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Abstract: Plastics are synthetic materials made from organic polymers that are ubiquitous in daily
living and are especially important in the healthcare setting. However, recent advances have revealed
the pervasive nature of microplastics, which are formed by degradation of existing plastic products.
Although the impact on human health has yet to be fully characterised, there is increasing evidence
that microplastics can trigger inflammatory damage, microbial dysbiosis, and oxidative stress in
humans. Although there are limited studies investigating their effect on the ocular surface, studies
of microplastics on other organs provide some insights. The prevalence of plastic waste has also
triggered public outcry, culminating in the development of legislation aimed at reducing microplastics
in commercial products. We present a review outlining the possible sources of microplastics leading
to ocular exposure, and analyse the possible mechanisms of ocular surface damage. Finally, we
examine the utility and consequences of current legislation surrounding microplastic regulation.

Keywords: microplastics; ocular surface; dry eye disease; polymers; dysbiosis; oxidative stress;
inflammation

1. Introduction

Plastics are synthetic or semi-synthetic polymers. Their use is ubiquitous in daily
living and particularly in the healthcare setting ranging from packaging to equipment
manufacturing. Despite its utility, there have been concerns over the adverse health effects
of plastics.

All plastics undergo degradation into smaller particles, termed “microplastics” and
“nanoplastics”. The term “microplastic” was first coined in 2004 to describe microscopic
plastic particles in marine sediments [1]. These exist as either primary or secondary mi-
croplastics. Primary microplastics are manufactured microplastics of small size, such as
microbeads and resin pellets. Secondary microplastics originate from the breakdown of
larger plastic particles such as plastic bottles or bags due to the action of physical, chemical,
and biological degradation. However, there is increasing evidence that microplastic parti-
cles are omnipresent and have been observed in the air, water, food, and, more recently, in
humans [2]. The definition of microplastics and nanoplastics constantly evolves vis-à-vis
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our growing understanding of their presence and impact. The European Chemicals Agency
(ECHA) defines microplastics as “solid-polymer containing particles, to which additives
or other substances may have been added, and where ≥1% weight by weight of particles
have (i) all dimensions 1 nm ≤ x ≤ 5 mm, or (ii), for fibres, a length of 3 nm ≤ x ≤ 15 mm
and length to diameter ratio of >3”, while Gigault et al. define nanoplastics as “particles
unintentionally produced (i.e., from the degradation and the manufacturing of the plas-
tic objects) and presenting a colloidal behaviour, within the size range varies from 1 to
1000 nm” [3].

Microplastics have a high surface-area-to-volume ratio and bioaccessibility due to
their small size, allowing them to exert effects on human health at a cellular level [4].
Exposure to microparticles triggers microbial dysbiosis, oxidative stress, and chronic
inflammation in the human body. These particles have also been implicated in malignancies
and may also affect foetal development [5–7]. Microplastics can also act as chemical and
pathogen vectors that may exert both toxic and hormonal influences on the human body [8].
Recently published experiments in murine models have demonstrated that microplastics
can stimulate ocular surface inflammation and damage, induce apoptosis, and reduce
corneal and conjunctival epithelial cell viability [9,10].

This review outlines possible sources of ocular surface exposure to microplastics, the
impact on the ocular surface, and proposed mechanisms of damage. Current quantification
methods for microplastics and nanoplastics, along with their limitations, will also be
discussed. Lastly, this review provides a summary of existing regulations governing the
manufacturing and monitoring of microplastics.

2. Sources and Routes of Exposure to Microplastics

Possible environmental sources include exposure to microplastic-contaminated fluids
or air (Figure 1). The most common microplastics found in the environment include
polypropylene, polyethylene, polystyrene, and polyethylene terephthalate [4]. Estimates of
the half-life of these particles vary according to their polymer components, environmental
factors, and thickness [11,12]. For instance, low density polyethylene has an average half-
life of 4.6 years when buried, and 3.4 years in the marine environment. The half-life is
further shortened in the presence of environmental factors such as heat and ultraviolet
irradiation [12]. Exhaust gas from motor vehicles contains air-borne microplastics [13].
Other sources include incinerators, landfills, industrial emissions, agricultural fertiliser
as well as synthetic textiles [14]. The daily washing of synthetic textiles in a household
releases at least half a million microfibres from each kilogram of clothing [15].

Shedding of microplastics from household items has also been reported. There is
evidence of microplastics released from plastic food containers, disposable cups, and plastic
tea filter bags [16–18]. Contamination of raw food via contact with plastic chopping boards
has also been demonstrated [19]. Multiple factors such as heat and physical stress can
influence the volume of microplastics shed from plastic materials. When a polypropylene
infant milk bottle was heated from 25 to 90 ◦C, the number of microplastics released
increased from 0.6 to 55 million particles per litre [20].

