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Abstract: Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting com-
plex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this
work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was
significantly altered in the cdh1∆ mutant, with 43 up-regulated proteins and 92 down-regulated
proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial
respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial or-
ganization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration.
In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased
in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p,
a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased
Cyc1p levels and mitochondrial respiration in cdh1∆ cells. In agreement, Yap1p is transcriptionally
more active in cdh1∆ cells and responsible for the higher oxidative stress tolerance of cdh1∆ mutant
cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial
metabolic remodelling through Yap1p activity.

Keywords: mitochondria; Cdh1p; proteomics; Yap1p; yeast

1. Introduction

Mitochondria are essential organelles that play a critical role in several cellular func-
tions including ATP synthesis by the oxidative phosphorylation system (OXPHOS). The
biogenesis of the OXPHOS system requires the concerted expression of the nuclear and the
mitochondrial genomes [1]. In yeast, the mitochondrial proteome is largely dependent on
substrate availability. The presence of glucose induces the catabolite repression of mitochon-
drial function [1,2]. The transition from fermentative to respiratory metabolism (known
as diauxic shift) and shift to nonfermentable carbon sources trigger a major metabolic
reorganization with the transcriptional up-regulation of many genes required to promote
not only an increase in mitochondrial biogenesis and mitochondrial mass, but also a re-
modelling of mitochondria function towards a more respiratory mode, with an increase
in OXPHOS complexes and tricarboxylic acid (TCA) enzymes [3–5]. The mitochondrial
regulation is achieved mainly at the transcriptional level by the concerted regulation of
multiple transcription factors by glucose-sensing signaling pathways (reviewed in [6]).
Signaling pathways also seem to impact on mitochondrial metabolic reprogramming in-
dependently of the carbon source. By modulating the transcription of nuclear-encoded
mitochondrial proteins, the cAMP-dependent protein kinase A (PKA) pathway regulates
the mitochondrial enzyme content, and not the total mass, increasing the oxidative phospho-
rylation capacity of the cells [7,8]. Likewise, reduced TOR signaling increases mitochondrial
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oxygen consumption, in part, by up-regulating the translation of mitochondrial genome-
encoded OXPHOS subunits, enhancing the density of OXPHOS complexes [9,10]. The
type 2A-related serine-threonine phosphatase Sit4p is one of the TOR complex 1 (TORC1)
downstream effectors that plays a role in mitochondrial glucose repression [11] and impacts
on OXPHOS activity. Sit4p modulates the phosphorylation status of several mitochondrial
proteins, including the ATP synthase catalytic beta subunit (Atp2p in yeast) [12]. In the
absence of Sit4p, the phosphorylation of Atp2p leads to an increase in the ATP synthase
levels, impacting the activity of the respiratory chain complexes and enhancing overall
mitochondrial respiration [12].

We recently reported that the Atp2p levels increase in the absence of the anaphase-
promoting complex/cyclosome (APC/C) activator Cdh1p [13]. APC/C is an E3 ubiquitin
ligase responsible for the ubiquitin-dependent degradation of many cell cycle regulators [14,15],
and its activity is primarily regulated through the temporal activation of two cofactors, Cdc20p
and Cdh1p (also known as Hct1p) [16,17]. Cdc20p and Cdh1p carry conserved receptor do-
mains to recognize specific sequence signals such as the destruction box and the KEN box
that provide substrate selectivity [18]. Unlike Cdc20p, Cdh1p is not essential in yeast, though
cdh1∆ cells exhibit a prolonged cell cycle and are sensitive to different types of stress, such as
caffeine, alkalinity and hyperosmotic stress [19]. In addition to targeting mitotic regulators,
emerging evidence suggests that Cdh1p has cell cycle-independent functions both in yeast [20]
and mammals [21]. Although Atp2p is not an APC/C-Cdh1p direct target [13], the fact that its
protein abundance is affected in cells lacking Cdh1p raises the question of whether Cdh1p may
play a role in the regulation of mitochondrial function.

In the current study we performed a mitochondrial proteomic analysis and found
that deletion of CDH1 impacts on the abundance of many mitochondrial proteins in
yeast. Overall, absence of Cdh1p promotes a shift towards a higher mitochondrial respi-
ratory metabolism, which is dependent on the basic leucine zipper (bZIP) transcription
factor Yap1p.

2. Results
2.1. CDH1 Deletion Leads to a Remodelling of the Mitochondrial Proteome and Promotes
Mitochondrial Respiration

To evaluate the impact of APC/C-Cdh1p activity on yeast mitochondria, the mitochon-
drial proteome of wild type (wt) and CDH1-deleted cells was analysed by high-resolution
mass spectrometry (HPLC-MS/MS). Quantification of mitochondrial proteins was per-
formed with normalization based on total peptide amount. Cells were grown to mid-log
phase under semi-respiratory conditions using galactose as a carbon source to obtain a
higher mitochondrial mass, and mitochondria were then isolated by differential centrifu-
gation. The proteomic data obtained gave a high level of replicate reproducibility with
a total of 922 proteins previously reported as mitochondrial, representing a coverage of
90–100% depending on the reference proteome used [22,23]. Only these proteins were used
for further data treatment.

