Solid-State Formation of a Potential Melphalan Delivery Nanosystem Based on β-Cyclodextrin and Silver Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formation of the Complex in Solid State
2.2. Stability of the Complex in Solution
2.3. Drug Loading and Complexation Efficiency
2.4. Molecular Interaction and Geometry of the Inclusion Complex
2.5. Deposition of Silver Nanoparticles on the βcyclodextrin–Melphalan Complex
2.6. Formation of βcyclodextrin–Melphalan–Silver Nanoparticles Nanosystem
2.7. Permeability Assays on Artificial Membranes
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Synthesis of the βCD–Mel Complex
3.3. Formation of Silver Nanoparticles
3.4. Powder X-ray Diffraction (PXRD)
3.5. 1H-NMR and ROESY
3.6. Loading Capacity
3.7. Phase Solubility Studies
3.8. UV-Vis Spectroscopy in Solid State
3.9. (Field Emission-) Scanning Electron Microscopy and Energy Dispersive Spectroscopy
3.10. Dynamic Light Scattering and Zeta Potential Measurements
3.11. Transmission Electron Microscopy
3.12. Parallel Artificial Membrane Permeability Assay (PAMPA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Kan, M.; Burns, K.E.; Helsby, N.A. A systematic review of inter-individual differences in the DNA repair processes involved in melphalan monoadduct repair in relation to treatment outcomes. Cancer Chemother. Pharmacol. 2021, 88, 755–769. [Google Scholar] [CrossRef]
- Bayraktar, U.D.; Bashir, Q.; Qazilbash, M.; Champlin, R.E.; Ciurea, S.O. Fifty Years of Melphalan Use in Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2013, 19, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Gregory, W.M.; Richards, M.A.; Malpas, J.S. Combination chemotherapy versus melphalan and prednisolone in the treatment of multiple myeloma: An overview of published trials. J. Clin. Oncol. 1992, 10, 334–342. [Google Scholar] [CrossRef]
- Samuels, B.L.; Bitran, J.D. High-dose intravenous melphalan: A review. J. Clin. Oncol. 1995, 13, 1786–1799. [Google Scholar] [CrossRef]
- Amin, A.M.; Soliman, S.E.; El-Aziz, H.A. Preparation and biodistribution of [125I]Melphalan: A potential radioligand for diagnostic and therapeutic applications. J. Label. Compd. Radiopharm. 2010, 53, 1–5. [Google Scholar] [CrossRef]
- Colvin, M.E.; Quong, J.N. DNA-alkylating events associated with nitrogen mustard based anticancer drugs and the metabolic byproduct Acrolein. Adv. DNA Seq. Agents 2002, 4, 29–46. [Google Scholar] [CrossRef]
- Nath, C.E.; Trotman, J.; Tiley, C.; Presgrave, P.; Joshua, D.; Kerridge, I.; Kwan, Y.L.; Gurney, H.; McLachlan, A.J.; Earl, J.W.; et al. High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br. J. Clin. Pharmacol. 2016, 82, 149–159. [Google Scholar] [CrossRef]
- Kühne, A.; Tzvetkov, M.V.; Hagos, Y.; Lage, H.; Burckhardt, G.; Brockmöller, J. Influx and efflux transport as determinants of melphalan cytotoxicity: Resistance to melphalan in MDR1 overexpressing tumor cell lines. Biochem. Pharmacol. 2009, 78, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Sarosy, G.; Leyland-Jones, B.; Soochan, P.; Cheson, B.D. The systemic administration of intravenous melphalan. J. Clin. Oncol. 1988, 6, 1768–1782. [Google Scholar] [CrossRef]
- Morales-Zavala, F.; Arriagada, H.; Hassan, N.; Velasco, C.; Riveros, A.; Álvarez, A.R.; Minniti, A.N.; Rojas-Silva, X.; Muñoz, L.L.; Vasquez, R.; et al. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2341–2350. [Google Scholar] [CrossRef]
- Real, D.A.; Bolaños, K.; Priotti, J.; Yutronic, N.; Kogan, M.J.; Sierpe, R.; Donoso-González, O. Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability. Pharmaceutics 2021, 13, 2131. [Google Scholar] [CrossRef]