Microplastics have also been retrieved from the surgical environment and are thought
to arise from the abundant use of plastics in the healthcare setting [21]. Given widespread
reports of microplastics arising from common plastic packaging and everyday items such
as bottled water, it is possible that microplastics may be present in eye drops [22]. This is
of concern as patients with chronic diseases such as dry eye disease and glaucoma, where
frequent and prolonged eye drop instillation is required, may unwittingly expose the ocular
surface to microplastics within topical ophthalmic formulations. This is an important but
underappreciated exposure.
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3. Impact of Microplastics on the Ocular Surface

In vitro studies showed both human cornea and conjunctival epithelial cell lines could
take up polystyrene microplastic particles with microplastics accumulating around the cell
nuclei. These particles were cytotoxic, with decreased cell viability and proliferation mark-
ers identified [9]. To explore the impact of exposure of the ocular surface to microplastics
in murine models, test mice received 2.5 µL of a topical suspension containing 1 mg/mL
of either 50 nm or 2 µm polystyrene microplastics three times a day without anaesthesia,
for two to four weeks [9]. The control group was similarly treated with normal saline and
another ‘normal’ group did not receive any interventions.

Ocular surface fluorescein staining was evaluated weekly and increased staining
was observed in the test group but not in the control or normal group. Interestingly,
sporadic punctate staining was seen in the group of mice receiving administration of
normal saline. There was no mention of how the normal saline was stored (presumably in a
plastic bottle); neither was testing of the normal saline solution for microplastics described
beforehand. Tear film secretion was investigated weekly with a phenol red thread test. A
reduction in tear secretion was identified and tear secretion reduced over time in the two
treatment groups.

Stereo-fluorescence microscopy further demonstrated accumulation of microplastic
particles in the lower conjunctival sac that increased over time. Analysis of ex vivo tissues
at the end of the study showed reduced size and density of goblet cells of the lower lid
compared to the control group. Proliferation-related markers (Ki-67, p63, and K14) were
also downregulated in the treatment groups compared to controls.

Compared to the normal and control groups, there was an irregular arrangement
of lacrimal gland acini in both treatment groups. Inflammatory cells between acini and
upregulation of inflammatory factors and cytokines (IL-1α, IL1-β, and IL-6) in a time-
dependent fashion were also reported. There were higher rates of apoptosis identified
in mice receiving the suspension containing 50 nm compared with 2 µm microplastic
particles [9].
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Exposure of the murine ocular surface to particulate matter 2.5 (PM2.5) environmental
pollutants, which can contain microplastics, causes reduced tear volume, tear film break-
up time, and destruction of corneal epithelial microvilli and corneal desmosomes [10].
Increased levels of TNF-α and NF-κB p65 (Ser-536 phosphorylation) on the ocular surface
suggested ocular surface disorders similar to human dry eye disease. A prospective
multicentre cohort study of 387 dry eye disease patients in China noted worse Ocular
Surface Disease Index (OSDI) scores, meibomian gland dysfunction, and increased levels
of IL-8 and IL-6 in regions with higher PM2.5 levels [23]. Similar observational studies
have also demonstrated exacerbation of ocular surface instability and dry eye disease with
exposure to environmental pollutants [24,25].

Although limited studies have been performed on the ocular surface, much work
has been performed in other organs which may predict the impact of microplastics on
the ocular surface. Tissue and cell damage may be caused by: (1) inflammation and
oxidative damage, (2) microbial dysbiosis, and (3) toxicological effects from additives and
sequestrated compounds.

4. Proposed Mechanisms of Tissue and Cell Damage
4.1. Inflammation and Oxidative Damage

While the role of inflammation in patients with dry eye disease is well-established,
our understanding of how it fits into pathological mechanisms remains controversial. For
instance, key differences in how inflammation arises and perpetuates in patients with
dry eye disease remain unknown [26]. Regardless, inflammation is recognised as a key
contributory and exacerbating factor in the pathogenesis of dry eye disease.

Oxidative stress can cause inflammation and dry eye disease [27]. Dry eye individuals
have higher levels of late lipid peroxidation markers including 4-hydroxynonenal (4-HNE)
and malondialdehyde (MDA), which are indicative of oxidative stress [28]. Importantly,
MDA levels correlated with increased disease severity (worse tear film break-up time,
Schirmer’s test, conjunctival goblet cell density and symptoms). In particular, the produc-
tion of reactive oxygen species (ROS) was associated with inflammatory cell infiltration
over the ocular surface [29].