To evaluate overall changes in the mitochondrial proteome upon CDH1 deletion, we
used biological triplicate proteomic data for significance testing of the protein abundance
changes in a pairwise manner. Student’s t test was used to identify differential protein
expression between wt and cdh1∆ cells and represented in a volcano plot (Figure 1A). To
analyse changes in protein abundance, a cut-off of p-value < 0.05 and an absolute log2
fold change (log2 FC) > 0.3 were applied. A total of 135 proteins exhibited altered protein
abundance in the absence of Cdh1p activity, with 43 up-regulated and 92 down-regulated
proteins (Figure 1B). Dataset S1 list the top up- and down-regulated mitochondrial proteins.

The proteins that increased the most in cdh1∆ cells are four succinate dehydroge-
nase subunits (Complex II), Sdh1p, Sdh3p, Sdh4p and Sdh6p. Among the most abun-
dant proteins are also two Cytochrome c oxidase (Complex IV; Cox2p, Cox5p) subunits,
two subunits of Cytochrome bc1 complex (Complex III; Qcr2p and Rip1p) as well as the
NADH:ubiquinone oxidoreductase (equivalent to mammalian Complex I; Ndi1p). This
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shows that deletion of CDH1 increases the abundance of proteins from all respiratory chain
complexes. Among the most overrepresented proteins are also the respiratory chain soluble
carrier Cytochrome c isoform 1 (Cyc1p), Aconitase (Aco1p) and the ADP/ATP translocator
isoform (Aac1p), also involved in the respiratory metabolism. As we previously found,
Atp2p was statistically significantly up-regulated in cdh1∆ cells, but stayed below our
defined threshold.
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Figure 1. A total of 135 mitochondrial proteins exhibited significantly altered abundance in Cdh1p-
deficient cells. (A) Volcano plot showing differentially expressed proteins in cdh1∆ mutant. Log-
transformed p-values (t-test) are plotted against log-transformed fold change (FC). The horizon-
tal dashed line marks a p-value of 0.05. Vertical dashed lines indicate a Log2 FC of ± 0.3. The
up-regulated and down-regulated mitochondrial proteins are highlighted in orange and green, re-
spectively. The plot was cropped between -1.4 and -1.2 Log2 FC to improve data visualization.
(B) Diagram depicting the number of mitochondrial proteins up- and down-regulated in cdh1∆
mutant cells.

To identify the biological processes most impacted in cdh1∆ cells, a gene ontology (GO)-
term enrichment analysis on biological processes was run using STRING v11.0 database [24].
This analysis showed that among the 43 up-regulated mitochondrial proteins the TCA cycle
and mitochondrial respiration were the most represented processes (Figure 2A). Our results
are consistent with the mitochondrial proteome analysis of yeast grown in respiratory
conditions (versus fermentative) in which an overrepresentation of proteins associated to
these processes have been reported [3,5,25]. We also found that proteins associated with
mitochondrial protein synthesis and mitochondrial organization are enriched in the cdh1∆
mutant, namely several proteins involved in respiratory complexes assembly and two
proteins involved in mitochondrial morphology, Fis1p and Dnm1p. Since both proteins
are involved in fission, we analysed the mitochondrial network morphology in the cdh1∆
mutant but found no alterations in mitochondrial morphology (Figure S1). However, this
was not entirely unexpected as increased Fis1p and Dnm1p abundance are also associated
to the proteome remodelling that occurs upon the transition to a respiration metabolism,
and this is not associated to mitochondrial fragmentation [3,25].

On the other hand, the 92 down-regulated proteins include proteins from diverse
functional categories, with fatty acid metabolism (Cat2p and Oar1p among the most
abundant in this category) and amino acid metabolism (glycine catabolism and aspartate
synthesis) as the most relevant down-regulated biological process in the cdh1∆ mutant.

These results suggest that deletion of CDH1 promotes a metabolic remodelling to-
wards an increased respiratory metabolism, demonstrated by the up-regulation of proteins
involved in energy generation. An increase in the abundance of proteins associated with
the respiratory chain and TCA cycle are hallmarks in the transition from fermentative
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to respiratory growth conditions [3]. To confirm these results, oxygen consumption in
the cdh1∆ mutant was evaluated in whole cells in the conditions used for the proteomic
analysis. In accordance, the results showed a 1.8-fold increase in mitochondrial respiration
in cdh1∆ cells compared to wt cells (Figure 2B). We also assessed the oxygen consumption
rate of cdh1∆ cells from post-diauxic shift (PDS) cells when yeast switch their growth from
fermentation to mitochondrial respiration. At PDS, the oxygen consumption rate in cdh1∆
cells was similar to that in wt cells (Figure 2B), indicating that Cdh1p does not regulate
the normal derepression of respiratory genes at the diauxic shift. This suggests that either
Cdh1p plays a role in mitochondrial function only in proliferating cells, or that it exhibits
an early catabolite derepression.
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Figure 2. CDH1 deletion promotes a metabolic remodeling towards an increased respiratory
metabolism. (A) Gene ontology (GO)-term enrichment analysis on biological processes for sta-
tistically altered proteins using STRING v11.0. (B) Cells were grown until mid-log or post-diauxic
shift (PDS) phase and the respiratory rate was obtained measuring oxygen consumption rate in
whole cells. Values are the mean ± SD (n = 7); ****, p < 0.0001; t-test. (C) Cells were grown until
mid-log phase and cytochrome c oxidase activity was determined by following the rate of cytochrome
c oxidation. Values are the mean ± SD (n = 3); *, p < 0.05; t-test. (D) Cells were grown until early-log
phase and the mitochondrial mass was determined by staining the cells with the dye nonyl acridine
orange (NAO) and analyzed by flow cytometry (n = 4). (E) For the Cdh1p overexpression assay, cells
were grown in raffinose media until mid-log phase and oxygen consumption rate measured after 3h
of addition of 4% galactose. Values are the mean ± SD (n = 4); *, p < 0.05; t-test.