- Donoso-González, O.; Lodeiro, L.; Aliaga, Á.E.; Laguna-Bercero, M.A.; Bollo, S.; Kogan, M.J.; Yutronic, N.; Sierpe, R. Functionalization of gold nanostars with cationic β-cyclodextrin-based polymer for drug co-loading and sers monitoring. Pharmaceutics 2021, 13, 261. [Google Scholar] [CrossRef]
- Asela, I.; Noyong, M.; Simon, U.; Andrades-Lagos, J.; Campanini-Salinas, J.; Vásquez-Velásquez, D.; Kogan, M.; Yutronic, N.; Sierpe, R. Gold nanoparticles stabilized with βcyclodextrin-2-amino-4-(4-chlorophenyl) thiazole complex: A novel system for drug transport. PLoS ONE 2017, 12, e0185652. [Google Scholar] [CrossRef] [Green Version]
- Sierpe, R.; Noyong, M.; Simon, U.; Aguayo, D.; Huerta, J.; Kogan, M.J.; Yutronic, N. Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles. Carbohydr. Polym. 2017, 177, 22–31. [Google Scholar] [CrossRef]
- Sierpe, R.; Lang, E.; Jara, P.; Guerrero, A.R.; Chornik, B.; Kogan, M.J.; Yutronic, N. Gold Nanoparticles Interacting with β-Cyclodextrin-Phenylethylamine Inclusion Complex: A Ternary System for Photothermal Drug Release. ACS Appl. Mater. Interfaces 2015, 7, 15177–15181. [Google Scholar] [CrossRef]
- Asela, I.; Donoso-González, O.; Yutronic, N.; Sierpe, R. β-cyclodextrin-based nanosponges functionalized with drugs and gold nanoparticles. Pharmaceutics 2021, 13, 513. [Google Scholar] [CrossRef]
- Quintana-Contardo, S.; Donoso-González, O.; Lang, E.; Guerrero, A.R.; Noyong, M.; Simon, U.; Kogan, M.J.; Yutronic, N.; Sierpe, R. Optimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles. Pharmaceutics 2023, 15, 458. [Google Scholar] [CrossRef]
- Sironmani, A.; Daniel, K. Silver Nanoparticles–Universal Multifunctional Nanoparticles for Bio Sensing, Imaging for Diagnostics and Targeted Drug Delivery for Therapeutic Applications. In Drug Discovery and Development-Present and Future; Intechopen: London, UK, 2012; pp. 463–487. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanov, I.; Stefanov, S.; Andonova, V. Silver Nanoparticles as Multi-Functional Drug Delivery Systems. In Nanomedicine; Intechopen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Aval, S.F.; Kouhi, M.; Akbarzadeh, A.; Nasrabadi, H.T.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016, 42, 173–180. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M.; Mudila, H.; Gupta, G.; Sharma, A.K.; Kumar, D.; Bakshi, H.A.; Negi, P.; Kapoor, D.N.; Chellappan, D.K.; et al. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloids Interface Sci. Commun. 2020, 35, 100244. [Google Scholar] [CrossRef]
- Kovács, D.; Igaz, N.; Gopisetty, M.K.; Kiricsi, M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int. J. Mol. Sci. 2022, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Monteiro-Riviere, N.A.; Riviere, J.E. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Vlăsceanu, G.M.; Marin, Ş.; Ţiplea, R.E.; Bucur, I.R.; Lemnaru, M.; Marin, M.M.; Grumezescu, A.M.; Andronescu, E. Silver nanoparticles in cancer therapy. In Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 29–56. ISBN 9780323428866. [Google Scholar]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, L.A.; MacKey, M.A.; Dreaden, E.C.; El-Sayed, M.A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88, 1391–1417. [Google Scholar] [CrossRef] [Green Version]
- Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022, 14, 1013. [Google Scholar] [CrossRef]
- Bose, P.; Priyam, A.; Kar, R.; Pattanayak, S.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Adv. 2020, 10, 31961–31978. [Google Scholar] [CrossRef]