Similar oxidative damage can be induced by microplastic exposure. Microplastic
uptake in the intestinal system is governed via microvilli endocytosis and cilia movement,
which transfers these particles into digestive tubules [30]. Knowledge surrounding the
mechanisms of cellular uptake of microplastics, and their eventual outcome remains lim-
ited [31]. Intestinal exposure to microplastics in invertebrates (Mytilus spp., Caenorhabditis
elegans, Artemia parthenogenetica) increased intestinal expression of glutathione S-transferase
4 and lipid peroxidation, and reduced catalase and glutathione reductase, suggesting that
oxidative damage is a key mechanism in microplastic-induced epithelial damage [32–34].

Oral ingestion of microplastics in aquatic vertebrates (Danio rerio, Poecilia reticulata,
Girella laevifrons, Larimichthys crocea) increased intestinal levels of TNF-α, IFN-γ, IL-1α, IL1-
β, and IL-6 [35,36]. Manifestations include goblet cell enlargement, leukocyte infiltration,
reduced digestive enzyme activity, and the loss of intestinal villi and crypt cells [37,38]. In
mice, gut exposure to microplastics significantly increased expression of toll-like receptor
4 (TLR4), activator protein-1 (AP-1), and interferon regulatory factor 5 in the colon and
duodenum, all of which are associated with inflammation [39]. Moreover, reduced mucus
secretion, impaired intestinal permeability, and histological inflammation in the duodenum
and colon were observed [36,40,41].

Cytotoxic responses after exposure to microplastics have also been reported in the
respiratory tract. Flock worker’s lung, for example, is an occupational disease attributed to
airway exposure to polyethylene, polypropylene, and rayon flock fibres, resulting in the
development of restrictive lung disease [42]. Microplastics induce cytotoxic and inflam-
matory effects in human lung epithelial cells (BEAS-2B), in vitro, through the formation of
reactive oxygen species (ROS) [43]. Exposure of lung epithelial cells to increasing concen-
trations of microplastics causes increased proinflammatory cytokine levels, epithelial cell
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apoptosis, and increased severity of epithelial damage [44]. Moreover, 80 nm microplastics
can also cause mitochondrial damage by penetrating human hepatic (L02) and lung (BEAS-
2B) and causing overproduction of mitochondrial ROS while suppressing mitochondrial
respiration [45].

Apart from direct inflammatory damage, there is evidence that nanoplastics result in
cellular damage by fundamentally altering protein structures. A study using molecular
dynamic simulations showed that 5 nm polyethylene nanoplastics increased the presence
of protein α-helices, while nylon nanoplastics induced the unfolding of helical structures
and promoted the formation of β-sheet structures [46]. This suggests that nanoplastics
may interact with secondary protein structures and is postulated to be a potential cause
of amyloidosis, a key process implicated in diseases such as Parkinson’s disease and
Alzheimer’s disease [47].

These findings suggest that despite plastics being generally innocuous to the general
population, exposure of the cellular environment to microplastics and nanoplastics can
invoke an inflammatory and cytotoxic response in tissues and induce cellular damage.
The inflammatory reactions are driven by both innate and adaptive immune responses,
as evidenced by the expression of TLR4 and adaptive-response cytokines TNF-α, IFN-γ,
IL-1α, IL1-β, and IL-6 [37–39]. On the ocular surface, similar pro-inflammatory states were
observed when the ocular surface of mice were exposed regularly to microplastics; IL-1α,
IL1-β, and IL-6 were upregulated in the conjunctiva and lacrimal glands [9]. More studies
are required to further characterise the impact of microplastics on the human ocular surface.

4.2. Microbial Dysbiosis

Ocular surface diseases have been associated with alterations in the ocular surface
microbiome. As an example, the ocular surface of patients with aqueous tear-deficient
dry eye possesses an increased abundance of Brevibacterium and a reduced amount of
Pseudomonas, while patients with dry eye disease associated with meibomian gland dys-
function have a higher abundance of Firmicutes and Proteobacteria, and reduced levels of
Actinobacteria [48,49]. Additionally, the conjunctiva microbiome differs between partici-
pants from three cities, showing that environmental factors such as climate and pollution
could play a role [50]. The ocular surface microbiome is likely to maintain homeostasis and
modulate ocular surface immune function and may therefore play an important role in the
pathogenesis and development of ocular surface diseases [51].