The increase in mitochondrial respiration in mid-log cdh1∆ cells was further supported
by the increased activity of the respiratory complex cytochrome c oxidase (COX) (from
0.22 U/mg protein in wt to 0.59 U/mg protein in cdh1∆ mutant; Figure 2C). Since the
remodelling towards a more respiratory metabolism is often accompanied by an increase
in mitochondrial biogenesis, we performed in vivo measurements of mitochondrial mass
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using nonyl acridine orange (NAO) fluorescence. We found that the mitochondrial mass
is mildly increased in cdh1∆ cells when compared to wt cells, but the difference was
not statistically significant (7.9 × 105 ± 1.2 × 105 to 9.4 × 105 ± 1.5 × 105, mean ± SD,
Figure 2D). This indicates that the increased mitochondrial respiration in cdh1∆ cells is
mostly due to an increase in the respiratory capacity of mitochondria than to an increase
in mitochondrial mass. Furthermore, overexpression of a constitutively active Cdh1-m11
form (lacking the 11 Cdk inhibitory-phosphorylation sites) [26] results in a decrease in
mitochondrial respiration compared to wt cells expressing the empty vector (Figure 2E).

2.2. The Transcription Factors Yap1p and Rpn4p Mediate the Induction of Mitochondrial
Respiration in cdh1∆ Cells

Since Cdh1p is part of an E3 ubiquitin ligase complex, it is possible that part of the
mitochondrial proteins could be regulated by Cdh1p-mediated proteolysis. However, given
the high number of altered proteins, with a high proportion of down-regulated proteins,
it is most likely that Cdh1p is impacting on mitochondrial proteins indirectly, possibly
through the modulation of transcription factor(s). The repository YEASTRACT+ (Yeast
Search for Transcriptionally Regulators And Consensus Tracking) [27] was used to predict
the transcription factors that might be responsible for the protein expression patterns in
cdh1∆ cells. This led to the identification of four transcription factors as possibly regulating
the adaptive responses to CDH1 deletion (Figure 3A). This list includes Pdr3p (regulator
of the pleiotropic drug resistance), Gcn4p (regulator of amino acid biosynthetic genes in
response to amino acid starvation), Yap1p (regulator of the oxidative stress response) and
Rpn4p (regulator of the proteasome). To investigate whether these transcription factors
mediate the effects of CDH1 deletion on mitochondrial function, double mutant strains
deleted both in CDH1 and in the individual transcription factors were constructed. The
absence of the selected transcription factors on the cdh1∆ mitochondrial phenotype was first
evaluated by measuring oxygen consumption rate. Our results show that deletion of PDR3
and GCN4 did not significantly affect cdh1∆ high oxygen consumption. On the other hand,
both YAP1 and RPN4 deletion restored cdh1∆ respiration to wt levels (Figure 3B). We also
assessed the impact of the transcription factors deletion on cell growth by measuring optical
density (OD) over time (Figure 3C). For quantitative evaluation of growth and statistical
analysis purposes, the area under each growth curve was also calculated (AUC; values in
Figure S2). Cells lacking Cdh1p exhibited a significant growth delay when compared to
wt cells, which can be attributed to the accumulation of cell cycle progression substrates
like Clb2p and Ase1p [16]. Deletion of PDR3, RPN4 and YAP1 improved the growth of
cdh1∆ cells. This effect was more significant for YAP1 deletion which, despite not reverting
cdh1∆ growth to wt levels (AUC of 19.4), almost doubled the AUC from 6.7 in cdh1∆ cells
to 12.5 in yap1∆cdh1∆ cells. This suggests that YAP1 genetically interacts with CDH1 and
contributes to the cdh1∆ mutant slow growth phenotype.

To further evaluate this functional relationship, we assessed how the deletion of
RPN4 and YAP1 affected the expression of mitochondrial proteins previously identified
as up-regulated (Cyc1p and Cox2p) in cdh1∆ cells. Cyc1p and Cox2p were among the
proteins identified by YEASTRACT+ as potentially transcriptionally regulated by Yap1p
and Rpn4p. Tim22p, which was found unaltered cdh1∆ cells, was also analysed as a
control of mitochondrial mass. Accordingly, we found Cyc1p and Cox2p, but not Tim22p,
accumulated at higher levels in proliferating cdh1∆ cells (Figure 4). Our results also show
that Cyc1p levels were significantly decreased after deletion of both YAP1 and RPN4 in
cdh1∆ cells. Cox2p levels also decreased in the double mutants when compared with cdh1∆
cells, but the difference was not statistically significant (Figure 4).

