Systemic Inflammation/Nutritional Status Scores Are Prognostic but Not Predictive in Metastatic Non-Small-Cell Lung Cancer Treated with First-Line Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Association between Scores and One-Year OS and Six-Month PFS
2.3. Prognostic Value of Scores
2.4. Interaction between Scores and Cohort Differences
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Data Collection and Definitions
4.3. Statistical Methods
4.4. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Nishio, M.; Barlesi, F.; West, H.; Ball, S.; Bordoni, R.; Cobo, M.; Longeras, P.D.; Goldschmidt, J., Jr.; Novello, S.; Orlandi, F.; et al. Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results From the Randomized Phase 3 IMpower132 Trial. J. Thorac. Oncol. 2021, 16, 653–664. [Google Scholar] [CrossRef]
- Jotte, R.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Rodríguez-Abreu, D.; Hussein, M.; Soo, R.; Conter, H.J.; Kozuki, T.; Huang, K.C.; et al. Atezolizumab in Combination With Carboplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results From a Randomized Phase III Trial. J. Thorac. Oncol. 2020, 15, 1351–1360. [Google Scholar] [CrossRef]
- Gettinger, S.; Horn, L.; Jackman, D.; Spigel, D.; Antonia, S.; Hellmann, M.; Powderly, J.; Heist, R.; Sequist, L.V.; Smith, D.C.; et al. Five-Year Follow-Up of Nivolumab in Previously Treated Advanced Non-Small-Cell Lung Cancer: Results from the CA209-003 Study. J. Clin. Oncol. 2018, 36, 1675–1684. [Google Scholar] [CrossRef]
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients With Advanced Non-Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef]
- Antonia, S.J.; Borghaei, H.; Ramalingam, S.S.; Horn, L.; De Castro Carpeño, J.; Pluzanski, A.; Burgio, M.A.; Garassino, M.; Chow, L.Q.M.; Gettinger, S.; et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: A pooled analysis. Lancet Oncol. 2019, 20, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Garon, E.B.; Kim, D.W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five Year Survival Update From KEYNOTE-010: Pembrolizumab Versus Docetaxel for Previously Treated, Programmed Death-Ligand 1-Positive Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Kim, K.H.; Pyo, K.H.; Xin, C.F.; Hong, M.H.; Ahn, B.C.; Kim, Y.; Choi, S.J.; Yoon, H.I.; Lee, J.G.; et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Memmott, R.M.; Wolfe, A.R.; Carbone, D.P.; Williams, T.M. Predictors of Response, Progression-Free Survival, and Overall Survival in Patients With Lung Cancer Treated with Immune Checkpoint Inhibitors. J. Thorac. Oncol. 2021, 16, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.; Han, G.; Schalper, K.A.; Carvajal-Hausdorf, D.; Pelekanou, V.; Rehman, J.; Velcheti, V.; Herbst, R.; LoRusso, P.; Rimm, D.L. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non-Small-Cell Lung Cancer. Jama Oncol. 2016, 2, 46–54. [Google Scholar] [CrossRef]
- Sheng, J.; Fang, W.; Yu, J.; Chen, N.; Zhan, J.; Ma, Y.; Yang, Y.; Huang, Y.; Zhao, H.; Zhang, L. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci. Rep. 2016, 6, 20090. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Ricciuti, B.; Wang, X.; Alessi, J.V.; Rizvi, H.; Mahadevan, N.R.; Li, Y.Y.; Polio, A.; Lindsay, J.; Umeton, R.; Sinha, R.; et al. Association of High Tumor Mutation Burden in Non-Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels. Jama Oncol. 2022, 8, 1160–1168. [Google Scholar] [CrossRef]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef]
