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Abstract: The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal
transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in
controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development
of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are
involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced
activities. As in the case of every regulatory system, any disturbances in the structures or functions
of oxytocin and OXTR may lead to the development or modulation of various diseases related
to the regulated functions, which in this case include either mental problems (autism, depression,
schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive
organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities
are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity.
Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates
may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In
this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development
of different diseases is summarized and discussed. The analysis of published results led us to suggest
that changes in OXTR expression and OXTR abundance and activity are not specific to individual
diseases, but rather they influence processes (mostly related to behavioral changes) that might
modulate the course of various disorders. Moreover, a possible explanation of the discrepancies
in the published results of effects of the OXTR gene polymorphisms and methylation on different
diseases is proposed.

Keywords: oxytocin receptor (OXTR); OXTR gene polymorphisms; DNA methylation; gene expression;
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1. Introduction

Transmembrane receptors, as structures with the ability to receive a specific type of
information from the extracellular environment, are key elements in maintaining cellular
homeostasis. The signals received by the receptors initiate cascades of signaling reactions,
enabling the cell to adapt to the environmental conditions [1].

The oxytocin receptor (OXTR) and oxytocin itself (OXT) are primarily known for
controlling maternal behavior. When the fetus develops, OXTR is mainly formed in the
myoepithelial cells of the mammary gland and in the myometrium and endometrium of
the uterus at the end of pregnancy. OXT is produced by the neurons of the hypothalamus
and transported to the higher centers of the brain and the posterior pituitary gland, from
where it enters the peripheral circulation. OXT and OXTR take part in the induction of
labor (influencing smooth muscle contractions, especially within the reproductive tract)
and the initiation and maintenance of lactation, as well as psychological contact between
mother and child. They also modulate sexual, social, and stress-related behaviors [2,3]. In
addition, they play roles in the development of the nervous system, especially in regulating
the growth of the neocortex and maintaining its blood supply, as well as in modulating the
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autonomic nervous system through the vagal pathway. They also play an anti-inflammatory,
antioxidant, and analgesic role, being involved in the prevention of diabetes, dyslipidemia,
and atherosclerosis [2].

The molecular mechanism of OXTR action has been reviewed recently [2]; neverthe-
less, it will be presented briefly here to facilitate understanding and analyzing for further
chapters of this paper. OXTR belongs to the G-protein-coupled receptors (GPCRs) family,
which is characterized by the presence of the seven-pass transmembrane domain. This
transmembrane receptor is coupled with the Gαq/11 protein. The signal transduction cas-
cades initiated by the OXTR activation involve several pathways, leading to various effects,
including (i) the modulation of the voltage-regulated Ca2+ channel and the subsequent
activation of the myosin light chain (MLC) kinase, (ii) the stimulation of phospholipase
C (PLC) and the activation of protein kinase C (PKC) through the phosphatidylinositol
4,5-bisphosphate (PIP2)–phosphatidylinositol 3 (PI3) pathway, (iii) the activation of the
MAP kinase cascade, (iv) cytosolic phospholipase A2 (cPLA2) stimulation, and (v) the
activation of the RhoA/Rho-associated protein kinase (ROK) pathway. Therefore, the stim-
ulation of OXTR results in the specific regulation of a battery of genes regulating various
cellular and physiological processes. Although early studies reported that OXTR is present
mainly in cells occurring in the central nervous system and cells of the mammary gland
and uterus during pregnancy [4], subsequent works indicated that this receptor operates
also in those building other peripheral organs, such as heart, kidney, pancreas, and thy-
mus [5]. Therefore, the OXT-mediated stimulation of OXTR, and the subsequent activation
of various signaling pathways, leading to the specific regulation of expression of many
genes, influences various processes crucial to coordinating the physiological processes in
response to different conditions, as reviewed recently [2].

The disturbances in the levels of OXT or the activity of the OXTR and their conse-
quences for the functioning of cells and the whole organism have been detected in many
human diseases [3]. The most frequently mentioned diseases include those directly related
to the central nervous system, such as depression, autism, schizophrenia, or obsessive-
compulsive disorders [2], or the functioning of reproductive organs, such as endometriosis
and uterine adenomyosis or premature birth [3]. Investigations of changes in the levels
or functions of OXT and/or OXTR also apply to cancer, osteoporosis, and obesity, as well
as viral infections or cardiac disorders. Those reports presented OXTR as an important
factor in maintaining the proper functioning of the body [2,3]. This review not only defines
the roles of this receptor in the development of symptoms of various human diseases
mentioned above, but also suggests the mechanism of involvement of OXTR in modulating
the courses of these disorders.

2. OXTR in Reproductive System Diseases

The role of the elements of the OXT system and its receptor is inherently related to
the functioning of the endocrine and reproductive system, taking part in maintaining the
functionality of the uterus, inducing labor or lactation [2]. It is therefore not surprising that
the genetic variability of these elements has been observed in many reproductive system
diseases. The role of these factors in the functioning of the reproductive system is empha-
sized by the mouse model of primary dysmenorrhea, induced by the administration of OXT,
which led to pain symptoms caused by abnormal uterine contractions, endometrial edema
(edema of endometrium lamina propria), decreased blood flow velocity in the uterine artery,
decreased β2-adrenergic receptor levels, and a large increase in OXTR and cyclooxygenase-
2 (COX-2) levels in the uterine tissue. These symptoms, especially abnormal contractions
and uterine ischemia, reflect the pathology of human dysmenorrhea [6].