Overall, these results suggest that transcription factors Yap1p and Rpn4p function as
Cdh1p downstream effectors in the regulation of mitochondrial protein levels. Interestingly,
Yap1p and Rpn4p are functionally related, as YAP1 itself contains a Proteasome Associated
Control Elements (PACE) sequence in its promotor targeted by Rpn4p [28], while RPN4, in
turn, can be transcriptionally regulated by Yap1p [29].
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Figure 3. The transcription factors Yap1p and Rpn4p are required for the increase in mitochondrial
respiration in the cdh1∆ mutant. (A) Table showing the YEASTRACT+ predicted transcription factors
that might regulate the mitochondrial proteins altered in cdh1∆ cells. (B) Cells were grown until
late-log phase and the respiratory rate was obtained measuring oxygen consumption rate in whole
cells. Values are the mean ± SD (n = 4); *, p < 0.05; one-way ANOVA followed by Tukey’s multiple-
comparison test. (C) The growth of the indicated strains was monitored over time by optical density
(OD600nm) measurements. Values are the mean (n = 3).
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Figure 4. The up-regulation of Cyc1p in the cdh1∆ mutant is mediated by the transcription factors
Yap1p and Rpn4p. Cells with the indicated genotypes were grown until mid-log phase and Cox2p
and Cyc1p levels on total proteins extracts were assessed by immunodetection. Tim22p (inner
mitochondrial protein unchanged in cdh1∆ cells) is shown as control of mitochondrial mass. A
representative blot is shown. Graph represents the relative amount of Tim22p, Cox2p and Cyc1p
normalized to Pgk1p. Values are the mean ± SEM (n = 5); *, p < 0.05; **, p < 0.01; t-test.

2.3. CDH1 Deletion Does Not Impact on Rpn4p Activity

Yeast Rpn4p is a C2H2 zinc finger transcription factor that is responsible for the
expression of genes associated with proteasome biogenesis and activity and with ubiquitin-
dependent proteolysis [30,31]. Inhibition of proteasome activity results in a Rpn4p stabiliza-
tion, which binds to PACE sequences found in Rpn4p-recognized promotors, up-regulating
its target genes [30].
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We next investigated the hypothesis that the direct targeting of Rpn4p by APC/C-
Cdh1p may account for the mitochondrial alterations induced by CDH1 deletion. For
that, the levels of Rpn4p were evaluated by Western blot, in cells expressing HA-tagged
endogenous Rpn4p. We found that Rpn4p stability was not increased by CDH1 deletion
(Figure 5A), suggesting that Rpn4p is not a direct substrate of APC/C-Cdh1p. In addition,
it suggests that Rpn4p is not more active in cdh1∆ cells as Rpn4p stabilization is associated
to its activity [32]. To confirm this, we assessed Rpn4p transcriptionally activity using a
Rpn4p-driven GFP reporter [33]. As a positive control, wt cells were incubated with 60 µM
of the proteasome inhibitor MG132 for 2 h. As shown in Figure 5B, GFP fluorescence was
significantly elevated in MG132-treated cells while RPN4-deleted cells showed a strong
decrease, validating the reporter specificity. However, loss of Cdh1p did not affect Rpn4p
transcriptional activity, supporting the hypothesis that Rpn4p is not more active in CDH1
deleted cells. These results suggest that Rpn4p activation is not the primary cause leading
to Cdh1p-mediated up-regulation of mitochondrial respiration.
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Figure 5. Rpn4p levels or activity are not altered in cdh1∆ mutant cells. (A) Wt or cdh1∆ cells
endogenously expressing hemagglutinin (HA)-tagged Rpn4p were grown to early and mid-log phase
and analyzed by immunoblotting using anti-HA and anti-Pgk1p (loading control) antibodies. A
representative blot is shown. Graph represents the relative amount of Rpn4-HA normalized to Pgk1p.
Values are the mean ± SEM (n = 4). (B) Cells with the indicated genotypes harboring a GFP reporter
for Rpn4p activity were grown to early-log phase. As a positive control, wt cells were treated with
the proteasome inhibitor MG132. The GFP fluorescence intensity was determined by flow cytometry.
The values are the mean ± SD (n = 4), ***, p < 0.001; ****, p < 0.0001; t-test.

2.4. Yap1p Is More Active in cdh1∆ Cells

Yeast Yap1p is a leucine zipper (bZIP) transcription factor that activates the expression
of genes encoding several antioxidant proteins [34]. Yap1p is activated in response to
different reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), by a mech-
anism that inhibits its nuclear export, thus promoting Yap1p nuclear accumulation and
activation [35–37]. In addition to its well-known role in the oxidative stress response, Yap1p
is also involved in the yeast response to metals and unrelated drugs [35] and seems to play
a role in mitochondrial regulation [38–40].