In vivo metagenomic studies in various species of vertebrates have shown that mi-
croplastics can cause microbial dysbiosis. Intestinal exposure to polystyrene particles
reduced bacterial biodiversity in Zebrafish. The affected population of bacteria varies
across different studies—while a study showed a decreased abundance of Proteobacteria
with increased levels of Firmicutes, another study showed decreased Actinobacteria pop-
ulation, but increased Proteobacteria levels [36,52,53]. Gut exposure to polyethylene in
murine models induces a significant increase in Staphylococcus population and a drop in
Parabacteroides abundance [39].

An in vitro study using Simgi®, a computer-controlled simulator of the human gas-
trointestinal tract, reported morphological changes to microplastic particles after gastroin-
testinal digestion and colonic fermentation [54]. Biodegradation of microplastic particles
through the gastrointestinal system led to the deposition of organic matter and colonic
microbiota on the surfaces of microplastic particles. In particular, this study also showed
that populations of Bacteroides, Parabacteroides, and Alistipes dropped while populations of
Escherichia, Shigella, and Bilophila rose in the colon following exposure to microplastics [54].

Evidence of alteration in bacterial abundance from these in vitro studies suggests that
microplastics may alter the local microbial environment such that specific populations
are adversely affected. Crucially, the severity of inflammatory bowel disease (ulcerative
colitis) has been associated with lower levels of Parabacteroides in faeces, implying that
microplastics may stimulate microbial dysbiosis and exacerbate intestinal diseases [55,56].
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A similar dysbiotic impact of microplastics has also been observed in non-gastrointestinal
systems. A study analysing the microplastic and microbiome composition in human
placenta and newborn meconium samples retrieved 16 different types of microplastics
from all samples [57]. Results from this investigation showed that microplastic levels were
inversely proportional to the abundance of Parabacteroides in the meconium (ethylene-vinyl
acetate) and Bacteroides in the placenta (polyethylene), suggesting that specific microplastics
may impact upon the viability of various microbiota.

Contact lens wear is associated with ocular surface microbial dysbiosis with a shift
towards periorbital skin biota [58]. Additionally, the type of contact lens may impact ocular
surface biota, where orthokeratology lens wearers have significantly less Bacillus, Tatumella,
and Lactobacillus species while soft contact lens users had lower abundance of Delftia
and more Elizabethkingia than non-contact lens wearers [59]. These differences in ocular
microbiota have been suggested to be related to mechanical pressure and hypoxia [60]. No
studies have examined the impact of microplastics on the ocular microbiome. It remains to
be investigated if a similar relationship between microplastic-induced microbial dysbiosis
and severity of the ocular surface diseases exists.

4.3. Toxicological Effects of Additives and Sequestrated Compounds

Microplastics and their degradation products may harbour toxic chemicals arising
from either additives during the manufacturing process, or chemicals absorbed by plas-
tics from the environment [61]. Plastics can hyper-concentrate chemical additives and
compounds absorbed from their surroundings. A study identified 1411 unique chemical
compounds extracted from common daily plastic consumer products, including bottles,
slippers, floor covering, and trays [62]. Extracts revealed varying levels of estrogenicity,
anti-androgenicity, oxidative stress responses, and cytotoxicity.

Additives are chemicals incorporated into plastics during production to augment their
properties, such as colour, transparency, and durability. There are numerous additives of
concern that have the potential to damage human tissues. Phthalates are esters of phthalic
acid (1,2-benzene dicarboxylic acid) used to produce polyvinyl chloride (PVC). Epidemi-
ological studies have identified phthalates as key culprits of suppressed reproductive
hormones, altered thyroid function, and the development of obesity and metabolic syn-
drome [53–68]. Exposure of human corneal endothelial cells (B4G12 cell line) to phthalates
increased the production of IL-1β, IL-6, and IL-8, manifesting as decreased cell proliferation
and subsequent cell toxicity [69]. Human lens epithelial cells experience a dose-dependent
loss of viability when exposed to phthalate, even at low concentrations [70]. Another
common additive is Bisphenol A (BPA), which is formed via the condensation of phenol
and acetone, and is used in the production of polycarbonates. BPA induces oxidative stress
in tissues, causing mitochondrial damage and cell apoptosis [71]. It is also associated with
an increased risk of cancer, cardiovascular disease, and reproductive disorders [72–75].

Heavy metal additives incorporated into plastics to imbue specific properties can
also potentiate diseases. Cadmium, mercury, and arsenic can induce carcinogenesis, while
copper and cobalt can induce the formation of ROS [76–80]. Heavy metals have been
also shown to be associated with dry eye disease. A large population study in Korea
demonstrated an association between the detection of serum mercury and development of
dry eye disease among females, while a cross-sectional study of welders in Taiwan reported
associations between high levels of urinary cadmium and toenail lead concentrations, and
dry eye disease [81,82].

