
Citation: Desai, A.S.; Ashok, A.; Edis,

Z.; Bloukh, S.H.; Gaikwad, M.; Patil,

R.; Pandey, B.; Bhagat, N.

Meta-Analysis of Cytotoxicity

Studies Using Machine Learning

Models on Physical Properties of

Plant Extract-Derived Silver

Nanoparticles. Int. J. Mol. Sci. 2023,

24, 4220. https://doi.org/10.3390/

ijms24044220

Academic Editors: Elia Ranzato and

Simona Martinotti

Received: 3 January 2023

Revised: 9 February 2023

Accepted: 10 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Meta-Analysis of Cytotoxicity Studies Using Machine Learning
Models on Physical Properties of Plant Extract-Derived
Silver Nanoparticles
Anjana S. Desai 1 , Aparna Ashok 1, Zehra Edis 2,3,* , Samir Haj Bloukh 3,4 , Mayur Gaikwad 5,
Rajendra Patil 6 , Brajesh Pandey 1 and Neeru Bhagat 1,*

1 Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed)
University, Pune 412115, India

2 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University,
Ajman P.O. Box 346, United Arab Emirates

3 Center of Medical and Bio-allied Health Sciences Research, Ajman University,
Ajman P.O. Box 346, United Arab Emirates

4 Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University,
Ajman P.O. Box 346, United Arab Emirates

5 Department of Computer Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed)
University, Pune 412115, India

6 Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
* Correspondence: z.edis@ajman.ac.ae (Z.E.); neeru.bhagat@sitpune.edu.in (N.B.)

Abstract: Silver nanoparticles (Ag-NPs) demonstrate unique properties and their use is exponentially
increasing in various applications. The potential impact of Ag-NPs on human health is debatable
in terms of toxicity. The present study deals with MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-
tetrazolium-bromide) assay on Ag-NPs. We measured the cell activity resulting from molecules’
mitochondrial cleavage through a spectrophotometer. The machine learning models Decision Tree
(DT) and Random Forest (RF) were utilized to comprehend the relationship between the physical
parameters of NPs and their cytotoxicity. The input features used for the machine learning were
reducing agent, types of cell lines, exposure time, particle size, hydrodynamic diameter, zeta potential,
wavelength, concentration, and cell viability. These parameters were extracted from the literature,
segregated, and developed into a dataset in terms of cell viability and concentration of NPs. DT
helped in classifying the parameters by applying threshold conditions. The same conditions were
applied to RF to extort the predictions. K-means clustering was used on the dataset for comparison.
The performance of the models was evaluated through regression metrics, viz. root mean square
error (RMSE) and R2. The obtained high value of R2 and low value of RMSE denote an accurate
prediction that could best fit the dataset. DT performed better than RF in predicting the toxicity
parameter. We suggest using algorithms for optimizing and designing the synthesis of Ag-NPs in
extended applications such as drug delivery and cancer treatments.

Keywords: Ag-NPs; cytotoxicity; HEK293; PC 12 cell line; machine learning; Decision Tree; Random
Forest; k-means clustering; regression metrics

1. Introduction

In the last few decades, nanomaterials (NMs) have been at the forefront of materials
research for various applications. Due to their unique properties and designs compared to
conventional bulk materials, they have been considered “materials of the 21st century” [1].
There are numerous avenues of application for nanoparticles, such as in the industrial
sector, medical and biomedical fields, health care devices, engineering, electronics, and
environmental studies [2]. There is a significant focus on synthesizing NMs as nanospheres,
nanotubes, fullerenes, and quantum dots for various applications [3]. Ag-NPs are in high
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demand and are used extensively in consumer products such as cosmetics and ointments [4].
Ag-NPs are also used in medicine, therapeutic devices, pharmacology, biotechnology, elec-
tronics, engineering, energy, magnetic fields, and environmental remediation [5]. Besides
these applications, Ag-NPs have gained importance in industrial sectors, including textiles,
food, and consumer products, due to their inherent and effective antibacterial properties [6].
Ag-NPs are also being explored in healthcare, women’s hygiene products, paints, sunscreen,
biosensors, clothing, and electronics [4].

