Molecular Assessment of Healthy Pathological Articular Cartilages in Physically Active People: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Screening Process
3. Results
3.1. Narrative Synthesis of the Results
3.1.1. Cartilage Oligomeric Matrix Protein: COMP
3.1.2. Matrix Metalloproteinases (MMPs)
3.1.3. Carboxy-Terminal Telopeptide (CTX-II)
3.1.4. Interleukins (ILs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jørgensen, A.E.M.; Kjær, M.; Heinemeier, K.M. The Effect of Aging and Mechanical Loading on the Metabolism of Articular Cartilage. J. Rheumatol. 2017, 44, 410–417. [Google Scholar] [CrossRef]
- Mobasheri, A.; Matta, C.; Zákány, R.; Musumeci, G. Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015, 80, 237–244. [Google Scholar] [CrossRef]
- Luria, A.; Chu, C.R. Articular cartilage changes in maturing athletes: New targets for joint rejuvenation. Sports Health 2014, 6, 18–30. [Google Scholar] [CrossRef]
- Arokoski, J.P.; Jurvelin, J.S.; Väätäinen, U.; Helminen, H.J. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 2000, 10, 186–198. [Google Scholar] [CrossRef]
- Musumeci, G.; Szychlinska, M.A.; Mobasheri, A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: Molecular markers of senescent chondrocytes. Histol. Histopathol. 2015, 30, 1–12. [Google Scholar]
- Lin, W.; Alizai, H.; Joseph, G.B.; Srikhum, W.; Nevitt, M.C.; Lynch, J.A.; McCulloch, C.E.; Link, T.M. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2013, 21, 1558–1566. [Google Scholar] [CrossRef]
- Nakagawa, K.; Teramura, T.; Takehara, T.; Onodera, Y.; Hamanishi, C.; Akagi, M.; Fukuda, K. Cyclic compression-induced p38 activation and subsequent MMP13 expression requires Rho/ROCK activity in bovine cartilage explants. Inflamm. Res. 2012, 61, 1093–1100. [Google Scholar] [CrossRef]
- Qiao, B.; Padilla, S.R.; Benya, P.D. Transforming growth factor (TGF)-beta-activated kinase 1 mimics and mediates TGF-beta-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J. Biol. Chem. 2005, 280, 17562–17571. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, S.; Harvey, A.K. Transforming growth factor-beta is a potent inhibitor of IL-1 induced protease activity and cartilage proteoglycan degradation. Biochem. Biophys. Res. Commun. 1988, 157, 1352–1359. [Google Scholar] [CrossRef]
- Beaupré, G.S.; Stevens, S.S.; Carter, D.R. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J. Rehabil. Res. Dev. 2000, 37, 145–151. [Google Scholar]
- Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J. Orthop. Res. 2018, 36, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Bricca, A.; Juhl, C.B.; Steultjens, M.; Wirth, W.; Roos, E.M. Impact of exercise on articular cartilage in people at risk of, or with established, knee osteoarthritis: A systematic review of randomised controlled trials. Br. J. Sports Med. 2019, 53, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, G.; Castrogiovanni, P.; Trovato, F.M.; Imbesi, R.; Giunta, S.; Szychlinska, M.A.; Loreto, C.; Castorina, S.; Mobasheri, A. Physical activity ameliorates cartilage degeneration in a rat model of aging: A study on lubricin expression. Scand. J. Med. Sci. Sport. 2015, 25, e222–e230. [Google Scholar] [CrossRef] [PubMed]
- Antony, B.; Venn, A.; Cicuttini, F.; March, L.; Blizzard, L.; Dwyer, T.; Cross, M.; Jones, G.; Ding, C. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults. Arthritis Res. Ther. 2015, 17, 298. [Google Scholar] [CrossRef]
- Minor, M.A. Exercise in the management of osteoarthritis of the knee and hip. Arthritis Care Res. 1994, 7, 198–204. [Google Scholar] [CrossRef]