Plastics sequester other toxic chemicals and heavy metals from their surroundings [83–85].
Organic pollutants are sequestrated in hydrophobic plastics due to their low water solubility
and high fat solubility [86,87]. A study comparing the effectiveness of five multipurpose
contact lens solutions against Pseudomonas aeruginosa, Staphylococcus aureus, and Fusarium
solani showed that preincubation of solutions with contact lenses led to a decrease in
effectiveness against the bacterial strains [84]. This was postulated to have occurred either
due to inactivation or absorption into the lens [84]. Storage of chlorhexidine gluconate
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(a preservative used in rigid contact lens solutions) in polyethylene and polypropylene
containers also resulted in up to 12% loss of chlorhexidine concentration over time due to
adsorption [85]. Microplastics possess a large surface area which further augments their
ability to absorb toxic chemicals.

Unfortunately, our understanding of the interactions between plastics and various
chemicals remains limited, and the vast majority of chemicals isolated from plastic com-
pounds remain unidentified and unstudied [88]. Current studies on additives found in
plastics represent a minority of characterised compounds, with more studies urgently
required to fully characterise the health impact of these chemicals on human health.

5. Recommendations for Testing of Microplastics and Limitations of Current Methods

Despite ongoing progress, this field remains relatively new and challenges in accurate
identification and quantification of microplastics exist. This section describes common
protocols for sample processing and analysis, with an emphasis on predictability, repro-
ducibility, and accuracy of methods.

5.1. Laboratory Protocols

Prevention of environmental contamination during sample preparation and analysis
is important. The proposed methodology to reduce plastic contamination includes utilising
non-plastic apparatus such as glass or steel devices, deep cleaning of work stations prior
to experiments with plastic-free ethanol and Milli-Q water, wearing natural fibre clothing,
minimising movement of personnel in and out of the laboratory, and keeping a database
of plastics that may come into contact with the samples [89,90]. Experiments should also
be conducted in a laminar flow box if possible, and samples covered with aluminium
foil or glass to avoid contamination [91]. The Baselines and Standards for Microplastics
Analyses in European Waters (BASEMAN) projects recommend running a minimum of
three procedural blanks (distilled water) treated with the same procedure and chemicals to
assess for baseline microplastic contamination [92].

5.2. Pretreatment

Pretreatment aims to remove contaminants which may confound subsequent analy-
ses. To separate inorganic contaminants from microplastics, samples are first filtered and
subsequently added to solutions (such as sodium chloride, sodium polytungstate, sodium
iodide, calcium chloride, and zinc chloride) as vehicles to separate microplastics from the
original sample via density differences [93–95]. Additional methods such as centrifugation
and air bubbling have also been utilised to reduce the processing time [95].

Acid-base solutions such as hydrogen peroxide and potassium hydroxide are used to
remove organic materials [96]. A major limitation of these reactants is the concurrent degra-
dation of microplastic particles in the original sample and alteration of their characteristics.
Although the use of sodium hydroxide removed two-thirds of organic matter from sludge
and soil samples, it led to significant degradation of polyethylene terephthalate and poly-
carbonate particles [97]. Hydrogen peroxide decreases the rates of recovery of microplastics
and alters the colour of microplastic fragments [98]. Incubation with potassium hydrox-
ide at 40 ◦C eliminates organic materials while being inert towards plastic polymers [98].
Promisingly, enzyme digestion techniques remove organic materials without damaging
microplastic particles [99,100]. However, this method is costly and time-consuming as it
takes days, depending on the extent of the contamination.

5.3. Microplastic Analysis Methods

Following pretreatment, further analysis to quantify and characterise microplastics is
performed, with common methods summarised in Table 1. These can be broadly divided
into non-destructive and destructive analytic approaches.
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Table 1. Common analytical methods for microplastics.