A high surface-to-volume ratio of Ag-NPs enhances their antimicrobial properties,
which makes them efficient in wound healing and topical drug administration [7]. Despite
these benefits, Ag-NPs are also known to exhibit toxicity. The strong oxidative property
of Ag-NPs results in the release of silver ions (Ag+). These silver ions interact with the
cells and adversely affect the system causing cytotoxicity, genotoxicity, and immunological
responses leading to cell death (apoptosis) [8–11]. Consequently, the use of Ag-NPs in
biological systems is limited [7,12]. Thus, using Ag-NPs raises concerns about exposure
in human or animal bodies due to their easy penetration into the tissues and reported
toxicities [13]. Moreover, it is well known from the literature that Ag+ ions have shown
enhanced toxicity compared to elemental Ag and nanoparticles [11]. Colloidal solutions
of Ag products for medical purposes release Ag+ ions, which may directly affect human
health [14]. The mechanism of cytotoxicity of Ag-NPs is not entirely known, and the
exact interaction processes of NPs with biological entities are yet to be understood [15–18].
Several studies have revealed that varied characteristics of Ag-NPs (e.g., particle size,
shape, the dose of NPs, time of exposure, and agglomeration of Ag-NPs) play a vital role
in affecting cytotoxicity. Different studies have shown that the physical properties of NPs
strongly depend upon their kinetic growth at each stage of synthesis [19,20]. Undergoing
a comprehensive toxicity study through the conventional method is tedious and time-
consuming. In the current consumerism-driven world, we require a faster method to predict
the parameters that affect cytotoxicity; hence, machine learning could be an alternative [21].
It is imperative to establish the predictive relationships between cytotoxicity and the
physical properties that play a crucial role in tuning the cytotoxic behavior of Ag-NPs. In
2019, Hagar I. Labouta et al. performed a meta-analysis on published data on the behavior
of numerous organic and inorganic NPs towards cytotoxicity and used the classification-
based Decision Tree models [21,22]. In 2020, Yi-Hsein Cheng et al. used 376 data sets from
the literature and performed physiologically-based pharmacokinetic (PBPK) modelling and
simulations. These models helped in predicting tumor delivery efficiency [23]. Recently,
Lie Liu et al., 2021, reported a meta-analysis of the published data using DT and RF, and
predicted the key variables affecting Ag-NPs-mediated cytotoxicity [21]. Nevertheless, the
intrinsic physical properties acting as attributes/features in earlier-used modelling methods
are inadequate to understand the complex behavior of nanoparticles with different cell
lines. The list of nanoparticles considered in data mining may affect the predictive results of
machine learning because different nanoparticles exhibit various physical properties. In the
present study, we have used the previously reported Ag-NPs synthesized using turmeric
extract considering nanoparticle toxicity issues as well [24–27]. This study presents the anti-
cancer property of Ag-NPs using an MTT assay. The meta-analysis of Ag-NPs on normal
cell lines and carcinoma cell lines was performed using supervised learning algorithms, i.e.,
Decision Tree (DT) and the Random Forest (RF), as well as unsupervised learning algorithm
k-means clustering. To our knowledge, this is the first time that acomparative study of
experimental analysis amalgamated with ML predictions has been presented.

2. Results

In our earlier reported work [24], the physical properties and stability of prepared Ag-
NPs were characterized using XRD, XPS, FESEM, TEM, DLS, and Zeta potential techniques.
Along with these studies, the optical properties of Ag-NPs were described using UV-Vis
Spectroscopy.
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2.1. Role of Optical Properties

Preliminary investigations of Ag-T-NPs formation were carried out with an ultraviolet-
visible (UV-Vis) spectroscopic analysis from 200 to 800 nm. The peak occurringat 430.4 nm
for the Ag-T NPs is usually the characteristic surface plasmon resonance (SPR) peak for
metal nanoparticles when their reactions are carried out in laboratory conditions. The
UV–visible spectrum of the aqueous medium containing Ag-T-NPs showed an absorption
peak around 430.4 nm, as shown in Figure 1.
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Figure 1. The UV-Vis absorption spectrum of Ag-T-NPs.