DNA sequence analyses of both OXTR and the estrogen receptor 1 gene (ESR1) in pa-
tients with Mayer-Rokitansky-Küster-Hauser syndrome were performed [7]. This condition
is characterized by the congenital absence of the uterus and part of the vagina in women.
Although disorders of the levels of hormone receptors are mentioned in the literature as
one of the elements of pathogenesis, the basic causes of this disease remain unknown. In
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the study mentioned above, three variants of the OXTR gene were detected, of which one
(c.-551C > T; rs2301260) was classified as non-pathogenic, the other (c.712G > A; rs61740241)
was a missense mutation, and the third (c-133A > C) was of unknown effect on the function
of OXTR as this variant was described for the first time. The authors suggested that the
identified variants of the OXTR gene may disrupt the function of the receptor through
various yet unexplored molecular mechanisms [7].

When premenopausal women were screened for OXTR expression in two types of
affected tissues (peritoneal endometriosis, containing glandular and epithelial cells and
ovarian endometriotic cysts), immunohistochemical staining showed very high levels of
OXTR both in the cytoplasm and nuclei in the epithelial cells of the functional endometrial
layer, and in the cytoplasm of epithelial cells of peritoneal endometriotic lesions [6]. An
even higher abundance of nuclear OXTR was noted in endometriotic ovarian cysts. In
addition, high levels of OXTR were demonstrated in the smooth muscle cells surrounding
the endometriotic lesion. Moreover, OXTR immunofluorescence staining was also per-
formed in an endometriosis cell line, indicating numerous spots irregularly dispersed in
the cytoplasm [8]. These early studies clearly showed that the expression of OXTR may be
enhanced under specific conditions, possibly contributing to pathomechanisms of these
reproductive system diseases. Subsequently, a similar study was conducted using tissues
with adenomyotic lesions derived from premenopausal women, indicating not only the
overexpression of OXTR in adenomyosis-associated myometrium, compared to unaffected
myometrium, but also significant morphological changes [9]. Therefore, the latter results
corroborated the conclusion about the importance of OXTR levels in the pathologically
changed tissues.

OXT is critical in inducing and sustaining labor [3]. Therefore, the roles of both OXT
and OXTR have been studied in premature births. However, the OXTR gene polymorphism
studies did not indicate a direct correlation between the presence of any individual polymor-
phism and preterm birth [10]. Nevertheless, it was found that the haplotype combination
of the rs2254298 A, rs2228485 C and rs237911 G alleles was significantly associated with an
increased risk of this condition [10]. Interestingly, quite a similar study demonstrated that
most of 14 identified OXTR variants were not correlated with the risk of preterm birth [11].
On the other hand, two maternal OXTR polymorphisms (rs4686302 and rs237902) have
been identified to likely contribute to gestational age-dependent effects on prematurity.
Moreover, significant differences in the bindings of the ligand by wild-type OXTR and the
products of these two mutant alleles of OXTR were demonstrated in in vitro assays [11].
Therefore, although there is no doubt that OXTR plays a crucial role in the proper labor, the
correlation between the genetic variants of OXTR and preterm birth is not simple, showing
a complexity of the regulation of this physiological process.

3. OXTR in the Regulation and Dysregulation of the Maternal/Parental Behavior

As mentioned in Section 1, OXT and OXTR were connected early to the regulation of
maternal behavior, as concluded from the results of experiments with animal models, espe-
cially genetically modified mice [12]. Indeed, studies with patients indicated a connection
between OXTR functions and responses to chronic stress conditions, including those occur-
ring in the postnatal period [13]. Then, other studies conducted with humans and study
subjects confirmed that there is a connection between OXTR and parental behavior. The
rs2254298 single nucleotide polymorphism (SNP) in the OXTR gene has been associated
with maternal and paternal affection towards their child [14]. The effects of the rs2254298
variants on physically controlling parenting were also confirmed [15]. Associations be-
tween rs53576 and rs2254298 polymorphisms in OXTR and maternal care were studied to
conclude that the specific OXTR genotype (rs2254298 AG/AA) may be correlated with poor
maternal care [16]. Another study suggested the influence of the rs968389 polymorphism
on maternal sensitivity during free play with the infant [17]. On the other hand, such
correlations were questioned, based on genetic studies with biological material derived
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from persons from different geographical and ethnic origins (European, American, and
African-American) [18].

Interestingly, another correlation of the OXTR gene with maternal behavior has been
detected when DNA methylation was studied. Namely, hypermethylation of this gene was
associated with perinatal depression [19]. On the other hand, the occurrence of depression
in pregnancy did not associate with DNA methylation changes at the OXTR locus in the
cells of the placenta; however, cord plasma antidepressant levels were associated with an
increased level of the methylation at the OXTR promotor region [20]. DNA methylation
likely affects specific gene expression, and it was reported that the levels of mRNA derived
from the OXTR gene were higher in the blood cells of mothers of infants than in no-infant
women. Moreover, OXTR mRNA levels were lower in mothers with early trauma and less
maternal experience than in the group of mothers who had not experienced trauma [21].
Intriguingly, some analyses led researchers to suggest that the “structuring behavior may
buffer the potential negative impact of hypermethylation on OXTR gene expression and
function” [22].

Recent investigations came back to the problem of genetic polymorphisms in the
OXTR and behavior. When women exposed to childhood maltreatment were tested, the
results of genetic analyses suggested that the rs237895 polymorphism influenced the
relationship between childhood maltreatment and maternal behavior, as these two features
were associated only in studied individuals who did bear the T allele, which caused a
high-level expression of the OXTR gene [23]. Moreover, another study suggested that the
G allele carriers of the rs53576 polymorphism might be more susceptible to the effects of
severe childhood adversity [24]. Another OXTR polymorphism, rs1042778, was correlated
with lower behavioral sensitivity, lower engagement, higher intrusiveness, and more
frequent frightened/frightening behavior in mothers [25]. More reports on the associations
of OXTR polymorphisms with maternal behavior were published recently, suggesting
the correlations of specific polymorphisms (rs53576, rs2254298, rs2268493, rs1042778, or
rs13316193) with perceived maternal care [26], empathy [27], maternal overprotection [28],
parental rejection [29], and sensitivity of mothers to childhood parenting [30].

