+H]+ 339.1531.
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2-(5,6,10,11,12,12a-Hexahydro-8H-benzo[g]pyrrolo[2′,1′:2,3]imidazo[1,5-a]indol-8-yidene)-
1-phenylethan-1-one (6a). Yield 128 mg, 70%. E/Z-ratio ~3:1. Yellow solid, mp 156–158 ◦C
(hexane).

1Н NMR (400.1 MHz, CDCl3): 8.00–7.98 (m, 2H, Ho, Ph), 7.70 (s, 1H, H-7), 7.49–7.42
(m, 3H, Hm,p, Ph), 7.35–7.32 (m, 1H, H-1), 7.29–7.24 (m, 2H, H-2, H-4), 7.16 (dd, J = 7.4,
7.4 Hz, 1H, H-3), 5.99 (s, 1H, =CH), 5.90 (dd, J = 8.8, 5.1 Hz, 1H, H-12a), 3.70–3.65 (m, 1H,
H-10), 3.52–3.45 (m, 1H, H-10), 2.99–2.93 (m, 2H, H-6), 2.87–2.75 (m, 2H, H-5), 2.72–2.66 (m,
1H, H-12), 2.40–2.31 (m, 2H, H-11), 1.72–1.62 (m, 1H, H-12)—E-isomer; 8.00–7.98 (m, 2H,
Ho, Ph), 7.44–7.42 (m, 3H, Hm,p, Ph), 7.35–7.32 (m, 1H, H-1), 7.29–7.24 (m, 2H, H-2, H-4),
7.16 (dd, J = 7.4, 7.4 Hz, 1H, H-3), 6.37 (s, 1H, H-7), 6.28 (s, 1H, =CH), 6.05 (dd, J = 8.8, 5.1
Hz, 1H, H-12a), 4.40–4.34 (m, 1H, H-10), 3.20 (dt, J = 11.6, 8.8 Hz, 1H, H-10), 2.77–2.66 (m,
4H, H-5, H-6), 2.40–2.31 (m, 2H, H-12), 1.85–1.62 (m, 2H, H-11)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.4 (C=O), 154.0 (C-8), 141.5 (Ci, Ph), 136.9
(C-13b), 133.2 (C-7a), 130.8 (Cp, Ph), 128.9 (C-1), 128.5 (C-6a), 128.3 (C-13a), 128.2 (Cm, Ph),
127.5 (Co, Ph), 127.3 (C-4a), 126.7 (C-4), 126.5 (C-2), 120.0 (C-3), 111.1 (C-7), 90.8 (=CH), 78.7
(C-12a), 48.8 (C-10), 31.3 (C-12), 30.3 (C-5), 26.5 (C-11), 22.2 (C-6)—E-isomer; 186.6 (C=O),
152.7 (C-8), 141.2 (Ci, Ph), 136.1 (C-13b), 135.3 (C-7a), 130.9 (Cp, Ph), 128.9 (C-1), 127.9 (C-6a),
127.8 (C-13a), 127.6 (Cm, Ph), 127.5 (Co, Ph), 127.3 (C-4a), 126.8 (C-4), 126.4 (C-2), 120.1 (C-3),
101.8 (C-7), 88.5 (=CH), 81.2 (C-12a), 51.9 (C-10), 32.2 (C-12), 30.1 (C-5), 26.7 (C-11), 22.4
(C-6)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −256.7 (N-9), −212.2 (N-13)—E-isomer; −258.3 (N-9),
−213.0 (N-13)—Z-isomer.

IR (film): ν = 1629 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 366 (M+, 21%), 261 (13), 192 (13), 191 (17), 105 (67), 77 (100), 51 (22),

41 (19).
HRMS (ESI-TOF): found 367.18081. Calcd. for [C25H22N2O+H]+ 367.18104.
2-(12a-Methyl-5,6,10,11,12,12a-hexahydro-8H-benzo[g]pyrrolo[2′,1′:2,3]imidazo[1,5-a]indol-

8-yidene)-1-phenylethan-1-one (6b). Yield 84 mg, 44%. E/Z-ratio ~3:1. Yellow solid, mp
102–106 ◦C.