Transverse oscillations of electrons are credited with causing these peaks, and light
scattering also plays a role.

The trough at 329.6 nm in the spectrum depends upon the particle radius as a measure
of the refractive index [28,29]. A shoulder at 400 nm shows an increase in absorbance. The
precise nature of this shoulder is known to be a component of plasmon resonance, and
theoretical simulations using Mie formulations can predict its occurrence. When the rate of
silver nanoparticle creation has accelerated, and the particle size has grown, the increase in
absorbance is evident with the position of the peak shifting toward longer wavelengths.

2.2. Effect of Ag-NPs Induced Cytotoxicity on PC 12 Cells

Figure 2 shows that the increased concentration of Ag-T-NPs increases the toxicity on
PC 12 (Pheochromocytoma) cell lines.
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From the MTT assay, it was observed that, at 1 µg/mL, cell viability reduces appre-
ciably after 24 hours (h) and remains unchanged for 72 and 96 h. At 24 h, cell viability
decreases with an increased concentration of NPs. The same trend was observed for 48,
72, and 96 h of exposure time. Concentrations that were higher than 5 µg/mL showed a
reduced cell viability compared toremaining concentrations. This finding suggested that
cytotoxicity induced by the Ag-T-NPs is time- and concentration-dependent.

2.3. Significance of Physical Parameters on Cytotoxicity
2.3.1. Role of the Selected Input Features on the Cytotoxicity

Ag-NPs show a cytotoxic nature, and the parameters that affect the cytotoxicity are
particle size, capping agents, reducing agents, zeta potential, shape, chemical compositions,
exposure time, dosage, and the wavelength of NPs.

2.3.2. Effect of Particle Size

Particle size is reported to be a key parameter for deciding the cytotoxic nature of
Ag-NPs [30]. It is evident from the literature that particle size affects the surface area-to-
volume ratio and surface reactivity of nanoparticles [31–33]. One possible reason could
be that the increased surface area of nanoparticles increases the number of surface atoms
or molecules in an exponential trend, which offers high reactivity [34]. Also, different
particle sizes show distinct interactions with differentcell lines [35]. It is evident from the
research that, as the particle size decreases, the cytotoxicity increases. This statement can be
validated by Carlson et al., who synthesized 15 nm and 55 nm hydrocarbon-coated Ag NPs.
They observed that the generation of reactive oxygen species (ROS) is higherfor 15 nm as
compared to 55 nm Ag NPS exposed on macrophage cell lines [31]. Similar results were
found in the work of Liu et al., where 5 nm Ag-T-NPs proved to be more toxic than 20 and
50 nm Ag-NPs on four different cell lines (A549, HEPG2, MCF-7, and SGC-7901) [21]. One
possible reason for this could be the easy internalization of smaller particle sizes into cell
membranes.

2.3.3. Effect of Capping Agent

The capping of an electrostatic layer is required to curtail the agglomeration and stabi-
lize Ag-NPs. Capping agents help modify the surface chemistry of NPs by stabilizing them,
offering a definite shape, and reducing the Ag+ ions. From the existing literature, it has been
inferred that polysaccharide-coated Ag-NPs show suitable antimicrobial properties against
eukaryotic cells with no toxicity [36]. A difference in toxicity was observed for coated (PVP
and citrate coating) and uncoated Ag-NPs when used on J774A.1, a macrophage, and HT29
epithelial cells [37]. This observed difference in toxicity supports the claim that the capping
agent plays a significant role in cytotoxicity. In 2014, Gliga et al. studied the size-dependent
toxicity against BEAS-2B cells of commercially acquired 40 nm and 75 nm citrate-coated
Ag-NPS, and 10 nm citrate and PVP-coated Ag-NPs, which were directly used [30]. From
the obtained results, irrespective of coatings, more cytotoxicity was seen in 10 nm Ag NPs
compared to 40 and 75 nm Ag-NPs. However, no difference in cytotoxicity was observed
for 10 nm citrate and PVP-coated Ag-NPs. These findings suggest that the particle size is
the critical parameter that triggers cytotoxicity, moreso than the capping agent.