In summary, there are many reports indicating the associations of the OXTR gene poly-
morphisms and maternal/parental behavior; however, little information can be provided
on the molecular mechanisms of such correlations. On the other hand, some investigators
questioned the direct connection between the genetic variants of OXTR and maternal
behavior, showing that more advanced studies are required to solve this problem.

4. OXTR in Mental Disorders

Studies on genetic and biochemical bases of mental and personality disorders are
especially difficult and complicated due to the enormous complexity of both regulatory
processes occurring in the central nervous system and genetic networks involved in these
interactions [31,32]. The production and secretion regulation of OXT, as well as the expres-
sion of the OXTR gene in different parts of the brain and in different organs, have been
recently reviewed [33]. The synthesis of OXT mainly occurs in neurons located in three
regions of the brain, namely the supraoptic, paraventricular, and suprachiasmatic nucleus.
This hormone is released from neuronal soma, axons, and dendrites. The OXT-recognizing
factor, OXTR, occurs in neurons occupying various regions of the brain, thus influencing
various physiological functions of this organ. In fact, OXTR was found in the cortex, hy-
pothalamus, pons, medulla, and cerebellum [33]. Apart from the brain, OXTR is present
also in cells of other organs, including the ovaries, uterus, heart, lungs, kidneys, pancreas,
gastrointestinal tract, adrenal glands, and thymus. Therefore, OXT-mediated regulations
influence neuronal and somatic processes which make a network of physiological responses
that, if disturbed, might induce a variety of symptoms recognized as mental and/or psycho-
somatic disorders. The current state of the art in the field of physiological importance
of, and regulations of the brain functions and behavior by OXTR-related processes, have
been recently reviewed [34]. In fact, the physiological roles of OXT and OXTR in the brain
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are related to the regulation of various processes, such as neuronal excitability, network
oscillatory activity, synaptic plasticity, and social recognition memory [35]. Therefore, it is
not surprising that any disturbances in the functions of OXTR may result in the significant
impairment of the regulatory processes occurring in the brain, and, thus, in the appearance
of different symptoms. Definitely, they can modify the course of various mental disor-
ders. On the other hand, one should remember the complexity of the brain functions and
difficulties in reaching solid conclusions when studying such a complicated matter.

Apart from monogenic diseases with evident mental symptoms and changes in the
personalities of patients, the connections of genetic and biochemical factors with changed
behavior, mental development, and cognitive abilities are often equivocal. Moreover, there
are problems with the use of animal models of such diseases since many mental features
are specific for humans; thus, non-human models cannot be fully adequate in assessing the
specific effects of any factors or agents. Nevertheless, by analyzing genetic polymorphisms
in the genes of patients and control individuals it is sometimes possible to find correlations
with symptoms of mental disorders and to build hypotheses about the possible mechanisms
of specific diseases. Below, we summarize and discuss the results of studies on the potential
roles of OXTR in various mental disorders.

4.1. Autism Spectrum Disorder

Autism spectrum disorder is defined by the National Institute of Health, USA as “a neu-
rological and developmental disorder that affects how people interact with others, commu-
nicate, learn, and behave” (https://www.nimh.nih.gov/health/topics/autism-spectrum-
disorders-asd; (accessed on 5 February 2023)). The features and causes of this disease
have been deeply and comprehensively reviewed recently (as examples, see refs. [36,37]).
The patients manifest problems in communication with other people and in interactions
with them, develop repetitive behaviors, and reveal a restricted interest in the surrounding
world. Undoubtedly, autism is a complex neurobiological disorder, and the causes include
both genetic and environmental factors which influence the developing brain. In fact, there
is a long list of various agents, components, and parameters of different natures that were
proposed as risk factors of autism spectrum disorders [36,37].

Early evidence for the connection between OXTR and autism came from observa-
tions that significant changes in plasma oxytocin OXT levels occur in affected patients.
This encouraged researchers to test four single nucleotide polymorphisms (SNPs) in the
OXTR gene in autistic patients from China. An association between autism and two SNPs
(rs2254298 and rs53576) was found, providing a basis for suggesting that impaired OXTR
function might contribute to the development of the disease [38]. Importantly, the same
SNPs were subsequently tested in Caucasian patients and the results supported the conclu-
sion about the association of OXTR with autism [39]. The hypothesis on the involvement
of OXTR dysfunction in the development of autism has been also proposed on the basis
of different kinds of genetic analysis. When a combined analysis of the primary genome
scan data from the Autism Genetic Resource Exchange and samples derived from Finnish
patients suffering from autism was performed, OXTR was identified as a candidate gene
responsible for autism if present in a mutant form [40]. Further support for the connection
of genetic changes in OXTR with autism spectrum disorder came from a more robust anal-
ysis in which 18 SNPs in this gene were tested. The discovery that a five-locus haplotype
block, rs237897-rs13316193-rs237889-rs2254298-rs2268494, is considerably associated with
autism corroborated the proposal that specific genetic variants of OXTR may be risk factors
for this disease [41].