1Н NMR (400.1 MHz, CDCl3): 8.00–7.97 (m, 2H, Ho, Ph), 7.71 (s, 1H, H-7), 7.52–7.42
(m, 4H, H-1, Hm,p, Ph), 7.28–7.22 (m, 2H, H-2, H-4), 7.15 (dd, J = 7.5, 7.5 Hz, 1H, H-3), 5.90 (s,
1H, =CH), 3.70–3.66 (m, 1H, H-10), 3.54 (dt, J = 9.3, 9.2 Hz, 1H, H-10), 3.03–2.66 (m, 5H, H-6,
H-11, H-12), 2.50–2.46 (m, 2H, H-5), 2.36–2.27 (m, 1H, H-12), 1.62 (s, 3H, Me)—E-isomer;
8.00–7.97 (m, 2H, Ho, Ph), 7.52–7.42 (m, 4H, H-1, Hm,p, Ph), 7.28–7.22 (m, 2H, H-2, H-4), 7.15
(dd, J = 7.5, 7.5 Hz, 1H, H-3), 6.37 (s, 1H, H-7), 6.20 (s, 1H, =CH), 4.42 (dd, J = 12.0, 8.0 Hz,
1H, H-10), 3.27–3.20 (m, 1H, H-10), 3.03–2.66 (m, 6H, H-6, H-11, H-12), 2.50–2.46 (m, 2H,
H-5), 1.70 (s, 3H, Me)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.3 (C=O), 152.7 (C-8), 141.7 (Ci, Ph), 137.2
(C-13b), 134.1 (C-7a), 130.6 (Cp, Ph), 129.5 (C-6a), 129.3 (C-13a), 129.0 (C-1), 128.6 (C-4a),
128.2 (Cm, Ph), 127.5 (Co, Ph), 126.6 (C-4), 126.3 (C-2), 121.1 (C-3), 111.6 (C-7), 90.1 (=CH),
87.1 (C-12a), 47.4 (C-10), 37.4 (C-12), 30.5 (C-5), 26.6 (C-11), 25.7 (Me), 22.7 (C-6)—E-isomer;
186.3 (C=O), 151.4 (C-8), 141.5 (Ci, Ph), 136.5 (C-13b), 136.2 (C-7a), 130.8 (Cp, Ph), 129.6
(C-6a), 128.9 (C-1), 128.8 (C-13a), 128.6 (C-4a), 128.2 (Cm, Ph), 127.6 (Co, Ph), 126.7 (C-4),
126.2 (C-2), 120.9 (C-3), 102.4 (C-7), 90.5 (=CH), 87.5 (C-12a), 50.6 (C-10), 38.3 (C-12), 30.3
(C-5), 26.7 (C-11), 25.9 (Me), 22.9 (C-6)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −253.2 (N-9), −200.4 (N-13)—E-isomer; −244.4 (N-9),
−200.4 (N-13)—Z-isomer.

IR (film): ν = 1629 (C=O), 1577 (C=C).
MS (EI): m/z (%) = 380 (M+, 14%), 276 (19), 275 (83), 105 (71), 77 (100), 51 (19), 41 (15).
HRMS (ESI-TOF): found 381.1965. Calcd. for [C26H24N2O+H]+ 381.1969.
2-(12a-Ethyl-5,6,10,11,12,12a-hexahydro-8H-benzo[g]pyrrolo[2′,1′:2,3]imidazo[1,5-