- Aggarwal, C.; Thompson, J.C.; Chien, A.L.; Quinn, K.J.; Hwang, W.T.; Black, T.A.; Yee, S.S.; Christensen, T.E.; LaRiviere, M.J.; Silva, B.A.; et al. Baseline Plasma Tumor Mutation Burden Predicts Response to Pembrolizumab-based Therapy in Patients with Metastatic Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- Papillon-Cavanagh, S.; Doshi, P.; Dobrin, R.; Szustakowski, J.; Walsh, A.M. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. Esmo Open 2020, 5, e000706. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Prelaj, A.; Tay, R.; Ferrara, R.; Chaput, N.; Besse, B.; Califano, R. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur. J. Cancer 2019, 106, 144–159. [Google Scholar] [CrossRef]
- Mantzorou, M.; Koutelidakis, A.; Theocharis, S.; Giaginis, C. Clinical Value of Nutritional Status in Cancer: What is its Impact and how it Affects Disease Progression and Prognosis? Nutr. Cancer 2017, 69, 1151–1176. [Google Scholar] [CrossRef]
- Mountzios, G.; Samantas, E.; Senghas, K.; Zervas, E.; Krisam, J.; Samitas, K.; Bozorgmehr, F.; Kuon, J.; Agelaki, S.; Baka, S.; et al. Association of the advanced lung cancer inflammation index (ALI) with immune checkpoint inhibitor efficacy in patients with advanced non-small-cell lung cancer. Esmo Open 2021, 6, 100254. [Google Scholar] [CrossRef]
- Jafri, S.H.; Shi, R.; Mills, G. Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): A retrospective review. Bmc Cancer 2013, 13, 158. [Google Scholar] [CrossRef]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. Jama Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef]
- Moor, R.; Roberts, K.; Mason, R.; Ladwa, R.; Lwin, Z.; Hughes, B.; O’Byrne, K. P1.01-119 Modified Lung Immune Prognostic Index (mLIPI) as a Predictive Tool of Nivolumab Outcomes in Advanced NSCLC Patients. J. Thorac. Oncol. 2019, 14, S408–S409. [Google Scholar] [CrossRef]
- Stares, M.; Ding, T.E.; Stratton, C.; Thomson, F.; Baxter, M.; Cagney, H.; Cumming, K.; Swan, A.; Ross, F.; Barrie, C.; et al. Biomarkers of systemic inflammation predict survival with first-line immune checkpoint inhibitors in non-small-cell lung cancer. Esmo Open 2022, 7, 100445. [Google Scholar] [CrossRef] [PubMed]
- Prelaj, A.; Rebuzzi, S.E.; Pizzutilo, P.; Bilancia, M.; Montrone, M.; Pesola, F.; Longo, V.; Del Bene, G.; Lapadula, V.; Cassano, F.; et al. EPSILoN: A Prognostic Score Using Clinical and Blood Biomarkers in Advanced Non-Small-cell Lung Cancer Treated With Immunotherapy. Clin. Lung Cancer 2020, 21, 365–377.e5. [Google Scholar] [CrossRef]
- Bigot, F.; Castanon, E.; Baldini, C.; Hollebecque, A.; Carmona, A.; Postel-Vinay, S.; Angevin, E.; Armand, J.P.; Ribrag, V.; Aspeslagh, S.; et al. Prospective validation of a prognostic score for patients in immunotherapy phase I trials: The Gustave Roussy Immune Score (GRIm-Score). Eur. J. Cancer 2017, 84, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.; Ihara, S.; Ikuta, S.; Komuta, K. Gustave Roussy Immune Score and Royal Marsden Hospital Prognostic Score Are Biomarkers of Immune-Checkpoint Inhibitor for Non-Small Cell Lung Cancer. World J. Oncol. 2019, 10, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.L.; Cortellini, A.; Cortinovis, D.L.; Tiseo, M.; Aerts, J.; Barbieri, F.; Giusti, R.; Bria, E.; Grossi, F.; Pizzutilo, P.; et al. The lung immuno-oncology prognostic score (LIPS-3): A prognostic classification of patients receiving first-line pembrolizumab for PD-L1 ≥ 50% advanced non-small-cell lung cancer. Esmo Open 2021, 6, 100078. [Google Scholar] [CrossRef]
- Holtzman, L.; Moskovitz, M.; Urban, D.; Nechushtan, H.; Keren, S.; Reinhorn, D.; Wollner, M.; Daher, S.; Rottenberg, Y.; Rovitzky, Y.; et al. dNLR-Based Score Predicting Overall Survival Benefit for The Addition of Platinum-Based Chemotherapy to Pembrolizumab in Advanced NSCLC With PD-L1 Tumor Proportion Score ≥50%. Clin. Lung Cancer 2022, 23, 122–134. [Google Scholar] [CrossRef]