We next investigated the hypothesis that the direct targeting of Yap1p by APC/C-
Cdh1p may account for the mitochondrial alterations induced by CDH1 deletion. For
that, we compared the steady-state level of the Yap1p protein in wt and cdh1∆ cells. The
Yap1-9Myc protein was expressed from a vector under the regulation of its native promoter
in the yap1∆ and yap1∆cdh1∆ mutants. As shown in Figure 6A, no difference was detected
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in the protein levels of Yap1p at OD600nm 0.5 suggesting Yap1p is not a Cdh1p direct
substrate. In addition, the levels of Yap1p were also not affected by expression of a consti-
tutively active Cdh1-m11 form (lacking the 11 Cdk inhibitory-phosphorylation sites) [26]
or after mutation in a potential APC/C recognition motif predicted using GPS-ARM 1.0
(Figure S3). Intriguingly, at OD600nm 1.0 Yap1p levels were even decreased in cells lacking
Cdh1p (Figure 6A). It was previously reported that Yap1p activity is mostly controlled by
the disruption of Yap1p nuclear export without affecting protein levels [35,41]. However,
a decrease in Yap1p protein levels is often observed following its activation [35,41,42].
Therefore, our results suggest that Yap1p is not a direct Cdh1p target, but its transcrip-
tional activity might be indirectly regulated by Cdh1p. To investigate this hypothesis we
monitored Yap1p transcriptional activity in cdh1∆ cells, using a Yap1p-dependent lacZ
reporter (pRS415-AP-1-CYC-LacZ) [41]. As a positive control, wt cells were treated with
5 mM H2O2 for 1.5h, which triggered a significant increase in β-Galactosidase activity
(Figure 6B). On the other hand, the Yap1p-dependent β-Galactosidase activity in yap1∆
cells was dramatically decreased, confirming the reporter specificity. Notably, the results
showed a 1.7-fold increase in β-Galactosidase activity in cdh1∆ cells compared to wt cells,
indicating that Yap1p transcriptional activity is increased in cells lacking Cdh1p.

2.5. Yap1p Mediate the Oxidative Stress Resistance of cdh1∆ Cells

Since Yap1p is a major oxidative stress response regulator in yeast, we asked whether
its increased transcriptional activity in cdh1∆ cells led to an increase in oxidative stress
resistance. To test this hypothesis cells were grown in solid media in the presence of H2O2.
As expected, deletion of YAP1 dramatically increases the H2O2 sensitivity (Figure 7A). In
contrast, cells lacking Cdh1p presented a higher oxidative stress resistance compared to
wt cells, particularly evident at the higher H2O2 concentration used. The increase in H2O2
resistance was dependent on Yap1p since its deletion in cdh1∆ cells restored oxidative stress
sensitivity (Figure 7A). In contrast, cdh1∆ cells, but not yap1∆ cells, were more sensitive
to methyl methanesulfonate (MMS) comparing to wt (Figure 7A), as reported for several
other stressors [19]. These findings indicate that cdh1∆ cells are unexpectedly resistant to
oxidative stress, and that this occurs due to Yap1p activation.

Under physiological conditions, mitochondria serve a major source of ROS that are
mainly generated from the mitochondrial respiratory chain as a normal consequence of
aerobic respiration [43,44]. Since CDH1 deletion led to an up-regulation of mitochondrial
respiration, we investigated its effect on ROS levels using dihydroethidium (DHE) as a
probe that becomes fluorescent upon oxidation by superoxide radicals and hydrogen perox-
ide. At early-log phase, approximately 1% of wt cells exhibited ROS accumulation, whereas
10% of cdh1∆ cells displayed DHE staining (Figure 7B). ROS levels in the cdh1∆yap1∆ dou-
ble mutant were similar to those in cdh1∆ cells (Figure 7B). Since YAP1 deletion lowered the
increase in mitochondrial respiration in cdh1∆ cells, but not the ROS levels, we questioned
whether the higher ROS levels in cdh1∆ cells may underlie Yap1p activation in these cells
and precede the mitochondrial remodelling. To test this hypothesis, we analysed Yap1p
transcriptional activity in cdh1∆ cells after overexpression of the mitochondrial superoxide
dismutase (Sod2p) using Yep352-SOD2 plasmid [45]. Overexpression of SOD2 decreased
the Yap1p-dependent β-Galactosidase activity in cdh1∆ cells comparing to cells expressing
the empty-vector (Figure 7C). However, SOD2 overexpression did not fully lower the
Yap1p activity in the cdh1∆ mutant to the levels observed in wt cells overexpressing SOD2.
This result led us to hypothesize that in cdh1∆ cells Yap1p is transcriptionally more active,
leading to an increase in mitochondrial respiration, which results in higher mitochondrial
ROS production. This in turn, in a positive feedback loop, further favours Yap1p activation
in these cells.
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Figure 7. Yap1p mediates the oxidative stress resistance of the cdh1∆ strain. (A) H2O2 and methyl
methanesulfonate (MMS) sensitivity of wt, cdh1∆, yap1∆ and yap1∆cdh1∆ cells. Cells were grown until
mid-log phase and ten-fold dilutions were spotted onto YPGal plates without a stressor or with 2.5–5 mM
H2O2 or 0.05% MMS. Plates were incubated at 26 ◦C for 2 days. A representative image is shown (n = 3).
(B) Cells with the indicated genotypes were grown until early-log phase and cellular ROS levels were
assessed by flow cytometry using the fluorescent probe dihydroethidium (DHE). The values are the mean
± SD (n = 4), ****, p < 0.0001; one-way ANOVA followed by Tukey’s multiple-comparison test. (C) Cells
with the indicated genotypes harboring pRS415-AP-1-CYC1-LacZ reporter were grown to mid-log phase.
The specific β-galactosidase activity was determined using o-nitrophenol-β-d-galactopyranoside (ONPG)
as a substrate. The values are the mean± SD (n = 4), ns, not significant, *, p < 0.05; **, p < 0.01; t-test.
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3. Discussion