a]indol-8-yidene)-1-phenylethan-1-one (6c). Yield 66 mg, 33 %. E/Z-ratio ~3:1. Yellow
solid, mp 114–118 ◦C.
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1Н NMR (400.1 MHz, CDCl3): 8.00–7.98 (m, 2H, Ho, Ph), 7.66 (s, 1H, H-7), 7.48–7.42
(m, 4H, H-1, Hm,p, Ph), 7.28–7.27 (m, 1H, H-4), 7.23 (t, J = 7.4 Hz, 1H, H-2), 7.14 (t, J = 7.4
Hz, 1H, H-3), 5.94 (s, 1H, =CH), 3.63–3.54 (m, 2H, H-10), 3.00–2.62 (m, 5H, H-6, H-11, H-12),
2.51–2.36 (m, 3H, H-5, H-12), 2.17 (dq, J = 14.4, 7.2 Hz, 1H, CH2Me), 1.88 (dq, J = 14.4, 7.2
Hz, 1H, CH2Me), 0.36 (t, J = 7.2 Hz, 3 H, MeCH2)—E-isomer; 8.00–7.98 (m, 2H, Ho, Ph),
7.48–7.42 (m, 4H, H-1, Hm,p, Ph), 7.28–7.27 (m, 1H, H-4), 7.23 (t, J = 7.4 Hz, 1H, H-2), 7.14 (t,
J = 7.4 Hz, 1H, H-3), 6.34 (s, 1H, H-7), 6.21 (s, 1H, =CH), 4.39–4.34 (m, 1H, H-10), 3.31–3.23
(m, 1H, H-10), 3.00–2.62 (m, 5H, H-6, H-11, H-12), 2.51–2.36 (m, 3H, H-5, H-12), 2.05–1.99
(m, 2H, CH2Me), 0.39 (t, J = 7.2 Hz, 3H, MeCH2)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.2 (C=O), 153.6 (C-8), 141.8 (Ci, Ph), 137.1
(C-13b), 135.7 (C-7a), 130.6 (Cp, Ph), 129.8 (C-6a), 129.4 (C-13a), 128.9 (C-1), 128.7 (C-4a),
128.1 (Cm, Ph), 127.4 (Co, Ph), 126.5 (C-4), 126.2 (C-2), 121.2 (C-3), 111.1 (C-7), 90.2 (C-12a),
89.8 (=CH), 47.3 (C-10), 37.0 (C-12), 30.8 (CH2Me), 30.6 (C-5), 26.5 (C-11), 22.7 (C-6), 6.4
(Me)—E-isomer; 186.0 (C=O), 151.9 (C-8), 141.5 (Ci, Ph), 138.0 (C-13b), 136.4 (C-7a), 130.7
(Cp, Ph), 129.6 (C-6a), 128.9 (C-1), 128.8 (C-13a), 128.7 (C-4a), 128.1 (Cm, Ph), 127.5 (Co, Ph),
126.7 (C-4), 126.1 (C-2), 120.9 (C-3), 101.8 (C-7), 93.5 (C-12a), 87.1 (=CH), 50.5 (C-10), 37.9
(C-12), 31.2 (CH2Me), 30.4 (C-5), 26.6 (C-11), 22.8 (C-6), 6.4 (Me)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −258.4 (N-9), −204.8 (N-13)—E-isomer; −250.3 (N-9),
−204.1 (N-13)—Z-isomer.

IR (film): ν = 1630 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 394 (M+, 21%), 379 (13), 289 (100), 105 (48), 77 (77), 51 (11), 41 (15).
HRMS (ESI-TOF): found 395.21224. Calcd. for [C27H26N2O+H]+ 395.2123.
2-(12a-Isopropyl-5,6,10,11,12,12a-hexahydro-8H-benzo[g]pyrrolo[2′,1′:2,3]imidazo[1,5-

a]indol-8-yidene)-1-phenylethan-1-one (6d). Yield 54 mg, 26 %. E/Z-ratio ~3:1. Yellow
solid, mp 125–127 ◦C.