- Kasahara, N.; Sunaga, N.; Tsukagoshi, Y.; Miura, Y.; Sakurai, R.; Kitahara, S.; Yokobori, T.; Kaira, K.; Mogi, A.; Maeno, T.; et al. Post-treatment Glasgow Prognostic Score Predicts Efficacy in Advanced Non-small-cell Lung Cancer Treated With Anti-PD1. Anticancer Res. 2019, 39, 1455–1461. [Google Scholar] [CrossRef]
- Tanaka, S.; Uchino, J.; Yokoi, T.; Kijima, T.; Goto, Y.; Suga, Y.; Katayama, Y.; Nakamura, R.; Morimoto, K.; Nakao, A.; et al. Prognostic Nutritional Index and Lung Immune Prognostic Index as Prognostic Predictors for Combination Therapies of Immune Checkpoint Inhibitors and Cytotoxic Anticancer Chemotherapy for Patients with Advanced Non-Small Cell Lung Cancer. Diagnostics 2022, 12, 423. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, S.; Liu, Y.; Ma, L.; Zhu, J.; Xin, Y.; Wang, Y.; Yang, C.; Cheng, Y. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab. J. Clin. Lab. Anal. 2019, 33, e22964. [Google Scholar] [CrossRef]
- Sorich, M.J.; Rowland, A.; Karapetis, C.S.; Hopkins, A.M. Evaluation of the Lung Immune Prognostic Index for Prediction of Survival and Response in Patients Treated With Atezolizumab for NSCLC: Pooled Analysis of Clinical Trials. J. Thorac. Oncol. 2019, 14, 1440–1446. [Google Scholar] [CrossRef]
- Kazandjian, D.; Gong, Y.; Keegan, P.; Pazdur, R.; Blumenthal, G.M. Prognostic Value of the Lung Immune Prognostic Index for Patients Treated for Metastatic Non-Small Cell Lung Cancer. Jama Oncol. 2019, 5, 1481–1485. [Google Scholar] [CrossRef]
- Matsubara, T.; Takamori, S.; Haratake, N.; Toyozawa, R.; Miura, N.; Shimokawa, M.; Yamaguchi, M.; Seto, T.; Takenoyama, M. The impact of immune-inflammation-nutritional parameters on the prognosis of non-small cell lung cancer patients treated with atezolizumab. J. Thorac. Dis. 2020, 12, 1520–1528. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Arkenau, H.T.; Olmos, D.; Ang, J.E.; de Bono, J.; Judson, I.; Kaye, S. Clinical outcome and prognostic factors for patients treated within the context of a phase I study: The Royal Marsden Hospital experience. Br. J. Cancer 2008, 98, 1029–1033. [Google Scholar] [CrossRef]
- McMillan, D.C. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc. Nutr. Soc. 2008, 67, 257–262. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- McMillan, D.C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shen, J.; Liu, R.; Feng, Z.; Zhang, C.; Ling, L.; Chen, L. Prognostic value of pretreatment prognostic nutritional index in non-small cell lung cancer: A systematic review and meta-analysis. Int. J. Biol. Markers 2018, 33, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yuan, X.; Liu, J.; Li, C.; Li, W. Prognostic value of prognostic nutritional index in lung cancer: A meta-analysis. J. Thorac. Dis. 2018, 10, 5298–5307. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.B.; Tian, T.; Tian, X.J.; Zhang, X.J. Prognostic significance of neutrophil-to-lymphocyte ratio in non-small cell lung cancer: A meta-analysis. Sci. Rep. 2015, 5, 12493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Chen, P.; Xu, W.; Wu, Y.; Che, G. Prognostic value of the pretreatment systemic immune-inflammation index (SII) in patients with non-small cell lung cancer: A meta-analysis. Ann. Transl. Med. 2019, 7, 433. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Chen, J.; Wu, Y.; Sha, J.; Han, S.; Zhu, X. Prognostic role of the advanced lung cancer inflammation index in cancer patients: A meta-analysis. World J. Surg. Oncol. 2019, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zang, Y.; Liu, M.; Peng, L.; Zhang, H. The Lung Immune Prognostic Index May Predict the Efficacy of Different Treatments in Patients with Advanced NSCLC: A Meta-Analysis. Oncol. Res. Treat. 2021, 44, 164–175. [Google Scholar] [CrossRef]