In this work we investigated the role of Cdh1p in the control of mitochondrial function
using a proteomic approach. Cdh1p has a well-known role in ubiquitination of cell cycle
substrates, regulating cell cycle processes such as G1/S transition and mitotic exit [17]. This
study provides for the first time evidence that Cdh1p also plays a role in the regulation
of mitochondrial functional remodelling and provides a global overview of the specific
mitochondrial changes elicited by CDH1 deletion. We found that deletion of CDH1 causes
a shift in mitochondrial proteome composition to promote a more respiratory mode, which
was confirmed by measuring oxygen consumption and COX activity. Besides the canonical
functions of APC/C, some studies in mammalian cells point to a role for Cdh1p in the
regulation of metabolism and mitochondrial morphology [46,47]. APC/C-Cdh1 impacts on
mitochondrial morphology by ubiquitinating Drp1 (the Dnm1p homologue), contributing
to the maintenance of a dynamic balance between mitochondrial fission and fusion during
mitotic exit [46]. Though we also found an increase in Dnm1p levels in cells lacking Cdh1p,
due to the high number of mitochondrial proteins altered in the cdh1∆ mutant (135), with
about two-thirds being down-regulated, it is more likely these are indirect effects. However,
we cannot discard the hypothesis that among the up-regulated proteins some might be
direct targets and subject to Cdh1p-regulated proteolysis. In fact, many mitochondrial
proteins have potential Cdh1p canonical recognition motifs. However, the APC/C motifs
are very common in the proteome [48] and, thus, are not strong substrate predictors and
need to be experimentally validated.

The up-regulation of mitochondrial respiration in cdh1∆ mutant was suppressed upon
deletion of genes encoding the transcription factors Yap1p or Rpn4p, supporting an indirect
regulation of mitochondrial function. Though both Yap1p and Rpn4p, a downstream target
of Yap1p [49], were required for mitochondrial functional remodelling in the cdh1∆ mutant,
only Yap1p was found to be more active in these cells. Due to the functional relation
between Yap1p and Rpn4p, Rpn4p may contribute to Yap1p effects, but the up-regulation
of Yap1p function is likely the main trigger for the mitochondrial alterations in cdh1∆ cells.
Yap1p is the main oxidative stress response regulator in yeast, but several works point for a
potential role for Yap1p in mitochondrial function. Indeed, it was demonstrated that the
transcription factor Yap1p is directly involved in the regulation of iron export from the
mitochondria [38] and plays a role in the mitochondrion-to-nucleus signaling during growth
on ethanol [39]. Importantly, Yap1p overexpression leads to an increase in the abundance
of mitochondrial proteins associated to respiration [39], supporting our observations that
increased Yap1p activity can lead to an enhancement in mitochondrial respiration in cdh1∆
cells. Interestingly, in the same study, authors also report Yap1p overexpression triggers
alterations in proteins associated with cell cycle and growth regulation. Though Cdh1p can
have cell cycle-independent functions, its main role is the regulation of cell cycle progression.
Since we and others have found a synchronization between cell cycle progression and
mitochondrial respiration in yeast [13,50], it will be interesting to assess if the role of
Cdh1p in the regulation of mitochondrial function is cell cycle-independent or occurs
during cell cycle progression. In fact, the oxygen consumption during cell cycle progression
in lowest in G1, the phase in which Cdh1p is more active [13,50]. Likewise, the lower
effect in the mitochondrial proteome remodelling in the cdh1∆ mutant compared to the
transition to growth in respiratory substrates fits well with the maximum oscillations found
in mitochondrial respiration during cell cycle progression (about 1.3 fold) [13]. In addition,
Cdh1p does not seem to play a role in the traditional diauxic shift transition to respiration,
as it did not affect the yeast respiration in PDS phase. In addition, Yap1p and Rpn4p are
not important players in mitochondrial transcriptional regulation at this phase, with Msn2p
and Msn4p [51], Cat8p [52] and Sip4p [53] as the main transcriptional factors involved in
mitochondrial derepression. This suggests that Cdh1p impacts on mitochondrial respiration
in proliferating cells independently of the canonical carbon source-responsive pathways.

A remaining question Is also how APC/C-Cdh1p regulates the activity of Yap1p
to promote the induction of mitochondrial respiration. We provide evidence that CDH1
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deletion affects Yap1p activity, but not its protein levels. It is therefore possible that
Cdh1p may regulated the proteins involved in the regulation of Yap1p activity/nuclear
export. Since we found that cdh1∆ cells exhibit higher ROS levels than wt cells, it is
also possible that Yap1p is being activated by the oxidative environment of cdh1∆ cells.
Curiously, though Yap1p seem involved in the up-regulation of respiration in cdh1∆ cells,
Yap1p transcriptional activity has been described to be also induced by mitochondrial
respiration [54,55]. The mitochondria respiratory chain is the major source of endogenous
ROS [44], and therefore transition to mitochondrial respiratory growth is accompanied by
the induction of cellular antioxidant defences, which allows the cells to become intrinsically
more tolerant to oxidants than fermenting grown yeast [54,55]. Activation of Yap1p in
cdh1∆ cells may allow the coordination of mitochondrial respiration with oxidant resistance,
particularly vital if the regulation of mitochondrial function by Cdh1p occurs during cell
division, as ROS are particularly harmful to replicating DNA [56] and can lead to cell cycle
arrest [57]. Interestingly, two additional transcription factors, Tos4p and Pdr3p, implicated
in the DNA damage response were reported to be positively regulated by Cdh1p [58].
Together with our results, this suggests Cdh1p may play a broader role than believed in the
cellular transcriptional responses to different environmental stresses.