- Novelli, C.; Costa, J.B.V.; Souza, R.R. Effects of aging and physical activity on articular cartilage: A literature review. J. Morphol. Sci. 2012, 29, 1–7. [Google Scholar]
- Eckstein, F.; Hudelmaier, M.; Putz, R. The effects of exercise on human articular cartilage. J. Anat. 2006, 208, 491–512. [Google Scholar] [CrossRef]
- Bricca, A.; Wirth, W.; Juhl, C.B.; Kemnitz, J.; Hunter, D.J.; Kwoh, C.K.; Eckstein, F.; Culvenor, A.G. Moderate Physical Activity and Prevention of Cartilage Loss in People With Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2019, 71, 218–226. [Google Scholar] [CrossRef]
- Kwee, R.M.; Wirth, W.; Hafezi-Nejad, N.; Zikria, B.A.; Guermazi, A.; Demehri, S. Role of physical activity in cartilage damage progression of subjects with baseline full-thickness cartilage defects in medial tibiofemoral compartment: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2016, 24, 1898–1904. [Google Scholar] [CrossRef]
- Bricca, A.; Struglics, A.; Larsson, S.; Steultjens, M.; Juhl, C.B.; Roos, E.M. Impact of Exercise Therapy on Molecular Biomarkers Related to Cartilage and Inflammation in Individuals at Risk of, or With Established, Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arthritis Care Res. 2019, 71, 1504–1515. [Google Scholar] [CrossRef]
- Tanaka, R.; Ozawa, J.; Kito, N.; Moriyama, H. Efficacy of strengthening or aerobic exercise on pain relief in people with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2013, 27, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Khotib, J.; Setiawan, H.U.; Nurhan, A.D.; Rahadiansyah, E.; Ardianto, C.; Rahmadi, M. Analysis of effectiveness and drug related problems of pain reliever for knee osteoarthritis: Weighing clinical risk and benefit. J. Basic Clin. Physiol. Pharmacol. 2020, 30. [Google Scholar] [CrossRef]
- Voinier, D.; Neogi, T.; Stefanik, J.J.; Guermazi, A.; Roemer, F.W.; Thoma, L.M.; Master, H.; Nevitt, M.C.; Lewis, C.E.; Torner, J.; et al. Using Cumulative Load to Explain How Body Mass Index and Daily Walking Relate to Worsening Knee Cartilage Damage Over Two Years: The MOST Study. Arthritis Rheumatol. 2020, 72, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Pajaujiene, S.; Delextrat, A.; Gómez-López, M.; Paoli, A.; Palma, A.; Bianco, A. The importance of standard operating procedures in physical fitness assessment: A brief review. Sport Sci. Health 2021, 18, 21–26. [Google Scholar] [CrossRef]
- Roberts, H.M.; Law, R.J.; Thom, J.M. The time course and mechanisms of change in biomarkers of joint metabolism in response to acute exercise and chronic training in physiologic and pathological conditions. Eur. J. Appl. Physiol. 2019, 119, 2401–2420. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Castrogiovanni, P.; Trovato, F.M.; Weinberg, A.M.; Al-Wasiyah, M.K.; Alqahtani, M.H.; Mobasheri, A. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int. J. Mol. Sci. 2015, 16, 20560–20575. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Tardif, G.; Paiement, P.; Pelletier, J.P. Common Biochemical and Magnetic Resonance Imaging Biomarkers of Early Knee Osteoarthritis and of Exercise/Training in Athletes: A Narrative Review. Diagnostics 2021, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Niehoff, A.; Müller, M.; Brüggemann, L.; Savage, T.; Zaucke, F.; Eckstein, F.; Müller-Lung, U.; Brüggemann, G.P. Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing. Osteoarthr. Cartil. 