- Prelaj, A.; Rebuzzi, S.E.; Pizzutilo, P.; Montrone, M.; Pesola, F.; Longo, V.; Lapadula, V.; Cassano, F.; Petrillo, P.; Bafunno, D.; et al. Predictive score using clinical and blood biomarkers in advanced non-small cell lung cancer (aNSCLC) patients treated with immunotherapy. Ann. Oncol. 2018, 29 (Suppl. 10), x2. [Google Scholar] [CrossRef]
- Prelaj, A.; Ferrara, R.; Rebuzzi, S.E.; Proto, C.; Signorelli, D.; Galli, G.; De Toma, A.; Randon, G.; Pagani, F.; Viscardi, G.; et al. EPSILoN: A Prognostic Score for Immunotherapy in Advanced Non-Small-Cell Lung Cancer: A Validation Cohort. Cancers 2019, 11, 1954. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, A.; Zheng, X.; Fu, X.; Zheng, H.; Gao, H.; Wang, J.; Liang, X.; Tian, T.; Ruan, Z.; et al. Prognostic Nutritional Index identifies risk of early progression and survival outcomes in Advanced Non-small Cell Lung Cancer patients treated with PD-1 inhibitors. J. Cancer 2021, 12, 2960–2967. [Google Scholar] [CrossRef]
- Dennehy, C.; McMahon, E.; Power, D.G.; O′Reilly, S.; Collins, D.C.; O′Mahony, D.; Horgan, A.M.; O′Connor, M.; Jordan, E.; Calvert, P.; et al. Clinical haematological biomarkers: Derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and prognostic nutritional index (PNI) and their relationship to survival outcomes in non small cell lung cancer (NSCLC) treated with immunotherapy: A multicenter review. J. Clin. Oncol. 2019, 37, e20704. [Google Scholar] [CrossRef]
- Cipriano, É.; Magalhães, H.; Estevinho, F.; Sottomayor, C. The prognostic nutritional index and neutrophil-to-lymphocyte ratio as prognostic factors in advanced non-small cell lung cancer patients treated with immunotherapy. Ann. Oncol. 2019, 30, xi6. [Google Scholar] [CrossRef]
- Shoji, F.; Takeoka, H.; Kozuma, Y.; Toyokawa, G.; Yamazaki, K.; Ichiki, M.; Takeo, S. Pretreatment prognostic nutritional index as a novel biomarker in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer 2019, 136, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Sibille, A.; Bustin, F.; Carestia, L.; Catala, G.; Compère, C.; Cuppens, K.; Colinet, B.; Coulon, S.; De Brucker, N.; Decoster, L.; et al. A prospective, multicenter, noninterventional study of decision factors in the first-line treatment of metastatic non-small cell lung cancer. Acta Oncol. 2022, 61, 773–776. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Lenci, E.; Cantini, L.; Pecci, F.; Cognigni, V.; Agostinelli, V.; Mentrasti, G.; Lupi, A.; Ranallo, N.; Paoloni, F.; Rinaldi, S.; et al. The Gustave Roussy Immune (GRIm)-Score Variation Is an Early-on-Treatment Biomarker of Outcome in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients Treated with First-Line Pembrolizumab. J. Clin. Med. 2021, 10, 1005. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Z.; Yu, Z.; Zhuang, W.; Zheng, W.; Cai, Z.; Shi, L.; Yu, X.; Lou, G.; Hong, W.; et al. Prognostic Value of the Lung Immune Prognostic Index May Differ in Patients Treated With Immune Checkpoint Inhibitor Monotherapy or Combined With Chemotherapy for Non-small Cell Lung Cancer. Front. Oncol. 2020, 10, 572853. [Google Scholar] [CrossRef]
- The STROBE Statement. Available online: https://www.strobe-statement.org/ (accessed on 11 December 2022).
- The MICE Algorithm. Available online: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html (accessed on 11 December 2022).
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 11 December 2022).