An interesting observation is that some SNPs in OXTR appeared to be risk factors in
different populations, as mentioned previously for Chinese and Caucasian patients with
autism [38,39]. One such SNP is rs2254298, which was also indicated as a risk factor in
the Japanese population [42]. However, intriguingly, the risk allele of rs2254298 among
Japanese people was identified to be ‘A’, like in the Chinese population, but contrary
to Caucasian people, where the ‘G’ allele was associated with a higher risk of autism

https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd
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spectrum disorder. Whether ethnic differences between the Asians and Caucasians in the
linkage disequilibrium or other factors can be responsible for this discrepancy remains
to be elucidated. Nevertheless, such an inconsistency raised doubts on the association of
OXTR polymorphisms with autism risk. Therefore, 18 SNPs in this gene were analyzed in
samples derived from autism patients living in Ireland, Portugal, and the United Kingdom.
Perhaps surprisingly, the results did not support the hypothesis about the role of common
polymorphisms in the OXTR gene in the development of autism spectrum disorder, at least
in the Caucasian population [43]. A similar conclusion could be presented based on the
results of SNP studies with samples from the Slovak population [44]. On the contrary, an
analysis of 14 SNPs in OXTR in relation to the ratios of N-acetylaspartate to creatine in the
right medial temporal lobe in Japanese patients with autism spectrum disorder suggested
again the presence of an association between OXTR variants and neuronal function in
the medial temporal lobe, which is affected in autism [45]. These results again pointed
to possible ethnic differences between the autistic patients which affect genetic analyses.
However, another study performed with Japanese patients did not support the contribution
of OXTR polymorphisms to autism spectrum disorder susceptibility [46].

As indicated above, significant controversies appeared in the interpretation of the
results of genetic polymorphism studies on the possible contribution of the OXTR gene
variants to the development of autism. This indicated a need for more detailed studies
in this area. One such focused and extensive work led to the proposal that social impair-
ment and repetitive behaviors observed in patients with autism spectrum disorder might
be associated with polymorphisms in the OXTR 3′UTR [47]. Another complex investi-
gation demonstrated that the cumulative genetic variation in OXTR impacts the reward
system connectivity in patients with autism spectrum disorder, as well as in neurotypical
controls [48]. The studies conducted with a large number (over 340) of autistic patients
indicated that two SNPs in OXTR, which were controversial in their connection to the
susceptibility to autism rs53576 and rs2254298, were associated with an increased severity
of social deficits [49]. On the others hand, the same SNPs were correlated with fewer social
deficits in patients with attention deficit hyperactivity disorder (ADHD). Therefore, it was
concluded that these SNPs are not direct risk factors for impaired social abilities [49]. On
the other hand, in another study, autistic patients with GA and AA genotypes of rs237902 in
the OXTR gene revealed more severe phenotypes than those carrying the GG genotype [50].

In the light of the contradictory conclusions drawn on the basis of results from different
studies on the OXTR gene polymorphisms and autism spectrum disorder, a meta-analysis
was performed to assess if there were any connections between the SNPs in this gene
and the development of the disease. The results of studies with almost 4000 autistic pa-
tients were included in this analysis, which demonstrated significant associations between
autism spectrum disorder and the following OXTR SNPs: rs7632287, rs237887, rs2268491,
rs2254298 [51]. It was proposed that animal models should be useful in studies on the
role of OXTR in autism [52]. In fact, it was shown that variations in the oxytocin system
contribute to differences between individual organisms in mammalian social behaviors [52].

All the above presented and discussed results indicated that analyses of OXTR poly-
morphisms are not sufficient to conclude about a role for OXTR in the development of
autism spectrum disorder [53,54]. Thus, recent studies in this field involved other aspects
of the OXTR gene and its product. One of the processes modulating the efficiency of the
expression of OXTR is epigenetic modification, especially DNA methylation, which can
probably affect the course of autism [55]. Indeed, OXTR methylation was demonstrated to
be associated with an increased neural response within regions of the salience in the brain
and with a decreased functional coupling between these regions and attentional control
networks during selective social attention [56]. Moreover, higher OXTR methylation levels
(within intron 1) were detected in autistic patients than in neurotypical subjects [57]. An-
other agent that can influence OXTR expression is the MYC-associated zinc finger protein
(MAZ), a specific transcription factor. It was demonstrated that the G allele in rs1042778
of OXTR is a determinant for the binding of this transcription factor [58]. Therefore, the
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presence of the T allele in rs1042778 may impair MAZ binding, leading to less efficient
transcription of the OXTR gene. Moreover, significantly changed densities of OXTR in
the human basal forebrain and midbrain were reported in the postmortem brain tissue
from individuals with autism, relative to the controls [59]. Interestingly, the correlation of
three OXTR SNPs (rs2254298, rs53576, rs2268491) with the brain activity localized to the
right supramarginal gyrus was reported in autistic patients [60]. The effects of the OXTR
gene polymorphisms on the brain connectivity have been also shown to be dependent
on sex [61], indicating that interpretations of genetic analyses must be more careful and
should include gender aspects. This conclusion has been recently corroborated by results of
post-mortem studies indicating that the levels of OXTR in the brains of females with autism
were lower than in autistic males and healthy individuals. Such differences in the OXTR
gene expression were also evident in the mRNA levels [62]. Furthermore, recent analyses
on the use of artificial neural networks indicated that changes in methylation levels of the
OXTR gene were specific to females with autism spectrum disorder [63].

In summary, there are many results suggesting that disturbed levels and activities of
OXTR may considerably contribute to the development of autism spectrum disorder. How-
ever, there are discrepancies in conclusions about roles of the OXTR gene polymorphisms as
risk factors for autism. In a very recent robust synthesis of published evidence of candidate
genes for autism spectrum disorder, the authors failed to determine the credibility of the
evidence for OXTR [64]. Therefore, despite the presence of published results suggesting
the contribution of OXTR variants to the development of autism, the question about the
importance of OXTR in this disease remains still unanswered.

4.2. Depression

Depression is an extremely broad and complex disorder, defined as a “serious mood
disorder with severe symptoms that affect how people feel, think, and handle daily activ-
ities, such as sleeping, eating, or working” (https://www.nimh.nih.gov/health/topics/
depression; (accessed on 5 February 2023)). The complexity of this disease manifests in
a long list of symptoms, with some patients experiencing many of them while others
experience only a few. Moreover, the severity of each symptom can be different in each indi-
vidual patient. Depression is broadly described in the literature with proposals of potential
mechanisms and causes so we indicate only a couple of recently published comprehensive
review articles as examples [65,66].

