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Abstract: Inactivation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene is considerably
more frequent in squamous cell lung cancer (SqCLC) than in other subtypes of lung cancer and may
be a promising target for this histology. Here, we present the course of diagnosis and treatment
of a patient with advanced SqCLC, harboring not only CDKN2A mutation but also PIK3CA am-
plification, Tumor Mutational Burden-High (>10 mutations/megabase), and a Tumor Proportion
Score of 80%. After disease progression on multiple lines of chemotherapy and immunotherapy,
he responded favorably to treatment with the CDK4/6i Abemaciclib and later achieved a durable
partial response to immunotherapy rechallenge with a combination of anti-PD-1 and anti-CTLA-4,
nivolumab, and ipilimumab.

Keywords: squamous cell lung cancer; lung cancer; nivolumab; ipilimumab; checkpoint inhibition
therapy; abemaciclib; TMB-high

1. Introduction

Lung cancer survival has improved significantly, due to treatment advances in the
last decade (e.g., targeted therapy and immunotherapy) [1]. Unfortunately, targeted ther-
apy benefits most adenocarcinoma patients, and no molecular targets have been found
specifically for squamous cell lung cancer (SqCLC) [2].

The cyclin-dependent kinase inhibitor 2A (CDKN2A) gene inactivation is significantly
more common in SqCLC than in other non–small cell lung cancer (NSCLC) subtypes [3].
Thus, a better understanding of CDKN2A-associated alterations as oncogenic drivers may
serve as a promising strategy for therapy with cyclin 4 and 6 inhibitors (CDK4/6i) [4–7].
The activity of CDK4/6i in the treatment of NSLC with or without CDKN2A mutations is
not widely known, and there is limited single-agent efficacy [8–14].

The introduction of immune-checkpoint inhibitors (ICI) in the treatment of advanced
NSCLC has transformed the therapeutic landscape of this disease [15]. Patients who have
progressive disease in ICI usually receive chemotherapy upon progression. Nevertheless, a
rechallenge may be attempted if progression occurs several months or years after the last
dose of PD-L1 or programmed cell death protein 1 (PD-1) blockade [16,17].

Here, we present a case of a patient with advanced SqCLC that harbors not only
CDKN2A mutation, and PIK3CA amplification, but also Tumor mutational burden High
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(TMB-H) and a tumor proportional score (TPS) of 50%. After disease progression on multi-
ple lines of chemotherapy and ICI, treatment with Abemaciclib was attempted. Although a
stable disease with metabolic response was achieved, the patient also developed grade 4 in-
terstitial lung disease (ILD) and had to discontinue therapy. After the resolution of this
adverse event, he achieved a durable response to ICI rechallenge with a combination of
anti-PD-1 and anti-CTLA-4.

2. Case Description

A 60-year-old male former smoker presented with dyspnea during physical activity
in November 2015. Computed tomography (CT) scans of the chest revealed a mass in
the left upper lobe, measuring 5.8 cm; paralysis of the left diaphragm; and an enlarged
para-aortic lymph node. Transbronchial biopsy revealed SqCLC. He underwent left upper
lobectomy with lymphadenectomy, confirming an SqCLC pT3pN0 (stage IIB per the 8th
edition AJCC/TNM), although it was deemed an R1 resection due to the involvement of
the mediastinal fat. Immunohistochemistry showed high expression of PD-L1, with a TPS
of 50%, assessed by DAKO 22C3®. A detailed treatment overview is depicted in Figure 1.
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Figure 1. Overview of the patient’s course of disease and treatment regimens.

He received adjuvant chemotherapy with Cisplatin 50 mg/m2 intravenous (IV) D1
and D8 Vinorelbine 25 mg/m2 IV D1, D8, D15, D22 q4w for four cycles, followed by
image-guided radiation therapy (IGRT) of 66 Gy due to mediastinal fat involvement. After
6 months of completion of adjuvant treatment, he developed mediastinal recurrence. He
received Pembrolizumab 200 mg IV q3w as first-line therapy starting in September 2017 and
upon progression, in a single parasternal lesion, he was maintained on Pembrolizumab and
underwent hypofractionated stereotactic radiotherapy (SBRT) with a total dose of 25 Gy in
January 2018. In November 2018, when the new progression of disease in soft tissue and
lymph nodes in the internal thoracic chain with extension to the anterior mediastinal fat
and pericardial thickening was documented, he underwent surgical resection.