- Descourt, R. P14.02 Phase III Trial of Pembrolizumab-Chemotherapy Versus Pembrolizumab in First-Line of Advanced NSCLC with PD-L1 ≥50%: PERSEE. J. Thorac. Oncol. 2021, 16, S1011. [Google Scholar] [CrossRef]
Cohort 1 (n = 75) ICI Median (P25; P75) or n (%) | Cohort 2 (n = 56) ICI + CT Median (P25; P75) or n (%) | Cohort 3 (n = 221) CT Median (P25; P75) or n (%) | |
---|---|---|---|
Clinical characteristics | |||
Age, years | 69 (62; 74) | 65 (57; 70.25) | 63 (56; 68) |
Sex, male | 47 (63) | 31 (55) | 164 (74) |
Smoking status | |||
Current | 39 (52) | 28 (50) | 124 (56) |
Former | 34 (45) | 26 (46) | 87 (39) |
Never | 2 (3) | 2 (4) | 10 (5) |
ECOG PS at diagnosis | |||
0 | 19 (25) | 12 (21) | 47 (21) |
1 | 31 (41) | 31 (55) | 123 (56) |
2 | 19 (25) | 11 (20) | 46 (21) |
3 | 6 (8) | 2 (4) | 3 (1) |
4 | 0 (0) | 0 (0) | 2 (1) |
BMI, kg/m² | 24 (21; 27) | 25 (22; 27) | 24 (21; 28) |
Pathological characteristics | |||
NSCLC histological subtype Squamous | 21 (28) | 5 (9) | 53 (24) |
Non-squamous | 54 (72) | 51 (91) | 168 (76) |
PD-L1 TPS | |||
<1% | 0 (0) | 25 (45) | 15 (7) |
1–49% | 0 (0) | 21 (37) | 6 (3) |
≥50% | 75 (100) | 8 (14) | 4 (2) |
Missing | 0 (0) | 2 (4) | 196 (89) |
Relapse after | |||
Surgery | 10 (13) | 8 (14) | 13 (6) |
With adjuvant CT | 2 (3) | 2 (4) | 7 (3) |
SRT | 2 (3) | 0 (0.0) | 4 (2) |
Concurrent CRT | 2 (3) | 3 (5) | 10 (5) |
Metastases, number | |||
1 | 14 (19) | 8 (14) | 54 (24) |
2–5 | 14 (19) | 5 (9) | 42 (19) |
>5 | 47 (63) | 43 (77) | 125 (57) |
Metastases, localization | |||
Brain | 26 (35) | 14 (25) | 54 (24) |
Liver | 8 (11) | 10 (18) | 46 (21) |
Treatment | |||
Pembrolizumab | 71 (95) | - | - |
Atezolizumab | 4 (5) | - | - |
Cis/pem/pembro | - | 35 (62) | - |
Carbo/pem/pembro | - | 16 (29) | - |
Carbo/pacli/pembro | - | 5 (9) | - |
Cis/pem | - | - | 59 (27) |
Carbo/pem | - | - | 3 (1) |
Carbo/pacli | - | - | 1 (0) |
Cis/gemci | - | - | 37 (17) |
Carbo/gemci | - | - | 18 (8) |
Cis/vino | - | - | 66 (30) |
Carbo/vino | - | - | 29 (13) |
Cis/eto | - | - | 6 (3) |
Cis/doce | - | - | 2 (1) |
Outcome | |||
PFS, days | 216 (90; 651) | 197 (119; 530) | 138 (76; 208) |
OS, days | 506 (160;1015) | 378 (193; NR) | 237 (114; 479) |
Scores | Biomarkers | Assessment |
---|---|---|
Lung Immune Prognostic Index (LIPI) [29] | dNLR LDH | dNLR > 3: 1 point LDH > ULN: 1 point Total points: 0: good; 1: intermediate; 2: poor |
Modified Lung Immune Prognostic Index (mLIPI) [30] | ECOG PS LDH NLR | ECOG PS = 1 or 2: 1 point NLR > 3: 1 point LDH > 1.5 × ULN: 1 point Total points: 0: good; 1: intermediate; 2: poor; 3: very poor |
Scottish Inflammatory Prognostic Score (SIPS) [31] | Albumin Neutrophil | Albumin < 35 g/L: 1 point Neutrophil count > 7.5 × 109/L: 1 point Total points: 0: good; 1: intermediate; 2: poor |
Advanced Lung Cancer Inflammation Index (ALI) [28] | BMI Albumin NLR | Low: high systemic inflammation; High: low systemic inflammation |