Analytical Method Principle Size Limit Advantages Limitations

Light Microscopy

Identification using visual,
light, or digital microscopy

+/− staining with Nile
Red reagent

>500 µm Quick preliminary
quantification method

Subjective, assessor-dependent
High probability of misidentification

with smaller particles
Should be complemented with

other approaches

Stereomicroscopy
Microscopic views at two
different angles allowing

stereoscopic vision
>500 µm

Quick preliminary
quantification method

Allows closer visualisation of surface
structure than the standard light and

fluorescent microscopy

Subjective, assessor-dependent
20–70% identification rate
Best complemented with

other techniques

Fluorescence Microscopy

Staining with Nile Red
reagent highlights

microplastic particles
allowing

enhanced visualisation

>500 µm Enhances visualisation
of microplastics

Easily confounded by natural
organic materials—thorough

pretreatment is required during
sample preparation

Transmission
Electron Microscopy

Measurement of electrons
transmitted through a sample <1 nm Commonly used to

analyse nanoparticles

Ineffective at characterising
microplastics and nanoplastics due

to their electron-lucent nature

Scanning
Electron Microscopy

Measurement of electrons
scatter from the surface of the

samples, allowing
characterisation of the surface
morphology and topography

of the compound

<1 nm

High resolution allowing
visualisation of nanoparticles

Allows analysis of nanoparticles in
complex environmental samples

when coupled with
Raman spectroscopy

Relatively expensive
Long duration of analysis

Atomic Force Microscopy

Measurements of forces
created between a conductive

tip and the sample
Has three modes: (i) contact,

(ii) non-contact, and
(iii) tapping

<1 nm

Provides the best resolution of
particles out of all analytical tools

Provides three-dimensional images
of the surface structure of polymers

Inaccuracies from image acquisition
may arise from fragmentation

caused by mechanical stress on
sample surfaces

Fourier-Transform
Infrared Spectroscopy

Excitation and detection of
molecular vibrational

signatures via
infrared irradiation

>10–20 µm

Short measurement duration
Provides quantitative and qualitative

information regarding each
microplastic particles in the sample

Non-destructive method

Very small microplastics <10 µm
cannot be measured due to

diffraction limit of light
Significant underestimation of

particles < 20 µm
Thicker >100µm and blacker

particles absorb infrared more
strongly, resulting in
underestimation of

microplastic samples
Cannot measure mass

Identification of particles limited by
existing spectral libraries

Laser Direct
Infrared Spectroscopy

Infrared (IR) spectrometer
utilising a fast-tunable

quantum-cascade laser (QCL)
as a light source

60 µm
Rapid measurement, less time

consuming than Fourier-transform
infrared spectroscopy

Aggregation of particles in samples
may cause inaccurate readings
High concentration of carbon
particles may attenuate the

infrared light

Raman Spectroscopy

Measurement of frequency
difference in inelastically

scattered photons and
Rayleigh photons (Raman

shift) after excitation with a
monochromatic laser source

>1 µm

High reproducibility, requires low
amounts of sample with minimal

preparation
Complements FTIR spectroscopy

Non-destructive method

Duration of measurement takes
>24 h

Easily affected by contaminants,
especially nearing size of 1 µm

Identification of particles limited by
existing spectral libraries

Thermal Analysis

Thermal degradation of large
molecules into smaller

particles to analyse their
chemical composition

<10 µg

Allows for qualitative and
quantification of small

microplastics size
Allows additional characterisation

of additives

Destruction of original sample
Analysis can be confounded by
naturally occurring polymers

(cellulose, keratin, etc.) which results
in production of similar pyrolysis

products, leading to overestimation
of microplastics content

Mass-based quantification of a
non-uniform sample with a large
variety of microplastics becomes

complex as they are pyrolysed into
similar units

5.3.1. Non-Destructive Methods
Light Microscopy

Visual identification of microplastics can be conducted with visual, light, or digital
microscopes. This method is preliminary, operator dependent, subjective, and associated
with high rates of misidentification and the inability to detect very small sizes (the smallest
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microplastic size reliably identified is 500 µm due to high rates of misidentification) [101,102].
Hence, it is often performed in conjunction with more sophisticated analyses.

Stereomicroscopy

The stereomicroscope allows three-dimensional visualisation of microplastic particles
by allowing observation of the sample from two different angles. Although this is limited by
a lower magnification compared to conventional light microscopy, it provides a better visual
characterisation of the surface structure and morphology of microplastic particles. Unfor-
tunately, the usage of this technique is limited by the quality of samples—samples with
impurities which cannot be chemically digested and samples with thick, dense sediment
often makes visualisation difficult. Previous studies have shown a 20–70% identifica-
tion rate of transparent particles using stereomicroscopy when validated against other
techniques [103,104].

Fluorescence Microscopy

Fluorescence microscopy, such as staining the sample with Nile Red reagent, can
highlight microplastics and assess the count and nature of microplastics [105]. This method
can be combined with conventional light microscopy and stereomicroscopy to provide
better visualisation and identification of microplastics in a sample. A limitation of Nile Red
reagent staining is co-staining of natural organic material—hence, adequate and thorough
pretreatment is required during sample preparation [106].