Second-line chemotherapy with Carboplatin AUC 6 plus Paclitaxel 200 mg/m2 for
four cycles was started on January 2019, due to a new mediastinal progression, achieving
a partial response. From June 2019 to November 2020, the patient received multiple lines
of chemotherapy (Cisplatin 75 mg/m2 IV D1 and Gemcitabine 1000 mg/m2 D1, D8 q3w,
Docetaxel 75 mg/m2 plus Ramucirumab 10 mg/kg IV q3w, Cisplatin 100 mg/m2 D1 plus
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Vinorelbine 25 mg/m2 D1, D8, D15, D22 and Nab-Paclitaxel 100 mg/m2 IV q3w) due to
subsequent local disease progressions (lymph nodes and subcutaneous). Clinical benefit
and initial response were observed; however, after a few months on each line, the disease
eventually progressed. In September 2020, a somatic panel (TARGET®) was performed,
revealing TMB of 10.19 mutations/Megabase and the following clinically relevant genetic
variants: Gene CDKN2A, variant: c.116delA p.(Asn39Thrfs*14), gene: PIK3CA, variation:
amplification, gene ARID1A, variant: c.971dupG p.(Ala325Argfs*75) and TP53 variant:
c.820G>T p.(Val274Phe).

In November 2020, new images documented a new anterior chest wall tumor and
disease progression to the sternum and pericardium. Considering multiple prior lines of
treatment including chemotherapy and immunotherapy, a good performance status (ECOG
1), case reports and a phase II trial of the benefit of CDK4/6i Palbociclib in tumors which
harbor somatic alterations in CDKN2A and, after informed consent, off-label Abemaciclib
was started on December 2020. Re-staging PET-CT on February 2021, after 8 weeks of
treatment with good tolerance, showed stable disease with metabolic response in the
pericardial lesion, costochondral joints, and sternum (Figure 2).
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High-resolution CT and bronchoalveolar lavage were performed. Grade 4 pneumonitis 
related to Abemaciclib was considered the most likely diagnosis after the exclusion of in-
fection and disease-related complications. He eventually improved with corticosteroid 
and Abemaciclib suspension (Figure 3). 

Figure 2. Response to Abemaciclib in the sternum and costochondral lesions. FDG-PET-Scan, Baseline
(left) and 8 weeks after (right) after initiation of Abemaciclib. (A) Sagittal plane and (B) Transversal
plane. Arrows show stable disease and complete metabolic resolution of costochondral lesions and
near-complete metabolic response of the sternal lesion when compared with prior scans.

Treatment was maintained until March 2021, when the patient developed dyspnea
and respiratory failure secondary to acute pneumonitis requiring orotracheal intubation.
High-resolution CT and bronchoalveolar lavage were performed. Grade 4 pneumonitis
related to Abemaciclib was considered the most likely diagnosis after the exclusion of
infection and disease-related complications. He eventually improved with corticosteroid
and Abemaciclib suspension (Figure 3).

In July 2021, after full recovery from pneumonitis and having remained with no cancer
treatment for 3 months and still having measurable disease, an immunotherapy rechallenge
was recommended. He received two cycles of Ipilimumab 1 mg/kg plus Nivolumab
3 mg/kg, followed by maintenance with Nivolumab 240 mg q2w. In January 2022, a new
PET-CT showed a partial response and complete metabolic response to immunotherapy
rechallenge (Figure 4). The patient is still on maintenance nivolumab, sustaining a durable
response confirmed by a PET-CT performed in October 2022.
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Figure 4. Response to immunotherapy rechallenge. FDG-PET-Scan, Baseline (left) and 6 months after
(right) after initiation of Ipilimumab plus Nivolumab. (A) Sagittal plane, and (B) Transversal plane.
Arrows show a partial response with metabolic response of sternum and costochondral lesions when
compared to prior scans, demonstrating a response to Ipilimumab plus Nivolumab.