2.3.4. Effect of Biological Reducing Agents (Plant Extract)

The most popular ways of synthesizing Ag-NPs are chemical and biological routes.
The biological reducing agents such as plant extracts form a natural capping on Ag NPs
and inhibit the growth of particles [38]. In our previous study, we observed that biologically
synthesized NPs showed lesser cytotoxicity compared to chemically synthesized NPs [24].

Ag-NPs show a cytotoxic nature, and the parameters that affect their cytotoxicity are
particle size, capping agents, reducing agents, zeta potential, shape, chemical compositions,
exposure time, dosage, and the wavelength of the NPs.
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2.3.5. Effect of Zeta Potential on Cytotoxicity

Colloidal stability plays a significant role in cytotoxicity. This stability can be achieved
in two ways: steric stabilization or electrostatic stabilization. Steric stabilization is achieved
through capping, and electrostatic stabilization is brought about by adding foreign charge
species with charges opposite to the system. Due to the distribution of this opposite charge,
particles do not agglomerate. It has been observed that nanoparticles with Zeta potential
values greater than ±30 mV are typically considered to be stable [39]. Stability leads to a
stronger interaction between positively charged nanoparticles and cell membranes [40]. It
is reported that the nanoparticles with negative zeta potential cause less damage to the cells
than those with positive zeta potential, maybe because the cell membranes are negatively
charged [41–43]. One study found that the positively charged NPs showed more significant
toxicity to HeLa and NIH/3T3 cells than negatively charged NPs. More interactions lead
to easier internalization of NPs into the cell and, hence, trigger the toxicity, leading to
damage and the arrest of cells in the Go/G1 phase; strong binding between the NPs and
the negatively charged DNA could be a probable reason for this [44,45].

2.3.6. Effect of Nanoparticles Morphology on Cytotoxicity

Depending on the synthesis techniques and the parameters, such as temperature,
pH, reducing agent, and other experimental conditions, nanoparticles acquire different
morphologies such as spheres, ellipsoids, pillars, sheets, cubes, rods, and many more.
Numerous research papers have found that the shape of nanoparticles affects cytotoxi-
city [46–49]. For example, spherical nanoparticles are more subject to endocytosis (the
process by which cells absorb external material by engulfing it with its membrane) than
nanofibers and nanotubes [50]. Large portions of the cells are killed by plate-like and
needle-like NPs compared to rod-shaped and spherical nanoparticles [51].

2.3.7. Effect of Chemical Composition on Cytotoxicity

Apart from the size and shape of nanoparticles, other parameters trigger cytotoxicity,
and one among them is the chemical composition. In the case of metal nanoparticles, the
main reason for the toxic effect is the leakage of metal ions from the NPs while interacting
with cells. This toxicity also depends on the chemical composition of the NPs. Higher
concentrations of other metal ions, such as iron (Fe) and zinc (Zn), damage the cells despite
their biological applications. While synthesizing the NPs, researchers attempted to reduce
their cytotoxicity by coating the core of the NPs with a silica layer, with thick layers of
polymer, and by using specific non-toxic protocols [41].

2.3.8. Effect of Exposure Time on Cytotoxicity

The time duration of the exposure of cells to nanoparticles affects the cytotoxicity. In
one study, the Ag-NPs were exposed for 6 and 12 h. It was clear that cytotoxicity increased
in the case of NPs exposure for 12 h compared to those exposed for 6 h [52]. The possible
reason for this could be the oxidation of nanoparticles to Ag+ ions (Trojan horse effect) that
are inherently toxic. Thus, the continuous exposure time will increase the concentration of
Ag+ ions in the solution, resulting in more significant cytotoxicity [53].

2.3.9. Effect of Wavelength on Cytotoxicity

Researchers coated NPs with various substances to reduce toxicity. It has been ob-
served that coating brings about a modification in the optical properties of NPs. The coating
type and thickness modify the surface plasmonic resonance (SPR) of Ag-NPs, which is
observed as a shift in peak position in UV-Vis spectral studies. Thus, coating substances
such as organic, inorganic, and polymer can enhance the optical properties of Ag-NPs [54].