EPSILoN [32] | ECOG PS Smoking Liver metastases LDH NLR | ECOG PS ≥ 2: 1 point Smoking < 43 pack-years: 1 point Liver metastases: 1 point LDH > 400 mg/dL: 1 point NLR > 4: 1 point Total points: 0: good; 1–2: intermediate; 3–5: poor |
Prognostic Nutritional Index (PNI) [43] | Albumin Lymphocyte | 10 × Albumin (g/dL) + 0.005 × Lymphocyte count /mm3 Low: poor nutritional status; high: good nutritional status |
Systemic Immune-Inflammation Index (SII) [44] | Platelet Neutrophil Lymphocyte | Platelet count × Neutrophil count/Lymphocyte count Low: low systemic inflammation; High: high systemic inflammation |
Gustave Roussy Immune Score (GRIm) [33] | LDH Albumin NLR | LDH > ULN: 1 point Albumin < 35 g/L: 1 point NLR > 6: 1 point Total points: 0–1: low risk; 2–3: high risk |
Royal Marsden Hospital Prognostic Score (RMH) [45] | LDH Albumin Site of metastasis | LDH > ULN: 1 point Albumin > 35 g/L: 1 point Site of metastasis > 2: 1 point Total points: 0–1: low risk; 2–3: high risk |
Lung Immuno-oncology Prognostic Score 3 (LIPS-3) [35] | ECOG PS Pretreatment steroids NLR | ECOG PS ≥ 2: 1 point Pretreatment steroids: 1 point NLR ≥ 4: 1 point Total points: 0: favorable; 1–2: intermediate; 3: poor |
Lung Immuno-oncology Prognostic Score 4 (LIPS-4) [35] | ECOG PS Pretreatment steroids NLR LDH | ECOG PS ≥ 2: 1 point Pretreatment steroids: 1 point NLR ≥ 4: 1 point LDH ≥ 252 U/L: 1 point Total points: 0: favorable; 1–2: intermediate; 3–4: poor |
Holtzman Score [36] | Age Sex Smoking Histology dNLR | Age ≥ 65 years: 1 point Female sex: 1 point Never-smoker: 1 point Adenocarcinoma: 1 point dNLR ≥ 3: 1 point Total points: 0–2: favorable; 3–5: poor |
Glasgow Prognostic Score (GPS) [46] | CRP Albumin | CRP > 10 mg/L: 1 point Albumin < 35 g/L: 1 point Total points: 0: good; 1: intermediate; 2: poor |
Score | OS-D | OS-ND | PFS-D | PFS-ND |
---|---|---|---|---|
LIPI | 0.58 | 0.62 | 0.57 | 0.60 |
mLIPI | 0.63 | 0.66 | 0.60 | 0.61 |
SIPS | 0.59 | 0.64 | 0.57 | 0.61 |
ALI | 0.60 | 0.63 | 0.57 | 0.60 |
EPSILoN | 0.59 | 0.63 | 0.57 | 0.60 |
PNI | 0.60 | 0.63 | 0.59 | 0.61 |
SII | 0.57 | 0.61 | 0.54 | 0.58 |
GRIm | 0.62 | 0.66 | 0.59 | 0.63 |
RMH | 0.63 | 0.66 | 0.60 | 0.64 |
LIPS-3 | 0.62 | 0.64 | 0.59 | 0.60 |
LIPS-4 | 0.63 | 0.66 | 0.60 | 0.62 |
Holtzman | 0.49 | 0.53 | 0.50 | 0.52 |
GPS | 0.61 | 0.62 | 0.58 | 0.59 |
Scores | Interaction ICI + CT vs. ICI, OS | Interaction ICI + CT vs. ICI, PFS | Interaction ICI + CT vs. CT, OS | Interaction ICI + CT vs. CT, PFS | ||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
LIPI | 0.98 (0.35–2.74) | 0.97 | 0.72 (0.29–1.79) | 0.47 | 1.24 (0.56–2.73) | 0.60 | 0.93 (0.45–1.94) | 0.85 |
mLIPI | 0.61 (0.24–1.56) | 0.30 | 0.60 (0.25–1.42) | 0.24 | 0.44 (0.20–0.95) | 0.037 | 0.54 (0.26–1.12) | 0.099 |
SIPS | 0.24 (0.08–0.75) | 0.014 | 0.20 (0.07–0.60) | 0.004 | 0.13 (0.05–0.34) | 0.000036 | 0.13 (0.05–0.34) | 0.000028 |