In conclusion, our study reveals a novel role for Cdh1p in the regulation of mitochon-
drial metabolic remodelling contributing to our understanding of the signalling pathways
controlling cellular energy homeostasis. Regulation of mitochondrial metabolism occurs
after glucose exhaustion, in the presence of alternative respiratory carbon sources and even
during cell cycle progression [13,50]. Mitochondrial metabolic remodelling also occurs in
response to diverse signalling pathways [7–11] reinforcing the importance of fine-tuning
mitochondrial function with energetic demands. We also report that Cdh1p impacts on
Yap1p transcriptional activity, which underlies both the cdh1∆ mutant resistance to oxida-
tive stress and the up-regulated mitochondrial respiration. The integration of mitochondrial
function with the induction of antioxidant defences through Yap1p may be important to
maintain the cellular redox balance in cdh1∆ cells.

4. Materials and Methods
4.1. Yeast Strains and Growth Conditions

The Saccharomyces cerevisiae strains used are all BY4741 derivative and are listed in
Table S1. To generate cdh1∆::HIS3 strain, cdh1∆::KanMX4 was transformed with a DNA
fragment containing HIS3MX. To construct double mutant strains, the DNA fragment
containing cdh1∆::HIS3 was amplified and transformed in the deletion strains. To gen-
erate Rpn4-HAcdh1∆::kan strain, Rpn4-HA:HIS3 was transformed with a DNA fragment
containing cdh1∆::KanMX4. Strains were transformed by the standard lithium acetate
procedure [59]. Gene deletion was confirmed by PCR. For overexpression of Cdh1-m11
and Sod2p, cells were transformed with the plasmids pRS416-GALL-3HA-Cdh1-m11 [26]
and Yep352-SOD2 [45], respectively.

Cells were grown in rich medium [YPGal: 2% (w/v) galactose, 1% (w/v) yeast extract,
2% (w/v) bactopeptone] or synthetic complete medium [SC: 0.67% (w/v) Bacto-yeast nitrogen
base w/o amino acids, 2% (w/v) glucose and 0.2% (w/v) Dropout mix] lacking uracil/leucine,
as appropriate. For Cdh1-m11 overexpression, cells were grown in YPRaff medium [2%
(w/v) raffinose, 1% (w/v) yeast extract, 2% (w/v) bactopeptone] overnight until mid-log
phase and cultured with 4% galactose for 3h before oxygen consumption analysis. Cultures
were routinely grown at 26 ◦C in an orbital shaker at 140 r.p.m.

4.2. Mitochondrial Isolation

For isolation of an enriched mitochondrial fraction, wt and cdh1∆ cells were grown
to mid-log phase (OD600nm = 1.4) in YPGal medium and digested enzymatically with
zymolyase (5 mg/g of cells) at 37 ◦C for 30 min. The homogenized spheroplasts were
subjected to differential centrifugation basically as described in [60].
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4.3. Protein Identification by HPLC-MS/MS

Biological triplicates from wt and cdh1∆ cells were solubilized with 100 mM Tris
pH 8.5, 1% (w/v) sodium deoxycholate, 10 mM tris(2-carboxyethyl) phosphine (TCEP) and
40 mM chloroacetamide for 10 min at 95 ◦C at 1000 r.p.m. Each sample was processed for
proteomics analysis following the solid-phase-enhanced sample-preparation (SP3) proto-
col as described in [61]. Enzymatic digestion was performed with Trypsin/LysC (2 µg)
overnight. Protein identification and quantitation was performed by nanoLC-MS/MS
composed by an Ultimate 3000 liquid chromatography system coupled to a Q-Exactive
Hybrid Quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham, MA,
USA), as previously described [62]. This equipment is composed of an Ultimate 3000 liq-
uid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass
spectrometer (ThermoFisher Scientific, Waltham, MA, USA).

The raw data were processed using Proteome Discoverer 2.5.0.400 software (Ther-
moFisher Scientific, Waltham, MA, USA) and searched against the UniProt database for the
Saccharomyces cerevisiae Proteome 2020_03 together with a common contaminant database
from MaxQuant (version 1.6.2.6, Max Planck Institute of Biochemistry, Martinsried, Ger-
many). The Sequest HT search engine was used to identify tryptic peptides. Peptide
confidence was set to high. The processing node Percolator was enabled with the following
settings: maximum delta Cn 0.05; decoy database search target FDR 1%, validation based
on q-value. Protein label free quantitation was performed with the Minora feature detector
node at the processing step. Precursor ions quantification was performing at the processing
step with the following parameters: Peptides to use unique plus razor, precursor abundance
based on intensity and normalization based on total peptide amount.