2.3.10. Effect of Concentration on Cytotoxicity

The concentration or the dosage of nanoparticles is another critical parameter that
affects toxicity. Although it is a known fact that toxicity depends upon the concentration, it
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is challenging to find the minimum concentration level of NPs that induces toxicity. The
percentage of toxicity varies with the concentration of NPs as per the cell line [55].

3. Discussion
3.1. Machine Learning Models to Predict Cytotoxicity Influencing Parameters

Machine learning works well when the correlation of input features is optimized.
The predicted outcome must agree with the conditions involved while performing the
regression and classification analyses through Decision Tree (DT), Random Forest (RF),
and clustering. A supervised learning technique follows specific steps before arriving
at the prediction. Under supervised machine learning (ML), datasets are distributed as
test and training datasets. First, algorithms are trained on the labelled dataset to match
the outcome (in terms of cytotoxicity). Then, the model is validated on a test dataset, a
subset of the training dataset. The input features are selected for optimal predicted output.
Decision Tree (DT) and Random Forest (RF), from the Orange open-source toolkit, were
used [56]. The data are collected and tailored into an m × n matrix, where m corresponds
to 1135 datasets and n corresponds to the nine features. The information was collected on
two datasets based on the cell types, i.e., normal cell lines and carcinoma cell lines. The
DT and RF algorithms were applied to both datasets with the same input parameters. The
input parameters were reducing agent, carcinoma and normal cell lines, exposure time,
particle size, hydrodynamic diameter, zeta potential, wavelength, concentration, and cell
viability.

Certain limitations were imposed on the normal cell line, including (i) cell viability
less than or equal to 50% (which implies that the nanoparticles are toxic to the cells); (ii) cell
viability greater than 50% (indicating that the nanoparticles are non-toxic to cells). The
condition proposed for the carcinoma cell line was (i) cell viability less than or equal
to 50%, implying that nanoparticles are toxic to the cells and hence favourable for us;
(ii) cell viability greater than 50%, indicating that nanoparticles are non-toxic to cells and
non-favourable in this case.

As an ensemble learning tool built upon DT, RF consists of multiple classifications and
regression DTs. Each DT or random tree of RF model was grown in the following manner.

Decision tree: This supervised machine learning technique is used to solve classifi-
cation problems. The classifier has a tree-structured nature, having nodes, branches, and
leaves. The tree begins with a root node, extends its branches further, and constructs a
tree-like structure until reaching the output. The internal nodes give the features of the
dataset, a branch gives the decision rules, and the leaf node gives the outcome. The decision
node and leaf node are the major nodes that play an important role in developing a Decision
Tree. The first is the decision nodes having multiple branches, and the second is the leaf
nodes. Decision nodes have multiple branches for making any kind of decision. Leaf nodes
do not contain any further branches and give the output of the decisions made. The features
of the given dataset are vital in performing the decisions and the tests to be conducted on
the dataset. They are a graphical representation of the possible solutions to a decision or
problem of interest based on the given conditions. A Decision Tree asks the question in
such a way that the answer is Yes or No, which splits the tree further into sub-trees.

Random forest: The supervised learning techniques are combined with the calcula-
tions of many Decision Trees to obtain a final output result. RF mostly creates multiple
Decision Trees and the outcomes of the trees are not correlated, as the features are selected
without replacement, reducing the possibility of overfitting by averaging down the result.
It is an ensemble of Decision Trees and, to develop many Decision Trees, the dataset must
be divided into different subsets by randomly choosing the feature with which the data
tree needs to be trained. The algorithm begins with the selection of random samples from a
given dataset. An algorithm will be constructed for every sample consisting of one Decision
Tree each, and then the prediction is obtained from each Decision Tree. For classification
problems, the output is the class chosen by most trees. The most frequent categorical
variable will yield the predicted class. In fact, Decision Trees consider all of the possible
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features to split to produce an outcome, whereas Random Forest selects only the subset of
the features. Each tree in the ensemble has data taken from the training set. From the entire
training set, one-third of the set is taken as test data. The determination of the prediction
varies according to the statement of the problem.