As in the case of autism spectrum disorder, studies on the role of OXTR in depres-
sion started from analyses of the OXTR gene polymorphisms in patients with the latter
disease. An association between some OXTR variants with unipolar depression was demon-
strated [67], but the interesting point is that this concerned rs53576 and rs2254298, the same
SNPs which were suggested to play a role in the development of autism. Although, the
results of these early studies indicate that if OXTR dysfunction plays a role in both autism
and depression, its contribution is not specific to any of these diseases but might rather facil-
itate disturbances in the brain functions related generally to mental disorders. Indeed, the
development of a depressive-like behavior in mice treated with a selective oxytocin receptor
antagonist [68] does not necessarily mean specificity of OXTR dysfunction to depression
but rather may suggest a general behavioral disturbance. The rs53576 has been further
correlated with depression, as it was reported that this OXTR polymorphism, particularly
the ‘A’ allele, may be partially responsible for the transmission of maternal depression to
youth [69]. An interesting hypothesis was proposed that the mechanism by which defects
in OXTR influence the development of depression is based on the dysfunctional social
processes occurring in the absence of fully active OXTR [69]. However, we propose that
the general disturbance in behavior, rather than the development of a specific disease, may
be a possible indirect effect of the presence of specific OXTR polymorphisms. Support for
such a proposal arises also from the results of studies in which correlations between the
OXTR genotype and anxiety, stress, and depression scores were depicted [70].

https://www.nimh.nih.gov/health/topics/depression
https://www.nimh.nih.gov/health/topics/depression
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The rs53576 polymorphism has been widely analyzed in subsequent studies on de-
pression; however, the conclusions from various studies were again (as in the case of
autism spectrum disorder) different. A decreased level of methylation of the OXTR exon
1 was identified in depressed female patients, but this association was modulated by the
rs53576 polymorphism [71]. On the other hand, when OXTR methylation and rs53576 were
investigated in another study, a greater DNA methylation was observed in patients with
depression, but only in the presence of the AA genotype at rs53576 [72]. Yet another study
led to presentation of the conclusion that the GG genotype at rs53576 results in greater odds
of postpartum depression in women, which correlated with enhanced DNA methylation
level in the OXTR locus, whereas methylation is unrelated to this kind of depression in the
presence of the ‘A’ allele [73]. As evidenced above, the published conclusions on the role of
OXTR polymorphism and methylation in depression are contradictory, making the question
unanswered. There were further studies showing the influence of the rs53576 polymor-
phism on different aspects of depression, such as negative social interactions [74], prepulse
inhibition of the startle reflex and startle reactivity [75], interpersonal risk factors [76],
suicide attempts [77], hippocampal volume [78], effects of social environment on postpar-
tum depression [79,80], negative affectivity [81], trauma-related psychopathology [82], and
work stress [83]. However, other reports presented results showing no correlations between
depression and the rs53576 polymorphism in the OXTR gene [84–88]. These discrepancies
did not solve the problem, but rather deepened the confusion and ambiguity about the
putative role of the OXTR polymorphism in depression.

There were attempts to correlate the level of methylation of the OXTR gene with the
severity of depression, however, no significant association between these two parameters
could be found, despite quite a large number (846) of tested patients [89]. On the other hand,
earlier studies on OXTR methylation strongly suggested that functions of the oxytocin
system, including OXTR-mediated signal transduction, may be involved in the attenuation
of the fear response, which can protect against depression [90]. Thus, we suggest that
disturbances in the expression of the OXTR gene, rather than the gene polymorphisms per
se, might facilitate the development of this disease. Such a hypothesis can be supported by
the results of studies on chronic stress, which is both the major risk factor for depression
and significantly influences OXTR expression [90]. Indeed, earlier work suggested that
the rs53576 variants confer vulnerability for depression within the context of interpersonal
risk factors [91], while a very recent report demonstrated that the ‘A’ variant of rs53576
results in upregulation of the OXTR gene expression, though independently from the DNA
methylation status [92].

The above presented conclusion and hypothesis on the crucial role of the level of
expression of the OXTR gene and resultant abundance of the receptor may also have
implications for understanding the roles of OXTR in other diseases. These will be discussed
in the next sections of this paper.

4.3. Schizophrenia

Schizophrenia is defined as “a serious mental illness that affects how a person thinks,
feels, and behaves” (https://www.nimh.nih.gov/health/publications/schizophrenia; (as-
sessed on 5 February 2023)). Among the numerous symptoms of this disease, one can
distinguish psychotic (hallucinations, delusions, thought disorder, and movement disorder),
negative (trouble with planning and sticking with activities, trouble with anticipating and
feeling pleasure, talking in a dull voice, avoiding social interaction, severely decreased life
energy), and cognitive (trouble with processing information and making decisions, inability
to immediately use information, inability to focus or pay attention) ones. The description
of this disease is broad, and recent review articles provide a great background for its causes,
mechanisms (which are still only partially understood), and treatment possibilities [93–96].

When the role of OXTR in schizophrenia was tested, it was demonstrated that in the
brains (particularly in the temporal cortex) of patients (tested post-mortem), the levels
of mRNA of the OXTR gene were significantly decreased relative to the control samples.

https://www.nimh.nih.gov/health/publications/schizophrenia
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Moreover, a decrease in the OXTR binding was found in the vermis [97]. On the other hand,
higher OXTR mRNA levels were detected in leukocytes of first-episode schizophrenia
patients than in healthy persons [98]. The enhanced expression of the OXTR gene, at
mRNA and protein levels, in the blood cells derived from the patients has been recently
confirmed [99]. Therefore, the expression of the OXTR gene may be different in the brains
and in the peripheral tissues of schizophrenia patients; however, dysregulation of this
gene in this disease is evident. Interestingly, when post-mortem studies with the brains of
patients suffering from major depressive disorder, bipolar disorder, and schizophrenia were
tested, the levels of OXTR mRNA were increased in the dorsolateral prefrontal cortex [100].
Again, it appears, therefore, that the mechanisms of the involvement of dysfunctions of
OXTR in major mental disorders might be common, or at least similar.

