Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Isothermal Titration Calorimetry
2.3. Structure of Gal-3C in Complex with 23
3. Materials and Methods
3.1. General Synthetic Methods
3.2. General Synthetic Procedure A: Preparation of 3′-O-Sulfated Lactosides
3.3. General Synthetic Procedure B: Zemplén Transesterification Reaction
3.4. General Synthetic Procedure C: Protection of Primary Alcohol with Tert-Butyldiphenylsilyl Ether (TBDPS)
3.5. General Synthetic Procedure D: Deprotection of Tert-Butyldiphenylsilyl Ether (TBDPS)
3.5.1. Propargyl (2,3,4,6-Tetra-O-Acetyl-β-d-Galactopyranosyl)-(1→4)-2,3,6-Tri-O-Acetyl-β-d-Glucopyranoside (3) [29]
3.5.2. Propargyl (β-d-Galactopyranosyl)-(1→4)-β-d-Glucopyranoside (4) [29]
3.5.3. 4-Nitrophenyl (2,3,4,6-Tetra-O-Acetyl-β-d-Galactopyranosyl)-(1→4)-2,3,6-Tri-O-Acetyl-β-d-Glucopyranoside (5) [15]
3.5.4. 4-Nitrophenyl (β-d-Galactopyranosyl)-(1→4)-β-d-Glucopyranoside (6) [15]
3.5.5. Propargyl (6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (7)
3.5.6. 4-Nitrophenyl (6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (8)
3.5.7. Propargyl (3-O-Sulfo-6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside Sodium Salt (9)
3.5.8. 4-Nitrophenyl (3-O-Sulfo-6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside Sodium Salt (10)
3.5.9. Propargyl (3-O-Sulfo-β-d-Galactopyranosyl)-(1→4)-β-d-Glucopyranoside Sodium Salt (11)
3.5.10. 4-Nitrophenyl (3-O-Sulfo-β-d-Galactopyranosyl)-(1→4)-β-d-Glucopyranoside Sodium Salt (12)
3.5.11. 4-Nitrophenyl 2-N-Acetamido-2-Deoxy-β-d-Glucopyranoside (15) [31]
3.5.12. 4-Nitrophenyl 2-N-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (16)
3.5.13. 4-Nitrophenyl (2,3,4,6-Tetra-O-Acetyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (18)
3.5.14. 4-Nitrophenyl (β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (19)
3.5.15. 4-Nitrophenyl (β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-β-d-Glucopyranoside (20)
3.5.16. 4-Nitrophenyl (6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (21)
3.5.17. 4-Nitrophenyl (3-O-Sulfo-6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranosidesodiumsalt (22)
3.5.18. 4-Nitrophenyl (3-O-Sulfo-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-β-d-Glucopyranoside Sodium Salt (23)
3.5.19. Propargyl (β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (26)
3.5.20. Propargyl (β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-β-d-Glucopyranoside (27) [19]
3.5.21. Propargyl (6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (28)
3.5.22. Propargyl (3-O-Sulfo-6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside Sodium Salt (29)
3.5.23. Propargyl (3-O-Sulfo-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-β-d-Glucopyranoside Sodium Salt (30)
3.5.24. Propargyl (3-O-[2-(1,1-Dimethylethoxy)-2-Oxoethyl]-6-O-Tert-Butyldiphenylsilyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-6-O-Tert-Butyldiphenylsilyl-β-d-Glucopyranoside (31)
3.5.25. Propargyl (3-O-Carboxymethyl-β-d-Galactopyranosyl)-(1→4)-2-Acetamido-2-Deoxy-β-d-Glucopyranoside Sodium Salt (32)
3.6. Isothermal Titration Calorimetry (ITC)
3.7. Crystallization of Gal-3C in Complex with 23
3.7.1. Cloning
3.7.2. Protein Expression and Purification
3.7.3. Crystallization and Data Collection