1Н NMR (400.1 MHz, CDCl3): 8.02–7.99 (m, 2H, Ho, Ph), 7.66 (s, 1H, H-7), 7.49–7.43
(m, 4H, Hm,p, Ph, H-1), 7.28–7.22 (m, 2H, H-2, H-4), 7.14 (dd, J = 7.4, 7.4 Hz, 1H, H-3), 6.01
(s, 1H, =CH), 3.74–3.61 (m, 2H, H-10), 2.97–2.67 (m, 5H, H-6, H-11, H-12), 2.65–2.53 (m,
1H, H-12), 2.49–2.36 (m, 3H, CHMe2, H-5), 1.04 (d, J = 6.8 Hz, 3H, MeCH), 0.26 (d, J = 6.5
Hz, 3H, MeCH)—E-isomer; 8.02–7.99 (m, 2H, Ho, Ph), 7.49–7.43 (m, 4H, Hm,p, Ph, H-1),
7.28–7.22 (m, 2H, H-2, H-4), 7.14 (dd, J = 7.4, 7.4 Hz, 1H, H-3), 6.33 (s, 1H, H-7), 6.25 (s, 1H,
=CH), 4.29–4.22 (m, 1H, H-10), 3.40–3.33 (m, 1H, H-10), 3.00–2.36 (m, 9H, H-5; H-6, H-11,
H-12, CHMe2), 1.13 (d, J = 6.8 Hz, 3H, MeCH), 0.26 (d, J = 6.0 Hz, 3H, MeCH)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.4 (C=O), 154.8 (C-8), 141.8 (Ci, Ph), 137.3
(C-13b), 135.4 (C-7a), 130.7 (Cp, Ph), 130.0 (C-6a), 129.9 (C-13a), 129.0 (C-4a), 128.9 (C-1),
128.2 (Cm, Ph), 127.5 (Co, Ph), 126.6 (C-4), 126.2 (C-2), 121.5 (C-3), 111.0 (C-7), 93.0 (C-12a),
91.1 (=CH), 50.1 (C-10), 38.1 (C-12), 35.0 (CHMe2), 30.7 (C-5), 26.7 (C-11), 22.8 (C-6), 17.8
(Me), 15.7 (Me)—E-isomer; 186.1 (C=O), 153.0 (C-8), 141.5 (Ci, Ph), 137.7 (C-13b), 136.6
(C-7a), 130.8 (Cp, Ph), 130.0 (C-6a), 129.4 (C-13a), 129.0 (C-4a), 128.9 (C-1), 128.2 (Cm, Ph),
127.6 (Co, Ph), 126.7 (C-4), 126.1 (C-2), 121.3 (C-3), 101.6 (C-7), 96.2 (C-12a), 87.7 (=CH),
52.5 (C-10), 38.1 (C-12), 35.6 (CHMe2), 30.6 (C-5), 26.8 (C-11), 22.9 (C-6), 17.7 (Me), 15.6
(Me)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −262.8 (N-9), −201.2 (N-13)—E-isomer; −254.7 (N-9),
−198.9 (N-13)—Z-isomer. I

R (film): ν = 1632 (C=O), 1579 (C=C).
MS (EI): m/z (%) = 408 (M+, 46%), 393 (14), 365 (14), 304 (25), 303 (100), 288 (44), 105

(57), 77 (51), 41 (12).
HRMS (ESI-TOF): found 409.22764. Calcd. for [C28H28N2O+H]+ 409.22799.
2-(1,2,3,3a,6,7,8,9-Octahydrocyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazol-11(5H)-

ylidene)-1-phenylethan-1-one (7a). Yield 126 mg, 76 %. E/Z-ratio ~4:1. Yellow solid, mp
178–180 ◦C.

1Н NMR (400.1 MHz, CDCl3) 7.97–7.96 (m, 2H, Ho, Ph), 7.48 (s, 1H, H-10), 7.44–7.37
(m, 3H, Hm,p, Ph), 5.91 (s, 1 H, =CH), 5.46 (dd, J = 8.9, 5.4 Hz, 1H, H-3a), 3.61–3.56 (m, 1H,
H-1), 3.37 (dt, J = 9.9, 7.6 Hz, 1H, H-1), 2.71–2.60 (m, 4H, H-5, H-9), 2.40–2.23 (m, 3H, H-2,
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H-3), 1.86–1.67 (m, 6H, H-6, H-7, H-8), 1.60–1.50 (m, 1H, H-3)—E-isomer; 7.97–7.96 (m, 2H,
Ho, Ph), 7.44–7.37 (m, 3H, Hm,p, Ph), 6.21 (s, 1H, H-10), 6.17 (s, 1H, =CH), 5.63 (dd, J = 8.6,
5.7 Hz, 1H, H-3a), 4.31–4.29 (m, 1H, H-1), 3.09 (dt, J = 11.7, 8.5 Hz, 1H, H-1), 2.71–2.60 (m,
4H, H-5, H-9), 2.40–2.23 (m, 3H, H-2, H-3), 1.86–1.67 (m, 7H, H-3, H-6, H-7, H-8)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3) 187.2 (C=O), 155.2 (C-11), 141.7 (Ci, Ph), 132.5
(C-10a), 130.7 (Cp, Ph), 129.6 (C-4a), 128.7 (C-9a), 128.1 (Cm, Ph), 127.5 (Co, Ph), 113.3 (C-10),
90.1 (=CH), 77.2 (C-3a), 48.4 (C-1), 32.0 (C-3), 31.0, 29.0, 28.9, 28.0, 27.6 (C-6–9), 26.7 (C-2)—
E-isomer; 186.4 (C=O), 153.8 (C-10), 141.5 (Ci, Ph), 131.6 (C-9a), 130.8 (Cp, Ph), 130.7 (C-4a),
130.0 (C-9a), 128.1 (Cm, Ph), 127.6 (Co, Ph), 103.7 (C-10), 88.0 (=CH), 79.7 (C-3a), 51.3 (C-1),
31.9 (C-3), 31.6, 29.0, 28.9, 28.0, 27.5 (C-5–9), 26.9 (C-2)—Z-isomer.