Epigenetic changes in the OXTR gene were also reported as being associated with
schizophrenia. Namely, significantly decreased OXTR methylation was reported in cells
from the peripheral whole blood in the patients relative to the controls [101]. The presence
of the rs53576 polymorphism was associated with disturbed social cognition abilities in
schizophrenia patients [102], which, in combination with the previously mentioned changes
in expression of the OXTR gene [92], can corroborate the suggestions that OXTR deficiency
may cause social behavior-related defects in various mental diseases.

4.4. Other Mental Disorders

Connections of various dysfunctions of OXTR and the oxytocin system with not only
autism, depression, and schizophrenia, but also different mental disorders were reported.
Here, we will mention studies which might shed further light on the mechanisms by which
OXTR may influence the mental development.

As in the mental disorders discussed above, the role of OXTR in obsessive-compulsive
disorder is also controversial. Some results indicated no significant associations between
any of several tested SNPs in the OXTR gene [103], while other studies led to the conclusion
that such SNPs can modulate the onset age of this disease, thus, playing an important role in
the pathophysiology [104]. Another discrepancy appeared during studies on DNA methy-
lation in the OXTR locus, as there are reports demonstrating enhanced DNA modification
in the cells of patients with obsessive-compulsive disorder [105,106] while other analyses
led to the opposite conclusions, pointing to the impaired methylation of OXTR [107].

Interestingly, recent investigations of OXTR methylation in patients suffering from
various mental disorders revealed that the level of this modification varies significantly
between patients; however, those with extreme levels had lower intelligence quotient
(IQ) scores and experienced more social problems than the patients with the methylation
efficiency comparable to that in the healthy controls [108]. Once more, these results corrob-
orate the proposal that changes in OXTR are not specific to any individual mental disorder
but rather that they can modulate the course of different diseases by influencing social
behaviors and/or cognitive functions. This can be further supported by reports indicat-
ing that various polymorphisms in the OXTR gene can influence the antisocial behavior
in adolescent boys [109], attention deficit/hyperactivity disorder [110], and aggressive
behaviors [111,112].

An especially interesting and inspiring report has been published recently in which
human post-mortem brain samples were analyzed for the efficiency of expression of the
OXTR gene [113]. Brains derived from persons who died at very different stages of devel-
opment, from the prenatal period to late adulthood, were investigated. Intriguingly, the
expression of the OXTR gene was found to be increasing during the prenatal period, while
the highest levels of the expression were detected in early childhood. A comprehensive
analysis revealed an enrichment in a network of the expression of genes functionally cou-
pled with OXTR in several mental disorders [113]. That work strongly corroborated the
important role of OXT and OXTR in crucial processes related to mental development.
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5. OXTR in Mucopolysaccharidoses

Mucopolysaccharidoses (MPS) are inherited metabolic disorders belonging to lyso-
somal storage diseases (LSD), which are characterized by the accumulation of partially
degraded glycosaminoglycans (GAGs) [114,115]. Depending on the kind of deficient en-
zyme involved in the degradation of GAGs (due to mutations in the corresponding genes)
and the nature of the accumulated GAG(s), 13 types and subtypes of MPS are currently
distinguished [116]. All MPS types are severe diseases, and neurodegenerative processes,
accompanied with mental deficits and disorders, occur in most of them [114,116,117].
Although MPS are monogenic diseases, recent studies indicated that the expression of
hundreds of genes is changed (either up- or down-regulated) in each MPS type relative
to the controls [118]. This causes a battery of secondary cellular changes which contribute
significantly to the deterioration of the functions of cells, tissues, organs, and, finally, the
whole organisms, some of which can be hardly reversible or even irreversible [115,119,120].
Unfortunately, despite enzyme replacement therapy being currently available for a few
MPS types, it can improve only some disease symptoms, while those related to the brain
functions remain largely untreatable. Thus, patients suffering from neuronopathic forms
of MPS still lack specific treatments that might improve their functioning and restrict
behavioral problems and cognitive deficits [121].

Interestingly, it appears that the primary GAG storage is only the trigger of subsequent
devastating changes, rather than the main or the only cause of the disease [122]. For
example, the formation of protein aggregates (such as amyloid depositions) and autophagy
dysfunction were reported as pathological processes downstream of the GAG storage,
which may severely impair cellular functions and cause further changes in the structures
and/or activities of organelles and efficiencies of biochemical processes [123,124]. Indeed,
different disturbances in cell physiology were reported in various MPS types, which
significantly contribute to the disease severity [125–127].

Global transcriptomic analyses revealed that the expressions of many genes related to
human behavior were dysregulated in all types of MPS [128]. Among them, the OXTR gene
was found to be one of the most affected, indicating a significant up-regulation (between 3-
and 13-fold, depending on the MPS type), as estimated by both RNA-seq and RT-qPCR anal-
yses [128]. This was an interesting discovery in the light of MPS symptoms, which include,
but are not restricted to, severe behavioral and social problems, such as aggressive-like
behavior, hyperactivity, attention deficit, and mental retardation [114,129]. Such symptoms
resemble those described in the preceding section (Section 4) as characteristic of disorders
associated with OXTR changes. Indeed, the symptoms of some MPS types, especially all
subtypes of MPS III (Sanfilippo disease) are so similar to autism spectrum disorder or
attention deficit hyperactivity disorder that MPS III is often misdiagnosed as one of these
diseases [130–133].