- Behnam, M.A.; Emami, F.; Sobhani, Z.; Koohi-Hosseinabadi, O.; Dehghanian, A.R.; Zebarjad, S.M.; Moghim, M.H.; Oryan, A. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Adv. Pharm. Bull. 2018, 8, 49–55. [Google Scholar] [CrossRef] [Green Version]
- El-Hussein, A. Study DNA Damage after Photodynamic Therapy using Silver Nanoparticles with A549 cell line. J. Nanomed. Nanotechnol. 2016, 7, 1000346. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Yedjou, C.G.; Brodell, R.T.; Cruse, A.R.; Tchounwou, P.B. Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. Nanotechnol. Rev. 2020, 9, 1500–1521. [Google Scholar] [CrossRef]
- Yamada, M.; Foote, M.; Prow, T.W. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 428–445. [Google Scholar] [CrossRef]
- Petropoulos, D.; Worth, L.L.; Mullen, C.A.; Madden, R.; Mahajan, A.; Choroszy, M.; Ha, C.S.; Champlin, R.C.; Chan, K.W. Total body irradiation, fludarabine, melphalan, and allogeneic hematopoietic stem cell transplantation for advanced pediatric hematologic malignancies. Bone Marrow Transplant. 2006, 37, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Taji, H.; Ogura, M.; Kagami, Y.; Oki, Y.; Tsujimura, A.; Fuwa, N.; Kodaira, T.; Seto, M.; Yamamoto, K.; et al. Favorable consolidative effect of high-dose melphalan and total-body irradiation followed by autologous peripheral blood stem cell transplantation after rituximab-containing induction chemotherapy with in vivo purging in relapsed or refractory follicular. Clin. Lymphoma Myeloma 2009, 9, 443–448. [Google Scholar] [CrossRef]
- Spitzer, G.; Jagannath, S.; Dicke, K.A.; Armitage, J.; Zander, A.R.; Vellekoop, L.; Horwitz, L.; Cabanillas, F.; Zagars, G.K.; Velasquez, W.S. High-dose melphalan and total body irradiation with bone marrow transplantation for refractory malignancies. Eur. J. Cancer Clin. Oncol. 1986, 22, 677–684. [Google Scholar] [CrossRef]
- Chang, S.Y.; Alberts, D.S.; Farquhar, D.; Melnick, L.R.; Walson, P.D.; Salmon, S.E. Hydrolysis and protein binding of melphalan. J. Pharm. Sci. 1978, 67, 682–684. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Liu, J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym. 2020, 232, 115805. [Google Scholar] [CrossRef] [PubMed]
- Gidwani, B.; Vyas, A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed Res. Int. 2015, 2015, 198268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lv, P.; Zhou, C.; Zhao, Y.; Liao, X.; Yang, B. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C 2019, 96, 872–886. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 76, 1825–1845. [Google Scholar] [CrossRef]
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from molecules to applications. Environ. Chem. Lett. 2018, 16, 1361–1375. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Ma, D.Q.; Rajewski, R.A.; Stella, V.J. New injectable melphalan formulations utilizing (SBE)(7m)-β-CD or HP-β-CD. Int. J. Pharm. 1999, 189, 227–234. [Google Scholar] [CrossRef]
- Loftsson, T.; Björnsdóttir, S.; Pálsdóttir, G.; Bodor, N. The effects of 2-hydroxypropyl-β-cyclodextrin on the solubility and stability of chlorambucil and melphalan in aqueous solution. Int. J. Pharm. 1989, 57, 63–72. [Google Scholar] [CrossRef]