Transmission Electron Microscopy

Transmission electron microscopy (TEM) is one of the most commonly utilised tech-
niques in characterising nanoparticles as it provides chemical information and imagery at
atomic resolutions [107]. However, TEM is ineffective at visualising nanoplastics due to
their amorphous structure and electron-lucent nature [108].

Scanning Electron Microscopy

Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS)
can analyse the chemical composition of particles [109]. SEM-EDS has been used to study
and identify nanoplastics, however it is unable to distinguish synthetic nanoplastics from
natural non-plastic nanoparticles, especially in complex environmental samples [110].
Recently, SEM combined with Raman spectroscopy (SEM-Raman) provides an alternative
solution by concomitantly visualising nanoplastic particles and measuring their Raman
spectra, allowing identification and material analysis of nanoplastic particles. Using this
method, an in vitro study successfully identified standardised 200 nm polystyrene beads
premixed in dissolved sea-salt solutions and amniotic fluid [111]. Unfortunately, this
method is limited by its relatively higher cost, and long duration of analysis [112].

Atomic Force Microscopy

Atomic force microscopes (AFM) operate on the principle of surface sensing using
a sharp tip of a rigid conductive material fixed to a cantilever [113]. A recent study has
demonstrated the utility of AFM in identifying submicron polystyrene particles in cultured
human cells [114]. While the AFM provides better resolution than the SEM, the oscillating
tip can damage the sample during measurement, leading to fragmentation and inaccurate
images [112].

Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectroscopy involves the detection of unique spec-
tral signals released from molecules after excitation with infrared irradiation. Comparison
of recorded signals against a spectral library of known plastic materials provides informa-
tion regarding its composition. The theoretical limit of FTIR spectroscopy is 10 µm due to
the diffraction limit of light; however, there is approximately a 35% underestimation of the
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number of particles even at sizes of 20 µm [115]. An additional limitation of this approach
includes underestimation of particle quantities when the particles are dark coloured as the
particles more readily absorb infrared signals [116,117].

Laser Direct Infrared Imaging System

As an alternative to FTIR, laser direct infrared (LDIR) imaging analyses microplastic
particles faster than conventional FTIR spectroscopic methods. It is an infrared (IR) spec-
trometer utilising a fast-tunable quantum-cascade laser (QCL) as a light source which is
coupled to a rapidly scanning imaging system. The instrument was originally designed for
the pharmaceutical analysis of tablets, laminates, tissues, and fibres, but can also be used
to analyse microplastics. Similar to an FTIR, the imaging system provides information on
particle enumeration, size, and morphology, while the polymer type can be identified by
the spectrometer [118].

Raman Spectroscopy

Raman spectroscopy is another vibrational spectroscopy technique which analyses
the Raman shift of microplastic particles after irradiation with a monochromatic light
source [119]. Similar to FTIR spectroscopy, Raman spectroscopy permits spectral analysis
of microplastic particles in the sample and comparison against a spectral library of known
plastics to identify particles. A major advantage of Raman spectroscopy is its ability to
analyse particle sizes as small as 1 µm [120]. Therefore, it is used in complement with FTIR
spectroscopy to identify samples smaller than 50 µm in size.

Limitations of Spectral Libraries

FTIR and Raman spectroscopy utilise established custom and open-source spectral
libraries such as the Spectral Libraries of Plastic Particles (SLoPP) and µATR-FTIR Spectral
Libraries of Plastic Particles (FLOPP) to identify microplastics [121,122]. These databases
consist of spectral data of plastics analysed under pristine and standardised conditions
to ensure reproducibility and accuracy of data. Unfortunately, plastic samples are often
subjected to environmental factors such as heat, physical stress, chemical additives, and
chemical contamination which may alter the structure and chemical composition [20].
Therefore, the spectra of environmental microplastics may be more diverse than those doc-
umented in existing spectral libraries. As an example, a study which analysed commonly
used household plastic products under realistic environments with mass spectrometry
obtained over 35,000 unique chemical features that were present in the material, but only
2979 compounds (8%) were identifiable based on current plastic chemical databases [88].
To overcome these issues, several groups have contributed to the construction of open-
source, user-contributed spectral libraries to improve accessibility and expand the existing
library of microplastic spectral signals [123–125]. Nonetheless, more extensive studies are
required to further characterise spectral signals of microplastics to improve the accuracy
and robustness of current spectroscopic methods.