The results of recent molecular studies provided a possible explanation for the OXTR-
related modulation of the pathomechanism of MPS. Namely, it was found that OXTR can
directly interact with GAGs (stored in MPS cells), forming large aggregates [134]. Such
aggregated forms of OXTR are inactive; thus, the functions of this receptor are impaired.
Therefore, even in the presence of higher levels of OXTR (as demonstrated by biochemical
analyses [134]), there is a deficit of active OXTR molecules which may contribute to the
development of specific behavioral symptoms in MPS patients. The role of GAGs in the
modulation of OXTR expression and the formation of the OXTR-containing aggregates
was confirmed in experiments with the agents causing a decrease in GAG storage, like
supplementation with either an enzyme allowing efficient degradation of these compounds
or a compound impairing their synthesis. In both cases, the levels of OXTR mRNA and
OXTR protein, as well as the abundance of OXTR aggregates, decreased significantly [134].

The studies described above led to two important conclusions. First, the problems
with OXTR in MPS, and perhaps also more generally in some other diseases, might appear
not only due to the presence of specific SNPs in OXTR and/or changes in DNA methy-
lation, leading to the dysregulated expression of the OXTR gene, but also because of the
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interactions of this receptor with other compounds and formation of inactive aggregates,
lowering its actual activity. Second, the deposition of protein complexes in MPS cells, which
impairs the autophagy process and leads to further cellular dysfunctions, concerns not
only amyloids (as reported previously [123,124], but also other proteins (exemplified by
OXTR [134]) that are otherwise important factors in regulating homeostasis. Therefore,
investigations of OXTR malfunctions provided important data which facilitate the under-
standing of both detailed pathomechanisms of specific diseases, such as MPS, and general
dysregulation of homeostasis due to changes in the activity of this receptor.

6. OXTR in Cancer

The involvement of OXTR in cancer development was suggested several times. SNPs
in the OXTR gene were associated with an increased risk of Barrett’s esophagus, a prema-
lignant condition, and esophageal adenocarcinoma [135]. Alternations in the OXTR gene
were found in patients with hepatocellular carcinoma; however, these changes, though
statistically significant in the association analyses, occurred in only 3% of affected individu-
als [136].

Increased levels of OXTR mRNA were correlated with the occurrence of other cancers.
Namely, the expression of this gene was up to 10-fold up-regulated in pancreatic cancer
cells [137], and increased levels of the corresponding mRNA were noted in colorectal can-
cer [138]. Moreover, OXTR has been proposed to play a role in breast cancer development
and progression, though mechanism(s) of this connection remain(s) to be elucidated [139].
On the other hand, the down-regulation of the OXTR gene expression was reported re-
cently in breast cancer relative to the non-cancer tissue [140,141]. In contrast, mammary
tumorigenesis was induced by the overexpression of OXTR in a mouse model [142].

Interestingly, the use of data related to OXTR was proposed for prognostic purposes
in different cancers. Namely, OXTR-derived mRNA levels were significantly increased
in malignant mesothelioma cells, and the higher expression efficiency correlated with
the poor prognosis [143]. The OXTR was among genes whose changed expressions were
classified as potential prognostic markers of lower-grade glioma [144,145]. Then, the
elevated levels of OXTR mRNA were suggested as an indicator of the poor prognosis of
colon adenocarcinoma [146] and colorectal cancer [147]. Finally, the increased efficiency of
OXTR expression was also characteristic for oral squamous cell carcinoma [148].

Generally, the results of studies on the involvement of OXTR changes in cancer cor-
roborate the conclusions presented in Sections 4 and 5 (‘OXTR in Mental Disorders’ and
‘OXTR in Mucopolysaccharidoses’) that the efficiency of the expression of the OXTR gene
rather than SNPs themselves result in the effective modulation of the disease course. Again,
this appears to be a common feature of many diseases, rather than being restricted to
individual disorder(s).

7. OXTR in Cardiovascular Diseases

No significant associations were found between the OXTR gene polymorphism and
cardiovascular risk factors [149]. Such a conclusion on the lack of considerable correla-
tions between OXTR genotype and cardiovascular disease was corroborated in studies,
indicating that the rs2268498 SNP in the OXTR gene is not a risk factor for hyperten-
sion [150]. Nevertheless, increased levels of expression of this gene have been reported in
humans as well as animal models of atherosclerosis [151], vascular dementia [152], and
cardiomyopathy [153].

A comprehensive review of OXTR in vascular functions and stroke has been published
recently [154], where the authors analyzed the signal transduction processes mediated by
this receptor protein in the functionality of the vascular system (thus, we will not discuss
the details here again). Such analyses allowed them to suggest possible mechanisms of
the involvement of OXTR in the development of cardiovascular diseases [154]. At the
molecular level, it seems that the OXTR initiated (after binding of OXT) signal transduction,
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leading to the enhanced expression of the gene coding for Bcl-2, which has a pro-survival
function and might be the crucial process.

In another recent comprehensive review on the role of OXT and OXTR in cardiovas-
cular diseases [33], it was stressed that the secretion of oxytocin is modulated in various
conditions, including hypertension and myocardial infarction. This, in turn, affects the
expression of the OXTR gene. Therefore, it was concluded that the pathogenesis of cardio-
vascular diseases can be significantly influenced by the dysregulation of OXT production
and OXTR expression, especially in such disorders as ischemia, hypoxia, inflammatory
disturbances, pain, and stress conditions [33]. Because the mechanisms of these processes
were carefully discussed in the review article mentioned above, we are not repeating this to
avoid redundancy and, instead, refer readers to that article [33].