15N NMR (40.5 MHz, CDCl3): −265.3 (N-12), −201.9 (N-4)—E-isomer; −257.6 (N-12),
−201.9 (N-4)—Z-isomer.

IR (film): ν = 1630 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 332 (M+, 100%), 304 (11), 303 (13), 227 (51), 105 (52), 77 (68), 51 (12),

41 (17).
HRMS (ESI): found 333.1969. Calcd. for [C22H24N2O +H]+ 333.1967.
2-(3a-Methyl-1,2,3,3a,6,7,8,9-octahydrocyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazol-

11(5H)-ylidene)-1-phenylethan-1-one (7b). Yield 114 mg, 66 %. E/Z-ratio ~4:1. Yellow solid,
mp 128–130 ◦C.

1Н NMR (400.1 MHz, CDCl3): 7.97–7.95 (m, 2H, Ho, Ph), 7.50 (s, 1H, H-10), 7.43–7.40
(m, 3H, Hm,p, Ph), 5.85 (s, 1H, =CH), 3.64–3.58 (m, 1H, H-1), 3.39 (dd, J = 18.7, 8.5 Hz, 1H,
H-1), 2.78–2.76 (m, 2H, H-5), 2.67–2.65 (m, 2H, H-9), 2.33–2.17 (m, 3H, H-2, H-3), 1.88–1.70
(m, 7H, H-3, H-6, H-7, H-8), 1.58 (s, 3H, Me-3a)—E-isomer; 7.97–7.95 (m, 2H, Ho, Ph),
7.43–7.40 (m, 3H, Hm,p, Ph), 6.19 (s, 1H, H-10), 6.12 (s, 1H, =CH), 4.35–4.30 (m, 1H, H-1),
3.17–3.10 (m, 1H, H-1), 2.78–2.76 (m, 2H, H-5), 2.62–2.59 (m, 2H, H-9), 2.33–2.17 (m, 3H,
H-2, H-3), 1.88–1.70 (m, 7H, H-3, H-6, H-7, H-8), 1.65 (s, 3H, Me-3a)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.2 (C=O), 154.2 (C-11), 141.8 (Ci, Ph), 132.6
(C-10a), 130.4 (C-4a), 130.3 (Cp, Ph), 128.1 (Cm, Ph), 127.9 (C-9a), 127.4 (Co, Ph), 113.2 (C-10),
89.9 (=CH), 85.0 (C-3a), 48.2 (C-1), 35.5 (C-3), 32.3, 28.9, 28.8, 27.8, 27.7 (C-5–9), 26.9 (Me-3a),
26.8 (C-2)—E-isomer; 186.2 (C=O), 152.8 (C-11), 141.6 (Ci, Ph), 131.6 (C-10a), 130.6 (Cp, Ph),
130.6 (C-4a), 130.0 (C-9a), 128.1 (Cm, Ph), 127.5 (Co, Ph), 103.5 (C-10), 88.1 (C-3a), 87.4 (=CH),
51.0 (C-1), 36.4 (C-3), 32.2, 29.0, 28.8, 27.7, 27.5 (C-5–9), 27.0 (Me-3a, C-2)—Z-isomer.