3. Discussion

Within the last decade, the use of genomic profiling shed light on targetable mutations,
allowing for personalized therapies for specific oncogenic drivers [1]. Unfortunately, no
such molecular targets have been identified for SqCLC, resulting in poorer treatment
outcomes in patients with advanced disease [2]. Additional research is necessary to identify
and select the appropriate treatment for patients with SqCLC according to their molecular
features [4,13].

The CDKN2A gene is frequently inactivated in human cancers, including NSCLC.
The Cancer Genome Atlas (TCGA) project revealed that CDKN2A is inactivated in 72% of
SqCLC [3]. CDKN2A is a gene located on chromosome 9, which contains two introns, and
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three exons and encodes the p16INK4a and p14ARF proteins that inhibit the formation of
the complex between CDK4/6 and cyclin D, protects p53 from being broken down, and
induces the expression of p21, a CDK inhibitor [4,18,19]. The CDKN2A gene also activates
the retinoblastoma (Rb) family of proteins, which block the cell from progressing from the
G1 to the S phase [20]. The expression of CDK2/4/6 is increased in CDKN2A-defective
cells; therefore, CDK4/6i could be a valuable mechanism to prevent cell cycle progression
and thus induce cell senescence [5]. The activity of CDK4/6i in metastatic NSCLC is yet
to be fully comprehended and explored. Phases I, II and III trials were conducted using
CDK4/6i in this setting, with suboptimal drug activity (Table 1).

Table 1. Summary of clinical trials, including data on CDK4/6i in NSCLC.

Author, Year Therapy Phase N Molecular
Analysis Response to CDKi

Goldman et al., 2014 [8] Abemaciclib I 49 KRAS DCR: 54% for KRAS mut

Gopalan et al., 2018 [9] Palbociclib II 16 p16 null SD: 50% lasting 4–10 m

Goldman et al., 2018 [10] Abemaciclib vs. Erlotinib III 453 KRAS mut.
(Codons 12 and 13)

mOS: 7.4 m vs. 7.8 m
mPFS: 3.6 m vs. 1.8 m

DCR: 54% vs. 31%
ORR: 8.9% vs. 2.7%

Scagliotti et al., 2018 [11] Abemaciclib vs. Docetaxel II 159 NMA

mOS: 7 m vs. 12.4 m
mPFS: 2.5 m vs. 4.2 m

DCR: 50% vs. 64%
ORR: 2.8% vs. 4.2%

Kim et al., 2018 [12]
Abemaciclib plus

Pemetrexed, Gemcitabine
or Ramucirumab

Ib 86 NMA

DCR: 52% for
pemetrexed group

DCR: 25% for
gemcitabine group

DCR: 54% for
Ramucirumab group

Edelman et al., 2019 [13] Palbociclib II 32
CDK4, CCND1,

CCND2, CCND3
amplifications

mOS: 7.1 m
mPFS: 1.7 m

ORR: 6%
SD: 38%

Ahn et al., 2020 [14] Palbociclib
II

(TAPUR
Studt)

29
CDKN2A

alterations/No Rb
mutations

mOS: 21.6 w
mPFS: 8.1 w
DCR: 31%

Abbreviations: DCR, disease control rate; SD, stable disease; mOS median overall survival; mPFS, median
progression-free survival; ORR, overall response rate; VS, versus; NMA, no molecular analysis; TAPUR, The
Targeted Agent and Profiling Utilization Registry; M, months; W, weeks; mut, mutant.