8. OXTR in Other Diseases

Other diseases might also be modulated by the functions and dysfunctions of OXTR.
For example, the signal transduction pathway initiated by this receptor regulates the os-
teoblast/adipocyte balance [154]. Studies conducted with the mouse models suggest that
the deficiency in this process might contribute to osteoporosis, while the stimulation of this
pathway by OTX could potentially reverse this disease [155]. OXTR functions can also affect
obesity. Higher frequencies of ‘GG’ and ‘AG’ genotypes at the rs53576 polymorphism of the
OXTR gene were reported in obese persons relative to control ones [156]. The efficiency of
OXTR methylation was significantly lower in the obese group with binge eating disorder;
however, this correlation occurred only in males, not in females [157]. It is also worth
mentioning that the expression of the OXTR gene, and thus the abundance of OXTR, can be
significantly modulated by external factors, such as viral infections [158] and inflammatory
processes [159]. Therefore, such conditions may considerably influence all processes con-
trolled by OXTR functions, including the course of various diseases in which this receptor
plays roles. Such diseases can be modulated in a double way, by infection/inflammation
themselves(s) and through OXTR-mediated signal transduction modification.

Interestingly, apart from the effects of OXTR dysfunction on the pathomechanism
of mucopolysaccharidoses (described in Section 5), the role of this receptor in the course
of another genetic disorder, Williams syndrome, has been recently evaluated [160]. This
syndrome is caused by a deletion (encompassing some 25 genes) in the q11.23 region of the
chromosome 7. It is a neurodevelopmental disorder, and the patients manifest cognitive
deficits, behavioral disorders, emotional problems, and social profile disturbances [161].
The inspiration for the above-mentioned analysis was the discovery that the expression
of the OXTR gene was impaired and the OXTR gene region was hypermethylated in the
blood cells of patients suffering from Williams syndrome relative to healthy controls [162].
Therefore, an analysis of the available data on the efficiency of expressions of genes coding
for OXT and OXTR and their correlations with the investigated disease has been con-
ducted [160]. The authors of that report predicted that there is an epigenetic control (based
on DNA methylation) of the social behavior, as well as the influence of SNPs in the OXTR
gene on the development of symptoms of Williams syndrome. They suggested that a better
understanding of the role of OXTR in this disease should facilitate the development of
an efficient treatment for patients. Together with the studies discussed in Section 5, these
analyses indicated that the changes in the levels and/or activities of OXTR may contribute
to the pathomechanisms of genetic disorders, not as primary causes, but rather as important
modulators of cellular dysfunctions and modifiers of the course of diseases.

9. Concluding Remarks

As summarized in this review, the changes related to OXTR significantly influenced
the course of various diseases, from reproductive system diseases and through mental
disorders, mucopolysaccharidoses, cancer, and cardiovascular diseases to others (such as
osteoporosis and obesity). They are presented schematically in Figure 1.
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and/or mechanisms of actions of this receptor in specific diseases.

However, the molecular mechanisms by which OXTR affects these diseases are mostly
unknown. Our knowledge in this matter is based predominantly on the associations
between various polymorphisms of the OXTR gene, methylation efficiency of this gene,
and/or changes in the levels of OXTR mRNA with occurrence of selected symptoms or
diagnosed disorders. The picture is even more complicated because exactly the same SNPs
have been reported to affect different diseases. Nevertheless, this fact led us to propose the
hypothesis that the effects of OXTR are not specific to individual diseases but rather that
they can affect common processes which might, in turn, modulate the course of different
disorders. Intriguingly, there are many examples of contradictory results published by
different authors which demonstrated either significant associations of specific OXTR SNPs
with particular diseases or a complete lack of correlations in studies on the same SNPs in the
same diseases. Such confusions concern also OXTR methylation. Moreover, considerable
differences were reported between sexes and between different tissues. However, we
propose that the ostensible paradox of contradictory results obtained by various research
groups might be explained in such a way that similar variabilities in OXTR polymorphisms
or DNA methylation may occur in both patients suffering from different diseases (especially
mental disorders) and healthy controls; however, the effects of specific SNPs or levels of
methylation can be significantly more pronounced in affected persons due to their influence
on ongoing pathological processes and enhancement of symptoms. The same disturbances
in OXTR-mediated regulations might be masked in healthy persons due to fully functional
other control processes. This can be especially pronounced in the effective controlling of
emotions and behaviors which are otherwise disturbed in people with mental disorders.
Therefore, depending on the compositions of investigated groups (note that the tested



Int. J. Mol. Sci. 2023, 24, 3887 14 of 21

cohorts consisted of relatively low number of persons, such as several dozen or a few
hundred), the manifestations of (sometimes subtle) differences in symptoms related to
OXTR functions might be more or less pronounced (or, in other words, the masking of
mental disturbances might be less or more effective) and significantly affect the results of
statistical analyses of the influence of the OXTR status on the investigated disorders.

We also emphasize that the efficiency of expression of the OXTR gene, rather than
the presence of its specific polymorphic variant, may considerably influence the signal
transduction process mediated by OXTR, and then, all cellular and further organismal
changes related to the activities of a battery of genes controlled by this molecular signaling.
Such a scenario is compatible with the results of mechanistic investigations which are,
unfortunately, still relatively scarce. As presented in this review, one of few molecular
mechanisms of the effects of OXTR malfunctions in human diseases was reported in studies
on mucopolysaccharidoses. In this case, elevated levels of OXTR, resulting from enhanced
transcription of the OXTR gene, do not correspond with its higher activity, due to the
direct interactions with accumulated glycosaminoglycans (stored in large amounts in this
disease), which cause the formation of aggregates, leading to the inactivation of the receptor
and the impairment of the signal transduction process. Definitely, an understanding of
the molecular details of the mechanisms of OXTR-dependent changes in other diseases is
necessary to fully assess the affected processes and to enable us to predict the effects of
various changes in OXTR on the development of specific symptoms of different diseases.
Then, the development of effective therapies targeting OXTR may be potentially efficient in
the future.
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Słomińska-Wojewódzka, M.; Korzon-Burakowska, A.; Węgrzyn, A. Why are behaviors of children suffering from various
neuronopathic types of mucopolysaccharidoses different? Med. Hypotheses 2010, 75, 605–609. [CrossRef]
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