3.7.4. Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, R. Mac-2: A versatile galactose-binding protein of mammalian tissues. Glycobiology 1994, 4, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Brewer, C.F.; Miceli, M.C.; Baum, L.G. Clusters, bundles, arrays and lattices: Novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 2002, 12, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, G.A.; Baum, L.G.; Tinari, N.; Paganelli, R.; Natoli, C.; Liu, F.T.; Iacobelli, S. Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002, 23, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Funasaka, T.; Raz, A.; Nangia-Makker, P. Galectin-3 in angiogenesis and metastasis. Glycobiology 2014, 24, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tang, J.W.; Owusu, L.; Sun, M.Z.; Wu, J.; Zhang, J. Galectin-3 in cancer. Clin. Chim. Acta 2014, 431, 185–191. [Google Scholar] [CrossRef]
- Wu, K.L.; Huang, E.Y.; Jhu, E.W.; Huang, Y.H.; Su, W.H.; Chuang, P.C.; Yang, K.D. Overexpression of galectin-3 enhances migration of colon cancer cells related to activation of the K-Ras-Raf-Erk1/2 pathway. J. Gastroenterol. 2013, 48, 350–359. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Geng, J.; Zheng, X.; Wei, H.; Sun, R.; Tian, Z. Tumor-released Galectin-3, a Soluble Inhibitory Ligand of Human NKp30, Plays an Important Role in Tumor Escape from NK Cell Attack. J. Biol. Chem. 2014, 289, 33311–33319. [Google Scholar] [CrossRef]
- Voss, J.; Ford, C.A.; Petrova, S.; Melville, L.; Paterson, M.; Pound, J.D.; Holland, P.; Giotti, B.; Freeman, T.; Gregory, C.D. Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ. 2017, 24, 971–983. [Google Scholar] [CrossRef]
- Niang, D.G.M.; Gaba, F.M.; Diouf, A.; Hendricks, J.; Diallo, R.N.; Niang, M.D.S.; Mbengue, B.; Dieye, A. Galectin-3 as a biomarker in breast neoplasms: Mechanisms and applications in patient care. J. Leukoc. Biol. 2022, 112, 1041–1052. [Google Scholar] [CrossRef]
- Sygitowicz, G.; Maciejak-Jastrzebska, A.; Sitkiewicz, D. The Diagnostic and Therapeutic Potential of Galectin-3 in Cardio-vascular Diseases. Biomolecules 2021, 12, 46. [Google Scholar] [CrossRef]
- Talaga, M.L.; Fan, N.; Fueri, A.L.; Brown, R.K.; Bandyopadhyay, P.; Dam, T.K. Multitasking Human Lectin Galectin-3 Interacts with Sulfated Glycosaminoglycans and Chondroitin Sulfate Proteoglycans. Biochemistry 2016, 55, 4541–4551. [Google Scholar] [CrossRef]
- Collins, P.M.; Bum-Erdene, K.; Yu, X.; Blanchard, H. Galectin-3 Interactions with Glycosphingolipids. J. Mol. Biol. 2014, 426, 1439–1451. [Google Scholar] [CrossRef]
- Miller, M.C.; Ippel, H.; Suylen, D.; Klyosov, A.A.; Traber, P.G.; Hackeng, T.; Mayo, K.H. Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology 2016, 26, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Giguere, D.; Roy, R. A First QSAR Model for Galectin-3 Glycomimetic Inhibitors Based on 3D Docked Structures. Med. Chem. 2006, 2, 481–489. [Google Scholar] [CrossRef]
- Giguère, D.; Sato, S.; St-Pierre, C.; Sirois, S.; Roy, R. Aryl O- and S-galactosides and lactosides as specific inhibitors of human galectins-1 and -3: Role of electrostatic potential at O-3. Bioorganic Med. Chem. Lett. 2006, 16, 1668–1672. [Google Scholar] [CrossRef]
- Bertuzzi, S.; Quintana, J.I.; Ardá, A.; Gimeno, A.; Jiménez-Barbero, J. Targeting Galectins With Glycomimetics. Front. Chem. 2020, 8, 593. [Google Scholar] [CrossRef] [PubMed]
- Öberg, C.T.; Leffler, H.; Nilsson, U.J. Inhibition of Galectins with Small Molecules. Chimia 2011, 65, 18–23. [Google Scholar] [CrossRef]
- Vuong, L.; Kouverianou, E.; Rooney, C.M.; McHugh, B.J.; Howie, S.E.; Gregory, C.D.; Forbes, S.J.; Henderson, N.C.; Zetterberg, F.R.; Nilsson, U.J.; et al. An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Res 2019, 79, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Rauthu, S.R.; Shiao, T.C.; André, P.S.; Miller, M.C.; Madej, É.; Mayo, K.H.; Gabius, H.-J.; Roy, R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2015, 16, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Giguère, D.; André, S.; Bonin, M.-A.; Bellefleur, M.