4.4. Mitochondrial Mass Analysis

The total mitochondrial mass was determined using 10-N-Nonyl acridine orange
(NAO, Invitrogen, Waltham, MA, USA), a dye that binds to cardiolipin present specifically
on the mitochondrial membrane [63]. Briefly, wt and cdh1∆ cells were grown to mid-log
phase in YPGal medium and incubated in culture medium containing 10 µM NAO for
30 min. Fluorescence intensity measured using the BD Accuri C6 flow cytometer. Data
were analysed with FlowJo v10 software version.

4.5. Oxygen Consumption Rate and COX Activity

The oxygen consumption was measured polarographically in whole cells resuspended
in PBS buffer, from cultures grown in YPGal medium to mid-log or PDS phase, using a
Clark-type oxygen electrode coupled to an Oxygraph plus system (Hansatech, King’s Lynn,
United Kingdom).

Data were analysed using the OxyTrace+ software. The respiratory rate was obtained
by dividing the oxygen consumed per min by the number of cells used in the experiment.

Cytochrome c oxidase activity was determined by measuring cytochrome c oxidation
as previously described [64].

4.6. SDS-PAGE and Western Blot

For immunoblotting, yeast cell extracts were resuspended at identical cell densities in
sodium dodecyl sulphate (SDS) loading dye and lysed by boiling for 6 min and vortexing
for 5 min with glass beads. Protein samples were separated into 7.5–10% SDS-PAGE gels
and transferred to nitrocellulose membranes (Hybond-C, GE Healthcare).

The primary antibodies used were raised against yeast Tim22p (1:500, sc-14042, Santa
Cruz Biotechnology, Dallas, TX, USA), yeast Cox2p (1:6000, 4B12A5, ThermoFisher Scien-
tific, Waltham, MA, USA), yeast Cytochrome c (1:10,000, Davids Biotechnologie, Regens-
burg, Germany), yeast Pgk1p (1:30,000, 22C5D8, ThermoFisher Scientific, Waltham, MA,
USA), HA (1:1000, Y-p11, Santa Cruz Biotechnology, Dallas, TX, USA) and c-Myc (1:1000,
ThermoFisher Scientific, Waltham, MA, USA).
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Secondary antibodies used were anti-goat IgG-HRP (1:5000), anti-mouse IgG-HRP
(1:10,000, Molecular probes, Eugene, OR, USA) and anti-rabbit IgG-HRP (1:10,000, Sigma,
St. Louis, MO, USA).

Membranes were incubated with WesternBright ECL (Advansta, San Jose, CA, USA),
exposed to LucentBlue X-ray film (Advansta), scanned on a Molecular Imager GS900, and
quantified using Image Lab Software version 6.1 (Bio-Rad, Hercules, CA, USA).

Full-length blots corresponding to the blots displayed in various figures and used for
data quantification are provided in Figures S4–S6.

4.7. Fluorescent Reporter Assay Measurements

Cells harbouring a GFP reporter for Rpn4p activity [33] were grown in YPGal until
early-log phase. To assess Rpn4 activity under proteasomal stress conditions, wt cells
were treated with 60 µM of MG132 (Merck, Darmstadt, Germany) for 2 h. Cells were
then centrifuged, washed and resuspended in PBS buffer. Cells were acquired using the
FL1 detector in a BD Accuri C6 Flow cytometer and data were analysed with FlowJo v10
software version.

4.8. β-Galactosidase Assay

Cells harbouring pRS415-AP-1-CYC1-LacZ plasmid [41] were grown in YPGal until
mid-log phase. To assess Yap1p activity under oxidative stress conditions, wt cells were
treated with 3 mM H2O2 (Merck, Darmstadt, Germany) for 1.5 h. The β-galactosidase
activity was measured in a liquid assay using o-nitrophenyl-β-D-galactoside (ONPG;
Merck, Darmstadt, Germany) as previously described [65] using 60 µg of total protein.

4.9. Oxidative Stress and DNA Damage Sensitivity

Wt, cdh1∆, yap1∆ and yap1∆cdh1∆ strains were grown overnight at 26 ◦C in YPGal
medium until mid-log phase. Each culture was then diluted to OD600nm = 0.1 and ten-fold
dilutions were performed using PBS buffer. Cells were spotted in YPGal plates, used
within 48h of preparation, supplemented with 0, 2.5 and 5 mM of H2O2 (Merck, Darmstadt,
Germany) and 0.05% (v/v) of methyl methanesulfonate (MMS, ThermoFisher Scientific,
Waltham, MA, USA). Cells were incubated for 2 days at 26 ◦C.

4.10. ROS Levels

Cells were grown overnight at 26 ◦C in YPGal medium until mid-log phase and incu-
bated with 5 µg/ml dihydroethidium (DHE, Invitrogen, Waltham, MA, USA) for 30 min
at room temperature in the dark. Cells were then centrifuged, washed and resuspended
in PBS buffer. Cells were acquired using the FL3 detector in a BD Accuri C6 Flow cy-
tometer (BD Biosciences, San Jose, CA, USA) sand data were analysed with FlowJo v10
software version.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24044111/s1.
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