- Hari, P.; Aljitawi, O.S.; Arce-Lara, C.; Nath, R.; Callander, N.; Bhat, G.; Allen, L.F.; Stockerl-Goldstein, K. A Phase IIb, Multicenter, Open-Label, Safety, and Efficacy Study of High-Dose, Propylene Glycol-Free Melphalan Hydrochloride for Injection (EVOMELA) for Myeloablative Conditioning in Multiple Myeloma Patients Undergoing Autologous Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 2100–2105. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.; Riveros, A.; Yutronic, N.; Lang, E.; Chornik, B.; Guerrero, S.; Samitier, J.; Jara, P.; Kogan, M. Photothermally Controlled Methotrexate Release System Using β-Cyclodextrin and Gold Nanoparticles. Nanomaterials 2018, 8, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mino, R. Caira On the isostructurality of cyclodextrin inclusion complexes and its practical utility. Rev. Roum. Chim. 2001, 46, 371–386. [Google Scholar]
- Sala, A.; Hoossen, Z.; Bacchi, A.; Caira, M.R. Two crystal forms of a hydrated 2:1 b-cyclodextrin× fluconazole complex: Single crystal X-ray structures, dehydration profiles, and conditions for their individual isolation. Molecules 2021, 26, 4427. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Xin Song, L.; Qing Guo, X.; Yun Du, F.; Yang, J.; Yang, J. Applications of Powder X-ray Diffraction to Inclusion Complexes of Cyclodextrins. Curr. Org. Chem. 2011, 15, 848–861. [Google Scholar] [CrossRef]
- Schneider, H.J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998, 98, 1755–1785. [Google Scholar] [CrossRef]
- Pessine, F.B.; Calderini, A.; Alexandrino, G.L. Review: Cyclodextrin Inclusion Complexes Probed by NMR Techniques. In Magnetic Resonance Spectroscopy; Intechopen: London, UK, 2012; p. 264. [Google Scholar]
- Higuchi, T.; Connors, K.A. Phase Solubility Techniques. In Advances in Analytical Chemistry and Instrumentation; O’Reilly: Sebastopol, CA, USA, 1965; Volume 4, pp. 117–212. [Google Scholar]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [Green Version]
- Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef]
- Rao, V.M.; Stella, V.J. When can cyclodextrins be considered for solubilization purposes? J. Pharm. Sci. 2003, 92, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Herrera, B.; Bruna, T.; Guerra, D.; Yutronic, N.; Kogan, M.J.; Jara, P. Silver Nanoparticles Produced by Magnetron Sputtering and Selective Nanodecoration onto α-Cyclodextrin/Carboxylic Acid Inclusion Compounds Crystals. Adv. Nanopart. 2013, 2, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.; Moris, S.; Herrera, B.; Diaz, M.; Kogan, M.; Barrientos, L.; Yutronic, N.; Jara, P. Formation of copper nanoparticles supported onto inclusion compounds of α-cyclodextrin: A new route to obtain copper nanoparticles. Mol. Cryst. Liq. Cryst. 2010, 521, 246–252. [Google Scholar] [CrossRef]
- Creighton, J.A.; Eadon, D.G. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881–3891. [Google Scholar] [CrossRef]
- Chen, M.C.; Yang, Y.L.; Chen, S.W.; Li, J.H.; Aklilu, M.; Tai, Y. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS Appl. Mater. Interfaces 2013, 5, 511–517. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Mock, J.J.; Smith, D.R.; Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003, 3, 485–491. [Google Scholar] [CrossRef]
- Pestovsky, Y.S.; Srichana, T. Formation of Aggregate-Free Gold Nanoparticles in the Cyclodextrin-Tetrachloroaurate System Follows Finke–Watzky Kinetics. Nanomaterials 2022, 12, 583. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M.; Ju, H. β-cyclodextrin functionalized gold nanoparticles as an effective nanocatalyst for reducing toxic nitroaromatics. Opt. Mater. 2023, 135, 113294. [Google Scholar] [CrossRef]
- Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y.H.; Oh, E.T.; Park, H.J.; Kim, C. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J. Mater. Chem. 2009, 19, 2310–2315. [Google Scholar] [CrossRef]