-A.; Provencal, A.; Cloutier, P.; Pucci, B.; Roy, R.; Gabius, H.-J. Inhibitory potential of chemical substitutions at bioinspired sites of β-D-galactopyranose on neoglycoprotein/cell surface binding of two classes of medically relevant lectins. Bioorg. Med. Chem. 2011, 19, 3280–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, S.; Giguère, D.; Dam, T.K.; Brewer, F.; Gabius, H.-J.; Roy, R. Synthesis and screening of a small glycomimetic library for inhibitory activity on medically relevant galactoside-specific lectins in assays of increasing biorelevance. New J. Chem. 2010, 34, 2229–2240. [Google Scholar] [CrossRef]
- Verteramo, M.A.; Stenström, O.; Ignjatović, M.M.; Caldararu, O.; Olsson, M.A.; Manzoni, F.; Leffler, H. Oksanen, E.; Logan, D.T.; Nilsson, U.J.; et al. Interplay between conformational entropy and solvation entropy in protein-ligand binding. J. Am. Chem. Soc. 2019, 141, 2012–2026. [Google Scholar] [CrossRef] [PubMed]
- Belkhadem, K.; Cao, Y.; Roy, R. Synthesis of Galectin Inhibitors by Regioselective 3′-O-Sulfation of Vanillin Lactosides Obtained Under Phase Transfer Catalysis. Molecules 2020, 26, 115. [Google Scholar] [CrossRef]
- Roy, R.; Murphy, P.V.; Gabius, H.-J. Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016, 21, 629. [Google Scholar] [CrossRef]
- Hockl, P.F.; Wolosiuk, A.; Pérez-Sáez, J.M.; Bordoni, A.V.; Croci, D.O.; Toum-Terrones, Y.; Soler-Illia, G.J.; Rabinovich, G.A. Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol. Res. 2016, 109, 45–54. [Google Scholar] [CrossRef]
- Zhang, S.; Moussodia, R.O.; Murzeau, C.; Sun, H.J.; Klein, M.L.; Vertesy, S.; Andre, S.; Roy, R.; Gabius, H.J.; Percec, V. Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew. Chem. Int. Ed. Engl. 2015, 54, 4036–4040. [Google Scholar] [CrossRef]
- Ahmad, N.; Gabius, H.-J.; André, S.; Kaltner, H.; Sabesan, S.; Roy, R.; Liu, B.; Macaluso, F.; Brewer, C.F. Galectin-3 Precipitates as a Pentamer with Synthetic Multivalent Carbohydrates and Forms Heterogeneous Cross-linked Complexes. J. Biol. Chem. 2004, 279, 10841–10847. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Gabius, H.J. Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin. Ther. Targets 2019, 23, 819–828. [Google Scholar] [CrossRef]
- Liu, B.; Roy, R. Comparative Studies of Galactoside-Containing Clusters. Methods Enzymol. 2003, 362, 226–239. [Google Scholar] [CrossRef]
- Wang, L.X.; Pavlova, N.V.; Yang, M.; Li, S.C.; Li, Y.T.; Lee, Y.C. Synthesis of aryl 3′-sulfo-beta-lactosides as fluorogenic and chromogenic substrates for ceramide glycanases. Carbohydr. Res. 1998, 306, 341–348. [Google Scholar] [CrossRef]
- Roy, R.; Tropper, F.D. Carbohydrate protein interactions. Syntheses of agglutination inhibitorsof wheat germ agglutinin by phase transfer catalysis. Can. J. Chem. 1991, 69, 817–821. [Google Scholar] [CrossRef]
- Abdullayev, S.; Roy, R. Practical non-enzymatic synthesis of propargyl sialyl-α-(2-3′)-lactosamine trisaccharide using minimal protecting groups manipulation. Carbohydr. Res. 2022, 514, 108543. [Google Scholar] [CrossRef] [PubMed]
- Sorme, P.; Arnoux, P.; Kahl-Knutsson, B.; Leffler, H.; Rini, J.M.; Nilsson, U.J. Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: High-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. J. Am. Chem. Soc. 2005, 127, 1737–1743. [Google Scholar] [CrossRef]
- Atmanene, C.; Ronin, C.; Téletchéa, S.; Gautier, F.-M.; Djedaïni-Pilard, F.; Ciesielski, F.; Vivat, V.; Grandjean, C. Biophysical and structural characterization of mono/di-arylated lactosamine derivatives interaction with human galectin-3. Biochem. Biophys. Res. Commun. 2017, 489, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Mariño, K.V.; Cagnoni, A.J.; Croci, D.O.; Rabinovich, G.A. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat. Rev. Drug Discov. 2023. [Google Scholar] [CrossRef]