15N NMR (40.6 MHz, CDCl3): −254.7 (N-12), −190.1 (N-4)—E-isomer; −245.2 (N-12),
−190.1 (N-4)—Z-isomer.

IR (film): ν = 1631 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 346 (M+, 23%), 345 (15), 241 (100), 105 (55), 77 (66), 51 (11), 41 (15).
HRMS (ESI-TOF): found 347.21262. Calcd. for [C23H26N2O+H]+ 347.21234.
2-(3a-Ethyl-1,2,3,3a,6,7,8,9-octahydrocyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazol-

11(5H)-ylidene)-1-phenylethan-1-one (7c). Yield 61 mg, 34 %. E/Z-ratio ~4:1. Yellow solid,
mp 132–134 ◦C.

1Н NMR (400.1 MHz, CDCl3): 7.97–7.95 (m, 2H, Ho, Ph), 7.46 (s, 1H, H-10), 7.43–7.01
(m, 3H, Hm,p, Ph), 5.89 (s, 1H, =CH), 3.59–3.53 (m, 1H, H-1), 3.48–3.42 (m, 1H, H-1), 2.75–2.65
(m, 4H, H-5, H-9), 2.33–2.21 (m, 3H, H-2, H-3), 1.98–1.81 (m, 4H, H-7, CH2Me), 1.69–1.67
(m, 5H, H-3, H-6, H-8), 0.47 (t, J = 7.2 Hz, 3H, MeCH2)—E-isomer; 7.97–7.95 (m, 2H, Ho,
Ph), 7.43–7.40 (m, 3H, Hm,p, Ph), 6.17 (s, 1H, H-10), 6.12 (s, 1H, =CH), 4.26–4.20 (m, 1H,
H-1), 3.24–3.17 (m, 1H, H-1), 2.75–2.64 (m, 4H, H-5, H-9), 2.33–2.21 (m, 3H, H-2, H-3),
2.09–1.99 (m, 5H, H-3, H-7, CH2Me), 1.69–1.67 (m, 4H, H-6, H-8), 0.47 (t, J = 7.2 Hz, 3H,
MeCH2)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.2 (C=O), 155.1 (C-11), 141.9 (Ci, Ph), 133.0
(C-10a), 130.4 (C-5a, Cp, Ph), 129.4 (C-9a), 128.1 (Cm, Ph), 127.4 (Co, Ph), 112.8 (C-10), 89.7
(=CH), 88.2 (C-3a), 48.3 (C-1), 35.1 (CH2Me), 32.4 (C-2), 32.2, 29.0×2, 28.0, 27.6 (C-5–9), 26.8
(C-3), 6.6 (CH2Me)—E-isomer; 186.0 (C=O), 153.5 (C-11), 141.6 (Ci, Ph), 132.0 (C-10a), 131.6
(C-4a), 130.7 (Cp, Ph), 130.6 (C-9a), 128.1 (Cm, Ph), 127.5 (Co, Ph), 103.0 (C-10), 91.2 (C-3a),
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87.1 (=CH), 51.0 (C-1), 35.9 (CH2Me), 32.5 (C-3), 32.3, 29.8, 29.1, 27.8, 27.5 (C-5–9), 26.9 (C-2),
6.6 (CH2Me)—Z-isomer.

15N NMR (40.5 MHz, CDCl3): −260.6 (N-12), −194.6 (N-4)—E-isomer; −251.0 (N-12),
−194.6 (N-4)—Z-isomer.

IR (film): ν = 1631 (C=O), 1578 (C=C).
MS (EI): m/z (%) = 360 (M+, 19%), 255 (99), 105 (64), 77 (100), 51 (22), 41 (37).
HRMS (ESI): found 361.2279. Calcd. for [C24H28N2O+H]+ 361.2280.
2-(3a-Isopropyl-1,2,3,3a,6,7,8,9-octahydrocyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-

a]imidazol-11(5H)-ylidene)-1-phenylethan-1-one (7d). Yield 59 mg, 32 %. E/Z-ratio ~4:1.
Yellow solid, mp 140–143 ◦C (hexane).