- Vinita; Tiwari, M.; Prakash, R. Colorimetric detection of picric acid using silver nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. Appl. Surf. Sci. 2018, 449, 174–180. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Gupta, M.K.; Pandey, G.; Tilak, R.; Narayan, R.J.; Pandey, P.C. Size and Zeta Potential Clicked Germination Attenuation and Anti-Sporangiospores Activity of PEI-Functionalized Silver Nanoparticles against COVID-19 Associated Mucorales (Rhizopus arrhizus). Nanomaterials 2022, 12, 2235. [Google Scholar] [CrossRef] [PubMed]
- de Matos, R.A.; Courrol, L.C. Biocompatible silver nanoparticles prepared with amino acids and a green method. Amino Acids 2017, 49, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949. [Google Scholar] [CrossRef]
- Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 1998, 41, 1007–1010. [Google Scholar] [CrossRef]
- Ottaviani, G.; Martel, S.; Carrupt, P.A. Parallel artificial membrane permeability assay: A new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 2006, 49, 3948–3954. [Google Scholar] [CrossRef]
- Lopez, C.A.; De Vries, A.H.; Marrink, S.J. Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci. Rep. 2013, 3, srep02071. [Google Scholar] [CrossRef] [Green Version]
- Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Tsinman, O.; Tsinman, K.; Sun, N.; Avdeef, A. Physicochemical selectivity of the BBB microenvironment governing passive diffusion-Matching with a porcine brain lipid extract artificial membrane permeability model. Pharm. Res. 2011, 28, 337–363. [Google Scholar] [CrossRef] [Green Version]
- Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konráosdóttir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci. 2007, 96, 2532–2546. [Google Scholar] [CrossRef]
- Chen, W.; Fan, H.; Balakrishnan, K.; Wang, Y.; Sun, H.; Fan, Y.; Gandhi, V.; Arnold, L.A.; Peng, X. Discovery and Optimization of Novel Hydrogen Peroxide Activated Aromatic Nitrogen Mustard Derivatives as Highly Potent Anticancer Agents. J. Med. Chem. 2018, 61, 9132–9145. [Google Scholar] [CrossRef] [PubMed]
- Casamonti, M.; Piazzini, V.; Bilia, A.R.; Bergonzi, M.C. Evaluation of Skin Permeability of Resveratrol Loaded Liposomes and Nanostructured Lipid Carriers using a Skin Mimic Artificial Membrane (skin-PAMPA). Drug Deliv. Lett. 2019, 9, 134–145. [Google Scholar] [CrossRef]
- Pham, S.H.; Choi, Y.; Choi, J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics 2020, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Tam, K.Y.; Avdeef, A.; Tsinman, O.; Sun, N. The permeation of amphoteric drugs through artificial membranes—An in combo absorption model based on paracellular and transmembrane permeability. J. Med. Chem. 2010, 53, 392–401. [Google Scholar] [CrossRef]
- Avdeef, A.; Tsinman, O. PAMPA-A drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: In combo comparisons of HDM-, DOPC-, and DS-PAMPA models. Eur. J. Pharm. Sci. 2006, 28, 43–50. [Google Scholar] [CrossRef]
- Bolaños, K.; Sánchez-Navarro, M.; Giralt, E.; Acosta, G.; Albericio, F.; Kogan, M.J.; Araya, E. NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles. Mater. Sci. Eng. C 2021, 131, 112512. [Google Scholar] [CrossRef]
- Herrera, B.; Adura, C.; Yutronic, N.; Kogan, M.J.; Jara, P. Selective nanodecoration of modified cyclodextrin crystals with gold nanorods. J. Colloid Interface Sci. 2013, 389, 42–45. [Google Scholar] [CrossRef]