2011, 19, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Roggio, F.; Trovato, B.; Zanghì, M.; Guglielmino, C.; Musumeci, G. How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review. Healthcare 2022, 10, 1821. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, S.; Szychlinska, M.A.; Lauretta, G.; Di Rosa, M.; Musumeci, G. Investigating lubricin and known cartilage-based biomarkers of osteoarthritis. Expert Rev. Mol. Diagn. 2020, 20, 443–452. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Bay-Jensen, A.; Reker, D.; Kjelgaard-Petersen, C.; Mobasheri, A.; Karsdal, M.; Ladel, C.; Henrotin, Y.; Thudium, C. Osteoarthritis year in review 2015: Soluble biomarkers and the BIPED criteria. Osteoarthr. Cartil. 2016, 24, 9–20. [Google Scholar] [CrossRef]
- Hernandez-Hermoso, J.A.; Nescolarde, L.; Roca, E.; Revuelta-Lopez, E.; Ara, J.; Bayes-Genis, A. Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction. Front. Physiol. 2021, 12, 722718. [Google Scholar] [CrossRef] [PubMed]
- Munukka, M.; Waller, B.; Häkkinen, A.; Nieminen, M.T.; Lammentausta, E.; Kujala, U.M.; Paloneva, J.; Kautiainen, H.; Kiviranta, I.; Heinonen, A. Physical Activity Is Related with Cartilage Quality in Women with Knee Osteoarthritis. Med. Sci. Sports Exer. 2017, 49, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Bautch, J.C.; Clayton, M.K.; Chu, Q.; Johnson, K.A. Synovial fluid chondroitin sulphate epitopes 3B3 and 7D4, and glycosaminoglycan in human knee osteoarthritis after exercise. Ann. Rheum. Dis. 2000, 59, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Zhang, J.; He, Q.; Wang, Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2019, 27, 726–736. [Google Scholar] [CrossRef]
- Harkey, M.S.; Blackburn, J.T.; Hackney, A.C.; Lewek, M.D.; Schmitz, R.J.; Pietrosimone, B. Sex-Specific Associations between Cartilage Structure and Metabolism at Rest and Acutely Following Walking and Drop-Landing. Cartilage 2021, 13 (Suppl. 1), 1772s–1781s. [Google Scholar] [CrossRef]
- Halper, J.; Kjaer, M. Basic components of connective tissues and extracellular matrix: Elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Prog. Heritable Soft Connect. Tissue Dis. 2014, 802, 31–47. [Google Scholar]
- Hoch, J.M.; Mattacola, C.; McKeon, J.M.; Howard, J.; Lattermann, C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2011, 19, 1396–1404. [Google Scholar] [CrossRef]
- Bi, X. Correlation of serum cartilage oligomeric matrix protein with knee osteoarthritis diagnosis: A meta-analysis. J. Orthop. Surg. Res. 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Dong, X.; Li, C.; Liu, J.; Huang, P.; Jiang, G.; Zhang, M.; Zhang, W.; Zhang, X. The effect of running on knee joint cartilage: A systematic review and meta-analysis. Phys. Ther. Sport 2021, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhang, J. Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int. J. Mol. Sci. 2022, 23, 9253. [Google Scholar] [CrossRef] [PubMed]
- Firner, S.; Willwacher, S.; de Marées, M.; Bleuel, J.; Zaucke, F.; Brüggemann, G.P.; Niehoff, A. Effect of increased mechanical knee joint loading during running on the serum concentration of cartilage oligomeric matrix protein (COMP). J. Orthop. Res. 2018, 36, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.M.; Moore, J.P.; Griffith-McGeever, C.L.; Fortes, M.B.; Thom, J.M. The effect of vigorous running and cycling on serum COMP, lubricin, and femoral cartilage thickness: A pilot study. Eur. J. Appl. Physiol. 2016, 116, 1467–1477. [Google Scholar] [CrossRef] [Green Version]