5.3.2. Destructive Methods
Thermal Analysis

In contrast to FTIR and Raman spectroscopy, pyrolysis or thermal desorption gas
chromatography-mass spectrometry (Pyr-GC-MS) is an analytical method which involves
the thermal degradation of large particles into fingerprint chromatograms, known as
pyrograms, to assess their chemical composition. Products of pyrolysis are separated using
gas chromatography and analysed with mass spectrometry to identify synthetic polymers
which make up the original microplastic particles [126]. The advantage of Pyr-GC-MS over
FTIR and Raman spectroscopy is its ability to quantify the masses of small microplastics
(<10 µg) even with a small sample volume. However, samples analysed are destroyed
as the particles are pyrolysed. In addition, although Pyr-GC-MS provides information
regarding particle mass, it is unable to characterise particle quantity or structural shape
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or colour due to the nature of pyrolysis. Thirdly, the presence of naturally occurring
polymers and additives can contribute to an overestimation of microplastic content given
the similarity in structural composition [127]. Recent advances include the development of
other thermogravimetric analysis (TGA)-based methods, such as TGA-FTIR, TGA-MS, and
thermal extraction desorption-GC-MS [128].

Although a variety of preparatory and analytical methods are available to characterise
microplastics, there is still no consensus on a standardised protocol, partly due to the
limitations of current methodologies. Differences in sample preparation and analytical
methodologies may limit reproducibility and comparison between studies.

6. Regulation of Microplastics

Legislation has been driven by environmental and human health concerns. Several
countries, including the United States and European Union, have legislated to combat
growing microplastic and nanoplastic contamination in the environment [129–131]. In 2019,
the European Chemicals Agency (ECHA) drafted a proposal as part of the Registration,
Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulations to restrict
intentionally added microplastics [131]. The United States Microbead-Free Waters Act
of 2015 prohibits the manufacturing, packaging, and distribution of rinse-off cosmetics
and non-prescription drugs containing plastic microbeads [130]. The state of California is
the first government in the world to mandate testing of potable water for microplastics.
Although legislation serves to reduce microplastic pollution by reducing their usage and
production, challenges in enforceability and overly stringent regulations may jeopardise
their original intentions.

Enforceability of regulations is restricted by limitations in current analytical techniques
that may be unable to accurately detect and fully characterise all polymeric particles, which
may be present in minute amounts. In fact, conventionally used analytical techniques may
be unable to accurately identify the lower limits of particles (1 nm) outlined in the ECHA
definition [112].

The lack of consensus on the definition of microplastics further confounds the use-
fulness of regulations. The United States Microbead-Free Waters Act of 2015 has been
criticised for the limited scope of the included definition because it does not cover mi-
crobeads added to certain types of cosmetics (“leave-ons”) and secondary microplastics
produced by degradation of larger plastics, which make up the majority of microplastics
found in the environment. Conversely, the original 2019 ECHA definition of microplastics
was criticised as overly stringent and included all forms of polymers, including polymers
functionally important to the manufacturing industry. Polymers such as derivatised cellu-
loses, which are frequently used in the pharmaceutical sector for medication production,
have also been included. Increasingly specialised drugs, such as those targeted at penetrat-
ing the blood–brain barrier, often capitalise upon the unique properties of these polymers.
In many cases, there are no suitable alternatives that possess properties of the original
polymer [132]. Limiting the use of these compounds may therefore hinder innovation
and development of more effective therapeutics [133]. Hence, the original 2019 ECHA
definition was criticised for the administrative burden it enacted upon the pharmaceutical
industry while remaining ineffective in reducing microplastic pollution. Further revisions
of proposed regulations in 2022 have since exempted the use of polymers in medicinal
products for veterinary and human consumption [134].

It is important to note that the largest source of microplastics still arises from sec-
ondary degradation of existing plastic products and waste after natural environmental
exposure [134]. Large-scale changes are therefore necessary to effectively mitigate plastic
pollution and human exposure. Development of circular business models will encourage
green chemistry and engineering solutions in the plastic lifecycle.
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7. Conclusions

Plastics are abundant materials that are relatively inexpensive to manufacture. Nu-
merous industries, including healthcare, remain dependent on plastics across a wide range
of applications. Eye care, with its widespread use of topical ophthalmic formulations, sur-
gical equipment, contact lenses, and syringes for intraocular delivery of therapeutics is no
different [135]. There is mounting evidence that microplastics and nanoplastics may impact
human health adversely by alterations of ocular surface immunology or microbiome, or
inductions of oxidative stress or cell death. The effects of microplastics and nanoplastics
on the ocular surface have yet to be determined. Research and further collaborative work
in this field is paramount to ensure practitioners and stakeholders abide by the principal
tenet of healthcare, ‘Primum non nocere’.
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