Our patient also had a PIK3CA amplification and TP53 mutation. CDKN2A and PI3K
signaling pathways modulate the activity of Cyclin D, an important protein involved in
regulating cell cycle progression and DNA synthesis. The presence of both CDKN2A, PI3K
and TP53 mutations may justify a greater efficiency of the CDK4/6i Abemaciclib in patients
who present these combined alterations [7,19,21–23], as reported in this case (Figure 5).

Albeit leading to significant clinical, radiologic, and metabolic response, Abemaciclib,
after 8 weeks of treatment, had to be withheld due to grade 4 pneumonitis. This is a rare
adverse event. Data from MONARCH trials 2 and 3 showed that drug-induced lung injury
of any grade occurred in 3.4%, with grade 3 events occurring in ≤1% of cases [24].

Data has emerged more recently linking alterations in CDKN2A, with ICI resistance
in several solid tumors, including NSCLC [25]. However, our patient had a good initial
response with Pembrolizumab and later with Ipilimumab plus Nivolumab rechallenge.
The significant response to ICIs despite the CDKN2A mutation could be explained by the
high expression of PD-L1 and TMB-High, in addition to prior exposure to Abemaciclib.
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tumor suppressors p16ink4a, and p14ARF. PI3K-AKT pathway controls several transcription factors
(TFs), leading to an increase in Cyclin D expression. Abemaciclib prevents cell cycle progression,
inhibiting the complex CDK4/cyclin D, responsible for the phosphorylation and inhibition of the RB
tumor-suppressor gene.

Chemoimmunotherapy and immunotherapy alone have led to improved outcomes
in NSCLC, although limited data about treatment-related biomarker-driven responses are
available [26–28]. The KEYNOTE-024 trial showed that pembrolizumab was associated with
longer PFS and OS compared to platinum-based combination chemotherapy in patients
with previously untreated advanced NSCLC and a PD-L1 tumor proportion score of 50%
or greater [29].

The association of TMB-H with outcomes was assessed in phase 2 of the KEYNOTE-
158 study, which evaluated the anti-PD-1 monoclonal antibody pembrolizumab in patients
with previously treated, advanced solid tumors. The study used a prespecified cut point of
at least 10 mutations per megabase to define TMB-High tumors, identifying a subgroup of
patients who could have a robust tumor response to pembrolizumab monotherapy [30].
A phase III trial showed PFS significantly longer with the first-line combination of PD-1
and CTLA-4 nivolumab plus ipilimumab versus chemotherapy among patients with stage
IV or recurrent NSCLC that was not previously treated with chemotherapy and a TMB-H
(≥10 mutations per megabase) [31].

Most patients who initially benefited from ICI will eventually become resistant [32].
Acquired resistance to immunotherapy is defined by a measured objective response to
therapy, followed by progression on or after the therapy [33,34]. In melanoma, after
a disease progression to checkpoint inhibitors, patients usually receive other therapies,
adding an ICI of a different class. The interval without immunotherapy might sensitize
cancer to a subsequent checkpoint inhibition exposition [34,35]. If progression occurs
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several months or years after the last dose, rechallenge may still be an option, even in lung
cancer [17]. The lack of tumor antigens, defective antigen presentation, modulation of
critical cellular pathways, epigenetic changes, and changes in the tumor microenvironment
are all examples of resistance mechanisms that have been well-documented [36].

To our knowledge, this is the first report of immunotherapy rechallenge in a heav-
ily pre-treated patient with squamous cell lung cancer after drug-induced pneumonitis.
Furthermore, the durable tumor response observed in this case associated with the low
incidence of new adverse events could represent a new strategy to be further explored in
larger cohorts.

4. Conclusions

Therapy with Abemaciclib demonstrated metabolic, radiologic, and clinical response
in a heavily pretreated patient with metastatic SqCLC harboring CDKN2A and TP53
mutation in addition to PIK3CA amplification. Immunotherapies rechallenge with anti-
PD1/anti-CTLA4 doublet achieved a durable radiologic response in the setting of TPS
80%. Reports, even of single cases, may lead to new treatment strategies based on common
driver mutations. Rechallenges with immunotherapy should be prospectively studied to
identify predictors of clinical benefit.
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