- Hyldahl, R.D.; Evans, A.; Kwon, S.; Ridge, S.T.; Robinson, E.; Hopkins, J.T.; Seeley, M.K. Running decreases knee intra-articular cytokine and cartilage oligomeric matrix concentrations: A pilot study. Eur. J. Appl. Physiol. 2016, 116, 2305–2314. [Google Scholar] [CrossRef]
- Mündermann, A.; Klenk, C.; Billich, C.; Nüesch, C.; Pagenstert, G.; Schmidt-Trucksäss, A.; Schütz, U. Changes in Cartilage Biomarker Levels During a Transcontinental Multistage Footrace Over 4486 km. Am. J. Sports Med. 2017, 45, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Dreiner, M.; Munk, T.; Zaucke, F.; Liphardt, A.M.; Niehoff, A. Relationship between different serum cartilage biomarkers in the acute response to running and jumping in healthy male individuals. Sci. Rep. 2022, 12, 6434. [Google Scholar] [CrossRef]
- Mateer, J.L.; Hoch, J.M.; Mattacola, C.G.; Butterfield, T.A.; Lattermann, C. Serum Cartilage Oligomeric Matrix Protein Levels in Collegiate Soccer Athletes over the Duration of an Athletic Season: A Pilot Study. Cartilage 2015, 6, 6–11. [Google Scholar] [CrossRef]
- Hoch, J.M.; Mattacola, C.G.; Bush, H.M.; McKeon, J.M.M.; Hewett, T.E.; Lattermann, C. Longitudinal Documentation of Serum Cartilage Oligomeric Matrix Protein and Patient-Reported Outcomes in Collegiate Soccer Athletes Over the Course of an Athletic Season. Am. J. Sports Med. 2012, 40, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.M.; Moore, J.P.; Thom, J.M. The effect of aerobic walking and lower body resistance exercise on serum COMP and hyaluronan, in both males and females. Eur. J. Appl. Physiol. 2018, 118, 1095–1105. [Google Scholar] [CrossRef]
- Celik, O.; Salci, Y.; Ak, E.; Kalaci, A.; Korkusuz, F. Serum cartilage oligomeric matrix protein accumulation decreases significantly after 12weeks of running but not swimming and cycling training—A randomised controlled trial. Knee 2013, 20, 19–25. [Google Scholar] [CrossRef]
- Mündermann, A.; Dyrby, C.O.; Andriacchi, T.P.; King, K.B. Serum concentration of cartilage oligomeric matrix protein (COMP) is sensitive to physiological cyclic loading in healthy adults. Osteoarthr. Cartil. 2005, 13, 34–38. [Google Scholar] [CrossRef]
- Roberts, H.M.; Griffith-McGeever, C.L.; Owen, J.A.; Angell, L.; Moore, J.P.; Thom, J.M. An exploratory study to investigate the association between age, physical activity, femoral trochlear cartilage thickness and biomarkers of tissue metabolism in adult males. Eur. J. Appl. Physiol. 2021, 121, 1871–1880. [Google Scholar] [CrossRef]
- Babayeva, N.; Dönmez, G.; Özçakar, L.; Torgutalp, Ş.Ş.; Karaçoban, L.; Gedik, E.; Korkusuz, F.; Doral, M.N. Mean femoral cartilage thickness is higher in athletes as compared with sedentary individuals. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Firner, S.; Zaucke, F.; Heilig, J.; de Marees, M.; Willwacher, S.; Bruggemann, G.P.; Niehoff, A. Impact of knee joint loading on fragmentation of serum cartilage oligomeric matrix protein. J. Orthop. Res. 2020, 38, 1710–1718. [Google Scholar] [CrossRef]
- Kersting, U.G.; Stubendorff, J.J.; Schmidt, M.C.; Brüggemann, G.P. Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthr. Cartil. 2005, 13, 925–934. [Google Scholar] [CrossRef]
- Azukizawa, M.; Ito, H.; Hamamoto, Y.; Fujii, T.; Morita, Y.; Okahata, A.; Tomizawa, T.; Furu, M.; Nishitani, K.; Kuriyama, S.; et al. The Effects of Well-Rounded Exercise Program on Systemic Biomarkers Related to Cartilage Metabolism. Cartilage 2019, 10, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Helmark, I.C.; Petersen, M.C.; Christensen, H.E.; Kjaer, M.; Langberg, H. Moderate loading of the human osteoarthritic knee joint leads to lowering of intraarticular cartilage oligomeric matrix protein. Rheumatol. Int. 2012, 32, 1009–1014. [Google Scholar] [CrossRef]