- Lv, P.; Zhang, D.; Guo, M.; Liu, J.; Chen, X.; Guo, R.; Xu, Y.; Zhang, Q.; Liu, Y.; Guo, H.; et al. Structural analysis and cytotoxicity of host-guest inclusion complexes of cannabidiol with three native cyclodextrins. J. Drug Deliv. Sci. Technol. 2019, 51, 337–344. [Google Scholar] [CrossRef]
- Slepička, P.; Kasálková, N.S.; Siegel, J.; Kolská, Z.; Švorčík, V. Methods of gold and silver nanoparticles preparation. Materials 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, U.M.; Teuscher, N.; Rühl, M.; Heilmann, A. Plasma-enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf. Interfaces 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Asanithi, P.; Chaiyakun, S.; Limsuwan, P. Growth of silver nanoparticles by DC magnetron sputtering. J. Nanomater. 2012, 2012, 963609. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.M.; Ibrahim, F.; Ismail, A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020, 28, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Llamazares, S.; Jara, P.; Yutronic, N.; Noyong, M.; Fischler, M.; Simon, U. Preferential adhesion of silver nanoparticles onto crystal faces of α-Cyclodextrin/carboxylic acids inclusion compounds. J. Nanosci. Nanotechnol. 2012, 12, 8929–8934. [Google Scholar] [CrossRef] [PubMed]
- Okumu, J.; Dahmen, C.; Sprafke, A.N.; Luysberg, M.; Von Plessen, G.; Wuttig, M. Photochromic silver nanoparticles fabricated by sputter deposition. J. Appl. Phys. 2005, 97, 094305. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Loh, J.Y.Y.; Flood, A.; Fang, C.Y.; Chang, J.; Zhao, R.; Brodersen, P.; Kherani, N.P. Plasmonics of Diffused Silver Nanoparticles in Silver/Nitride Optical Thin Films. Sci. Rep. 2019, 9, 20227. [Google Scholar] [CrossRef] [Green Version]
H of βCD | δ βCD (ppm) | δ βCD–Mel (ppm) | Δδ (ppm) | H′ of Mel | δ Mel (ppm) | δ βCD–Mel (ppm) | Δδ (ppm) |
---|---|---|---|---|---|---|---|
H-3 | 3.648 | 3.653 | 0.005 | H′-1″/2″ | 3.699 | 3.702 | 0.003 |
H-5 | 3.555 | 3.570 | 0.015 | H′-3a | 2.736 | 2.814 | 0.078 |
H-6 | 3.617 | 3.625 | 0.006 | H′-3b | 3.017 | 3.012 | −0.005 |
OH-2 | 5.735 | 5.766 | 0.031 | H′-2′/6′ | 7.087 | 7.093 | 0.006 |
OH-3 | 5.680 | 7.719 | 0.039 | H′-3′/5′ | 6.671 | 6.683 | 0.012 |
OH-6 | 4.479 | 4.464 | −0.015 |
System | Hydrodynamic Diameter (nm) | PDI | Zeta Potential (mV) | TEM Size (nm) |
---|---|---|---|---|
βCD–Mel–AgNPs | 116 ± 63 | 0.40 | 19 ± 5 | 15 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierpe, R.; Donoso-González, O.; Lang, E.; Noyong, M.; Simon, U.; Kogan, M.J.; Yutronic, N. Solid-State Formation of a Potential Melphalan Delivery Nanosystem Based on β-Cyclodextrin and Silver Nanoparticles. Int. J. Mol. Sci. 2023, 24, 3990. https://doi.org/10.3390/ijms24043990
Sierpe R, Donoso-González O, Lang E, Noyong M, Simon U, Kogan MJ, Yutronic N. Solid-State Formation of a Potential Melphalan Delivery Nanosystem Based on β-Cyclodextrin and Silver Nanoparticles. International Journal of Molecular Sciences. 2023; 24(4):3990. https://doi.org/10.3390/ijms24043990
Chicago/Turabian StyleSierpe, Rodrigo, Orlando Donoso-González, Erika Lang, Michael Noyong, Ulrich Simon, Marcelo J. Kogan, and Nicolás Yutronic. 2023. "Solid-State Formation of a Potential Melphalan Delivery Nanosystem Based on β-Cyclodextrin and Silver Nanoparticles" International Journal of Molecular Sciences 24, no. 4: 3990. https://doi.org/10.3390/ijms24043990
APA StyleSierpe, R., Donoso-González, O., Lang, E., Noyong, M., Simon, U., Kogan, M. J., & Yutronic, N. (2023). Solid-State Formation of a Potential Melphalan Delivery Nanosystem Based on β-Cyclodextrin and Silver Nanoparticles. International Journal of Molecular Sciences, 24(4), 3990. https://doi.org/10.3390/ijms24043990