- Vonrhein, C.; Flensburg, C.; Keller, P.; Sharff, A.; Smart, O.; Paciorek, W.; Womack, T.; Bricogne, G. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 Pt 4, 293–302. [Google Scholar] [CrossRef]
- Tickle, I.J.; Flensburg, C.; Keller, P.; Paciorek, W.; Sharff, A.; Vonrhein, C.; Bricogne, G. STARANISO; Global Phasing Ltd.: Cambridge, UK, 2018. [Google Scholar]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef]
- Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 72–82. [Google Scholar] [CrossRef]
- Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Flores-Ibarra, A.; Vértesy, S.; Medrano, F.J.; Gabius, H.-J.; Romero, A. Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ligand | Ka | Kd | −ΔG | −ΔH | −TΔS | n | Relative Potencies | |
---|---|---|---|---|---|---|---|---|
(M−1 × 10−4) | (µM) | (kcal/mol) | (kcal/mol) | (kcal/mol) | Sites/ Monomer | |||
1 | 1.1 | 91.0 | 5.5 | 3.9 | −1.6 | 1.08 | 1.0 | |
4 | 2.1 | 47.6 | 5.9 | 5.7 | −0.2 | 0.98 | 1.9 | |
6 | 2.0 | 50.0 | 5.9 | 3.7 | −2.2 | 1.10 | 1.8 | |
11 | 2.7 | 37.0 | 6.1 | 3.8 | −2.3 | 1.08 | 2.5 | |
12 | 4.9 | 20.4 | 6.4 | 6.0 | −0.4 | 0.97 | 4.5 | |
20 | 3.0 | 33.3 | 6.1 | 7.3 | 1.2 | 1.05 | 2.7 | |
23 | 4.5 | 22.2 | 6.3 | 3.3 | −3.0 | 0.96 | 4.1 | |
27 | 2.6 | 38.0 | 6.0 | 4.2 | −1.8 | 1.10 | 2.4 | |
30 | 6.8 | 14.7 | 6.6 | 5.2 | −1.4 | 1.07 | 6.2 | |
32 | 1.9 | 52.6 | 5.8 | 4.3 | 1.5 | 1.10 | 1.7 | |
33 | 1.6 | 62.5 | 5.7 | 5.9 | 0.2 | 1.04 | 1.5 |
Synchrotron (Beamline) | ALBA (BL13) |
Data collection | |
Space group | P 212121 |
Cell dimensions | |
a, b, c (Å) | 36.76, 57,98, 63.39 |
Resolution(Å) a | 57.98–1.31 (1.34–1.31) |
Total reflections | 371,319 (7698) |
Unique reflections | 29,249 (761) |
Rmerge | 0.163 (2.945) |
Rmeas | 0.169 (3.099) |
CC 1/2 | 99.9 (12.6) |
Completeness (%) | 92.1 (44.3) |
<I/σ(I)> | 12.6 (0.9) |
Wilson B-factor | 13.62 |
Multiplicity | 12.7 (10.1) |
Monomers per ASU | 1 |
Refinement | |
Rwork | 0.156 |
Rfree | 0.194 |
Reflections used | 28,015 |
No. atoms (non-hydrogens) | 1325 |
Protein | 1117 |
Ligand | 39 |
Water | 169 |
Protein residues | 138 |
Average B factor (Å2) | 18.09 |
Protein atoms | 14.75 |
Ligand | 69.61 |
Water | 28.30 |
R.m.s. deviations | |
Bond lengths (Å) | 0.006 |
Bond angles (˚) | 0.977 |
Ramachandran statistics | |
Favored (%) | 98.53 |
Allowed (%) | 1.47 |
Outliers (%) | 0.00 |
Clashscore | 2.18 |
PDB code | 8BZ3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullayev, S.; Kadav, P.; Bandyopadhyay, P.; Medrano, F.J.; Rabinovich, G.A.; Dam, T.K.; Romero, A.; Roy, R. Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands. Int. J. Mol. Sci. 2023, 24, 3718. https://doi.org/10.3390/ijms24043718
Abdullayev S, Kadav P, Bandyopadhyay P, Medrano FJ, Rabinovich GA, Dam TK, Romero A, Roy R. Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands. International Journal of Molecular Sciences. 2023; 24(4):3718. https://doi.org/10.3390/ijms24043718
Chicago/Turabian StyleAbdullayev, Shuay, Priyanka Kadav, Purnima Bandyopadhyay, Francisco Javier Medrano, Gabriel A. Rabinovich, Tarun K. Dam, Antonio Romero, and René Roy. 2023. "Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands" International Journal of Molecular Sciences 24, no. 4: 3718. https://doi.org/10.3390/ijms24043718
APA StyleAbdullayev, S., Kadav, P., Bandyopadhyay, P., Medrano, F. J., Rabinovich, G. A., Dam, T. K., Romero, A., & Roy, R. (2023). Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands. International Journal of Molecular Sciences, 24(4), 3718. https://doi.org/10.3390/ijms24043718