- Hunt, M.A.; Pollock, C.L.; Kraus, V.B.; Saxne, T.; Peters, S.; Huebner, J.L.; Sayre, E.C.; Cibere, J. Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: Results from a randomized controlled pilot study. BMC Musculoskelet. Disord. 2013, 14, 115. [Google Scholar] [CrossRef]
- Mehana, E.-S.E.; Khafaga, A.F.; El-Blehi, S.S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019, 234, 116786. [Google Scholar] [CrossRef]
- Tao, Y.; Qiu, X.; Xu, C.; Sun, B.; Shi, C. Expression and correlation of matrix metalloproteinase-7 and interleukin-15 in human osteoarthritis. Int. J. Clin. Exp. Pathol. 2015, 8, 9112–9118. [Google Scholar]
- Larrouture, Q.C.; Cribbs, A.P.; Rao, S.R.; Philpott, M.; Snelling, S.J.; Knowles, H.J. Loss of mutual protection between human osteoclasts and chondrocytes in damaged joints initiates osteoclast-mediated cartilage degradation by MMPs. Sci. Rep. 2021, 11, 22708. [Google Scholar] [CrossRef] [PubMed]
- Barksby, H.E.; Milner, J.M.; Patterson, A.M.; Peake, N.J.; Hui, W.; Robson, T.; Lakey, R.; Middleton, J.; Cawston, T.E.; Richards, C.D.; et al. Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: Implications for cartilage degradation in arthritis. Arthritis Rheum. 2006, 54, 3244–3253. [Google Scholar] [CrossRef]
- Oh, H.; Yang, S.; Park, M.; Chun, J.S. Matrix metalloproteinase (MMP)-12 regulates MMP-9 expression in interleukin-1beta-treated articular chondrocytes. J. Cell. Biochem. 2008, 105, 1443–1450. [Google Scholar] [CrossRef]
- Gronski, T.J., Jr.; Martin, R.L.; Kobayashi, D.K.; Walsh, B.C.; Holman, M.C.; Huber, M.; Van Wart, H.E.; Shapiro, S.D. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 1997, 272, 12189–12194. [Google Scholar] [CrossRef] [Green Version]
- Hiller, O.; Lichte, A.; Oberpichler, A.; Kocourek, A.; Tschesche, H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J. Biol. Chem. 2000, 275, 33008–33013. [Google Scholar] [CrossRef]
- Alexander, K.; Banos, A.; Abro, S.; Hoppensteadt, D.; Fareed, J.; Rees, H.; Hopkinson, W. Levels of Matrix Metalloproteinases in Arthroplasty Patients and Their Correlation With Inflammatory and Thrombotic Activation Processes. Clin. Appl. Thromb. Hemost. 2016, 22, 441–446. [Google Scholar] [CrossRef]
- Behrendt, P.; Preusse-Prange, A.; Klüter, T.; Haake, M.; Rolauffs, B.; Grodzinsky, A.; Lippross, S.; Kurz, B. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthr. Cartil. 2016, 24, 1981–1988. [Google Scholar] [CrossRef]
- Xin, X.; Tan, Q.; Li, F.; Chen, Z.; Zhang, K.; Li, F.; Yang, B.; Xing, Z.; Zhou, F.; Tian, Y.; et al. Potential Value of Matrix Metalloproteinase-13 as a Biomarker for Osteoarthritis. Front. Surg. 2021, 8, 750047. [Google Scholar] [CrossRef] [PubMed]
- Vassão, P.G.; de Souza, A.C.F.; da Silveira Campos, R.M.; Garcia, L.A.; Tucci, H.T.; Renno, A.C.M. Effects of photobiomodulation and a physical exercise program on the expression of inflammatory and cartilage degradation biomarkers and functional capacity in women with knee osteoarthritis: A randomized blinded study. Adv. Rheumatol. 2021, 61, 62. [Google Scholar] [CrossRef]
- O’Kane, J.W.; Hutchinson, E.; Atley, L.M.; Eyre, D.R. Sport-related differences in biomarkers of bone resorption and cartilage degradation in endurance athletes. Osteoarthr. Cartil. 2006, 14, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Jorge, P.B.; Sprey, J.W.C.; Runco, G.M.; Lima, M.V.; Severino, N.R.; Santili, C. Difference in Articular Degeneration Depending on the Type of Sport. Rev. Bras. Ortop. 2019, 54, 509–515. [Google Scholar]