ALI | 1.35 (0.46–3.96) | 0.58 | 1.26 (0.51–3.15) | 0.62 | 1.40 (0.55–3.55) | 0.48 | 1.26 (0.57–2.80) | 0.56 |
EPSILoN | 1.31 (0.49–3.48) | 0.59 | 1.02 (0.41–2.53) | 0.97 | 0.77 (0.34–1.73) | 0.52 | 1.12 (0.52–2.41) | 0.77 |
PNI | 1.21 (0.47–3.14) | 0.69 | 1.07 (0.47–2.44) | 0.87 | 2.70 (1.26–5.78) | 0.011 | 1.96 (0.98–3.91) | 0.058 |
SII | 0.74 (0.26–2.10) | 0.57 | 1.22 (0.51–2.90) | 0.66 | 0.55 (0.23–1.33) | 0.18 | 0.93 (0.45–1.94) | 0.85 |
GRIm | 1.03 (0.41–2.59) | 0.95 | 0.94 (0.41–2.17) | 0.89 | 0.68 (0.32–1.45) | 0.32 | 0.70 (0.35–1.42) | 0.33 |
RMH | 1.52 (0.60–3.85) | 0.38 | 1.39 (0.60–3.20) | 0.45 | 0.64 (0.30–1.37) | 0.25 | 0.54 (0.27–1.08) | 0.082 |
LIPS-3 | 0.46 (0.18–1.17) | 0.10 | 0.42 (0.18–0.98) | 0.044 | 0.40 (0.18–0.85) | 0.018 | 0.44 (0.22–0.91) | 0.026 |
LIPS-4 | 1.02 (0.40–2.64) | 0.96 | 0.81 (0.35–1.84) | 0.61 | 0.77 (0.35–1.70) | 0.52 | 0.69 (0.34–1.39) | 0.30 |
Holtzman | 0.60 (0.22–1.67) | 0.33 | 0.55 (0.22–1.34) | 0.19 | 0.85 (0.38–1.89) | 0.69 | 0.78 (0.37–1.62) | 0.50 |
GPS | 0.50 (0.19–1.32) | 0.16 | 0.62 (0.25–1.56) | 0.31 | 0.28 (0.12–0.65) | 0.0028 | 0.43 (0.19–0.96) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahiat, C.; Bihin, B.; Duplaquet, F.; Stanciu Pop, C.; Dupont, M.; Vander Borght, T.; Rondelet, B.; Vanderick, J.; André, B.; Pirard, L.; et al. Systemic Inflammation/Nutritional Status Scores Are Prognostic but Not Predictive in Metastatic Non-Small-Cell Lung Cancer Treated with First-Line Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2023, 24, 3618. https://doi.org/10.3390/ijms24043618
Mahiat C, Bihin B, Duplaquet F, Stanciu Pop C, Dupont M, Vander Borght T, Rondelet B, Vanderick J, André B, Pirard L, et al. Systemic Inflammation/Nutritional Status Scores Are Prognostic but Not Predictive in Metastatic Non-Small-Cell Lung Cancer Treated with First-Line Immune Checkpoint Inhibitors. International Journal of Molecular Sciences. 2023; 24(4):3618. https://doi.org/10.3390/ijms24043618
Chicago/Turabian StyleMahiat, Cédric, Benoît Bihin, Fabrice Duplaquet, Claudia Stanciu Pop, Michael Dupont, Thierry Vander Borght, Benoît Rondelet, Jean Vanderick, Bénédicte André, Lionel Pirard, and et al. 2023. "Systemic Inflammation/Nutritional Status Scores Are Prognostic but Not Predictive in Metastatic Non-Small-Cell Lung Cancer Treated with First-Line Immune Checkpoint Inhibitors" International Journal of Molecular Sciences 24, no. 4: 3618. https://doi.org/10.3390/ijms24043618
APA StyleMahiat, C., Bihin, B., Duplaquet, F., Stanciu Pop, C., Dupont, M., Vander Borght, T., Rondelet, B., Vanderick, J., André, B., Pirard, L., & Ocak, S. (2023). Systemic Inflammation/Nutritional Status Scores Are Prognostic but Not Predictive in Metastatic Non-Small-Cell Lung Cancer Treated with First-Line Immune Checkpoint Inhibitors. International Journal of Molecular Sciences, 24(4), 3618. https://doi.org/10.3390/ijms24043618