1Н NMR (400.1 MHz, CDCl3): 7.98–7.97 (m, 2H, Ho, Ph), 7.46 (s, 1H, H-10), 7.43–7.40
(m, 3H, Hm,p, Ph), 5.97 (s, 1H, =CH), 3.60–3.53 (m, 1H, H-1), 3.51–3.47 (m, 1H, H-1), 2.74–
2.64 (m, 4H, H-5, H-9), 2.42–2.37 (m, 1H, H-3), 2.24–2.21 (m, 3H, H-2, CHMe), 2.14–2.06 (m,
1H, H-3), 1.84–1.67 (m, 6H, H-6, H-7, H-8), 1.06 (d, J = 6.7 Hz, 3H, MeCH), 0.37 (d, J = 5.7
Hz, 3H, MeCH)—E-isomer; 7.98–7.97 (m, 2H, Ho, Ph), 7.43–7.40 (m, 3H, Hm,p, Ph), 6.17 (s,
2H, H-10, =CH), 4.07–4.01 (m, 1H, H-1), 3.37–3.31 (m, 1H, H-1), 2.74–2.58 (m, 4H, H-5, H-9),
2.42–2.37 (m, 1H, H-3), 2.14–2.06 (m, 4H, H-2, H-3, CHMe), 1.84–1.67 (m, 6H, H-6, H-7, H-8),
1.13 (d, J = 6.6 Hz, 3H, MeCH), 0.37 (d, J = 5.7 Hz, 3H, MeCH)—Z-isomer.

13C{1H} NMR (100.6 MHz, CDCl3): 187.4 (C=O), 156.3 (C-11), 141.9 (Ci, Ph), 133.3
(C-10a), 131.1 (C-4a), 130.5 (Cp, Ph), 129.3 (C-9a), 128.1 (Cm, Ph), 127.5 (Co, Ph), 112.8 (C-10),
91.1 (=CH), 91.0 (C-3a), 51.4 (C-1), 39.2 (C-3), 32.9 (CHMe2), 32.5, 29.0 (2C), 28.0, 27.9 (C-5–9),
26.8 (C-2), 17.8 (CHMe), 15.8 (CHMe)—E-isomer; 186.0 (C=O), 154.6 (C-11), 141.6 (Ci, Ph),
132.3 (C-10a), 131.4 (C-4a), 131.1 (C-9a), 130.6 (Cp, Ph), 128.1 (Cm, Ph), 127.5 (Co, Ph), 102.9
(C-10), 93.9 (C-3a), 87.7 (=CH), 53.4 (C-1), 39.2 (C-3), 33.4 (CHMe2), 32.4, 29.0 (2C), 27.9, 27.7
(C-5–9), 26.9 (C-2), 17.8 (CHMe), 15.7 (CHMe)—Z-isomer.

15N NMR (40.5 MHz, CDCl3): −263.5 (N-12), −189.4 (N-4)—E-isomer; −255.4 (N-12),
−190.9 (N-4)—Z-isomer.

IR (film): ν = 1632 (C=O), 1579 (C=C).
MS (EI): m/z (%) = 374 (M+, 50%), 359 (29), 331 (78), 269 (90), 254 (31), 105 (91), 77 (100),

51 (13), 43 (27), 41 (41).
HRMS (ESI): found 409.22764. Calcd. for [C25H30N2O +H]+ 409.22798.

4. Conclusions

In conclusion, a one-pot chemo- and regioselective synthesis of pyrrolo[1′,2′:2,3]imidazo[1,5-
a]indoles and cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles functionalized with
acylethenyl groups in up to 81% yields via mild (70 ◦C) catalyst-free [3+2] annulation of
acylethynylcycloalkanepyrroles with ∆1-pyrrolines has been developed. This synthesis
represents a cardinal, hardly predictable extension of our recently found methodology
for the construction of nitrogen-fused heterocycles via [3+2] annulation of alkynones
substituted by pyrrolic moieties with cyclic imines, which opens a straightforward route to
biochemically related functionalized polycondensed heterocyclic systems, a prospective
platform for drug discovery. The physical-chemical characteristics of compound 6a, which
are crucial for TADF emitters in OLEDs, are supportive in favor of the application of this
and similar compounds in optoelectronics.
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