- Arunrukthavon, P.; Heebthamai, D.; Benchasiriluck, P.; Chaluay, S.; Chotanaphuti, T.; Khuangsirikul, S. Can urinary CTX-II be a biomarker for knee osteoarthritis? Arthroplasty 2020, 2, 6. [Google Scholar] [CrossRef]
- Cheng, H.; Hao, B.; Sun, J.; Yin, M. C-Terminal Cross-Linked Telopeptides of Type II Collagen as Biomarker for Radiological Knee Osteoarthritis: A Meta-Analysis. Cartilage 2020, 11, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Bjerre-Bastos, J.J.; Nielsen, H.B.; Andersen, J.R.; Karsdal, M.; Bay-Jensen, A.C.; Boesen, M.; Mackey, A.L.; Byrjalsen, I.; Bihlet, A.R. Does moderate intensity impact exercise and non-impact exercise induce acute changes in collagen biochemical markers related to osteoarthritis?—An exploratory randomized cross-over trial. Osteoarthr. Cartil. 2021, 29, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Coyle, C.H.; Henry, S.E.; Haleem, A.M.; O’Malley, M.J.; Chu, C.R. Serum CTXii Correlates With Articular Cartilage Degeneration After Anterior Cruciate Ligament Transection or Arthrotomy Followed by Standardized Exercise. Sports Health 2012, 4, 510–517. [Google Scholar] [CrossRef] [Green Version]
- John, T.; Müller, R.; Oberholzer, A.; Zreiqat, H.; Kohl, B.; Ertel, W.; Hostmann, A.; Tschoeke, S.; Schulze-Tanzil, G. Interleukin-10 modulates pro-apoptotic effects of TNF-α in human articular chondrocytes in vitro. Cytokine 2007, 40, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Loreto, C.; Musumeci, G.; Leonardi, R. Chondrocyte-like apoptosis in temporomandibular joint disc internal derangement as a repair-limiting mechanism. An in vivo study. Histol. Histopathol. 2009, 24, 293–298. [Google Scholar] [PubMed]
- Iannone, F.; De Bari, C.; Dell Accio, F.; Covelli, M.; Cantatore, F.P.; Patella, V.; Bianco, G.L.; Lapadula, G. Interleukin-10 and interleukin-10 receptor in human osteoarthritic and healthy chondrocytes. Clin. Exp. Rheumatol. 2001, 19, 139–146. [Google Scholar] [PubMed]
- Schulze-Tanzil, G.; Zreiqat, H.; Sabat, R.; Kohl, B.; Halder, A.; Muller, R.D.; John, T. Interleukin-10 and articular cartilage: Experimental therapeutical approaches in cartilage disorders. Curr. Gene Ther. 2009, 9, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Helmark, I.C.; Mikkelsen, U.R.; Børglum, J.; Rothe, A.; Petersen, M.C.; Andersen, O.; Langberg, H.; Kjaer, M. Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Res. Ther. 2010, 12, R126. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [PubMed]
- Ajrawat, P.; Dwyer, T.; Chahal, J. Autologous Interleukin 1 Receptor Antagonist Blood-Derived Products for Knee Osteoarthritis: A Systematic Review. Arthroscopy 2019, 35, 2211–2221. [Google Scholar] [CrossRef]
- Pacifici, M. Osteoarthritis and chronic pain: Interleukin-6 as a common denominator and therapeutic target. Sci. Signal. 2022, 15, eadd3702. [Google Scholar] [CrossRef]
- Kanakis, I.; Nikolaou, M.; Pectasides, D.; Kiamouris, C.; Karamanos, N. Determination and biological relevance of serum cross-linked type I collagen N-telopeptide and bone-specific alkaline phosphatase in breast metastatic cancer. J. Pharm. Biomed. Anal. 2004, 34, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Eyre, D.R.; Gundberg, C.M. Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 1996, 17, 333–368. [Google Scholar] [PubMed]
- Hoch, J.M.; Mattacola, C.G.; Medina-McKeon, J.M.; Shah, J.N.; Lattermann, C. Determination of the Interday and Intraday Reliability of Serum Cartilage Oligomeric Matrix Protein in a Physically Active Population. Cartilage 2011, 2, 394–398. [Google Scholar] [CrossRef]
- Diemar, S.S.; Dahl, S.S.; West, A.S.; Simonsen, S.A.; Iversen, H.K.; Jørgensen, N.R. A systematic review of the circadian rhythm of bone markers in blood. Calcif. Tissue Int. 2022, 122, 126–147. [Google Scholar] [CrossRef]
- Musumeci, G. The Effect of Mechanical Loading on Articular Cartilage. J. Funct. Morphol. Kinesiol. 2016, 1, 154–161. [Google Scholar] [CrossRef]
- Ravalli, S.; Szychlinska, M.A.; Lauretta, G.; Musumeci, G. New Insights on Mechanical Stimulation of Mesenchymal Stem Cells for Cartilage Regeneration. Appl. Sci. 2020, 10, 2927. [Google Scholar] [CrossRef]
- Szychlinska, M.A.; Di Rosa, M.; Castorina, A.; Mobasheri, A.; Musumeci, G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon 2019, 5, e01134. [Google Scholar] [CrossRef]
- Stahl, R.; Luke, A.; Li, X.; Carballido-Gamio, J.; Ma, B.C.; Majumdar, S.; Link, T.M. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—A 3.0-Tesla MRI study. Eur. Radiol. 2009, 19, 132–143. [Google Scholar] [CrossRef]
- Hovis, K.K.; Stehling, C.; Souza, R.B.; Haughom, B.D.; Baum, T.; Nevitt, M.; McCulloch, C.; Lynch, J.A.; Link, T.M. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011, 63, 2248–2256. [Google Scholar] [CrossRef]
- Kumar, D.; Souza, R.B.; Singh, J.; Calixto, N.E.; Nardo, L.; Link, T.M.; Li, X.; Majumdar, S. Physical activity and spatial differences in medial knee T1rho and T2 relaxation times in knee osteoarthritis. Journal of Orthopaedic and Sports Physical Therapy 2014, 44, 964–972. [Google Scholar] [CrossRef]
- Stehling, C.; Lane, N.E.; Nevitt, M.C.; Lynch, J.; McCulloch, C.E.; Link, T.M. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: Analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr. Cartil. 2010, 18, 776–786. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Main Indication | Secondary Indication | |
---|---|---|
Burden of disease biomarkers | serum cartilage oligomeric matrix protein (sCOMP) | sCOMP seems better for knee OA; CTX-II seems more specific for the detection of hip OA |
Primary point | Time of the sample | Time elapsed since the training |
Secondary point | Description of the sample | Description of the treatment |
Tertiary point | Description of the training | Description of the background |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrigna, L.; Trovato, B.; Roggio, F.; Castorina, A.; Musumeci, G. Molecular Assessment of Healthy Pathological Articular Cartilages in Physically Active People: A Scoping Review. Int. J. Mol. Sci. 2023, 24, 3662. https://doi.org/10.3390/ijms24043662
Petrigna L, Trovato B, Roggio F, Castorina A, Musumeci G. Molecular Assessment of Healthy Pathological Articular Cartilages in Physically Active People: A Scoping Review. International Journal of Molecular Sciences. 2023; 24(4):3662. https://doi.org/10.3390/ijms24043662
Chicago/Turabian StylePetrigna, Luca, Bruno Trovato, Federico Roggio, Alessandro Castorina, and Giuseppe Musumeci. 2023. "Molecular Assessment of Healthy Pathological Articular Cartilages in Physically Active People: A Scoping Review" International Journal of Molecular Sciences 24, no. 4: 3662. https://doi.org/10.3390/ijms24043662
APA StylePetrigna, L., Trovato, B., Roggio, F., Castorina, A., & Musumeci, G. (2023). Molecular Assessment of Healthy Pathological Articular Cartilages in Physically Active People: A Scoping Review. International Journal of Molecular Sciences, 24(4), 3662. https://doi.org/10.3390/ijms24043662