The study leverages multiple hyperparameters in Random Forest and Decision Tree
provided by Orange Tool. The result in Table 1 uses these hyperparameters. Multiple
values of each hyperparameter were experimented on. The resultant table provides the
best results.

Table 1. Represents the hyperparameters utilized for the algorithms.

Algorithm Hyperparameters Values (Carcinoma and
Normal Cell Lines)

Random Forest (RF)

Number of Trees 10

Number of attributes at each split 5

Replicable Training True

Limit Depth of Individual Trees 15

Don’t Split the subset smaller than 5

Decision Tree (DT)

Induce Binary Tree True

Minimum Numbere of Instances
in leaves 2

Don’t Split the subset smaller than 5

Limit Maximum Tree Depth to 100

Clustering: Cluster denotes a group of similar items occurring as an assemblage. The
technique follows the dividing data points into groups such that data points in the same
groups are more similar to other data points in the same group and dissimilar to those in
other groups. It is the collection of objects based on similarities and dissimilarities between
them.

K-Means clustering: The first step is to randomly select the number of clusters, each
represented by a variable ‘k.’ Next, each cluster is assigned a centroid, i.e., the centre of
that particular cluster. It is important to define the centroids as far off from each other
as possible to reduce variation. After all of the centroids are specified, each data point is
assigned to the cluster whose centroid is at the closest distance. Once all of the data points
are assigned to respective clusters, the centroid is again assigned for each cluster. Once
again, all of the data points are rearranged in a specific cluster based on their distance from
the newly-defined centroids. This process is repeated until the centroids stop moving from
their positions.

The original data are sampled repeatedly, and at each sampling, a set of features is
randomly selected from each node pool, resulting in the best cart segmentation algorithm
selection. Finally, a forest is grown by aggregating the random features (classifiers) and
allowing each tree to determine the most likely classification. RF models are often more
accurate and resilient than DT classifiers in the presence of noise and outliers.

3.1.1. The Statistical Techniques for Prediction and Evaluation

Sampling is conducted on the average of classes on randomly selected data points of
the entire dataset. The importance of stratified sampling in cross-validation is to ensure
that training and testing sets have a relative proportion of the features of interest compared
to the original dataset. The accuracy of the predictions made by the generated Decision
Tree (DT) and Random Forest (RF) model was evaluated. Usually, cross-validation is done
to reduce the error produced by the inappropriate selection of target class variables. It also
ensures that no data point is over or under-represented in training and test sets to obtain a
more accurate performance estimate. The performance of an algorithm can be visualized
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using a specialized table structure called a confusion matrix. The confusion matrix is a
performance measure of ML classification problems where the output can be two or more
classes. It helps to measure Recall, Precision, Accuracy, and f1-score. Recall indicates a
high possibility of correctly predicted values from the positive classes. Precision shows the
values that turned out to be positive from the classes predicted as positive. It is difficult
to compare two models with low Precision and high Recall. The f1-score is also used to
identify the performance of algorithms. f1-score is the measure of the ability of a classifier
to distinguish between classes. The probability curve plotted against the true and false
positive rates at the threshold values when f1-score = 1 can distinguish the positive and
negative class points perfectly. If f1-score = 0, all positive values are predicted as negative
values and vice versa. An f1-score, such that 0.5 < f1-score < 1, indicates that the algorithm
can detect more true positives and negatives than false positives and false negatives. A
f1-score = 0.5 shows the inability to distinguish between the positive and negative class
points.

3.1.2. Estimating the Performance of the Models

Prediction accuracy was estimated for the two models that were developed, Decision
Tree (DT) and Random Forest (RF), based on the 10-fold cross-validation method. The
performance was evaluated in terms of Precision (PR), Recall (RE), Accuracy (AC), and
f1-score. These values indicate the prediction competence of the generated models, where
a higher value denotes a better model, and a value equivalent to 1 suggests a perfect
model. If the accuracy value is >70%, it is considered that the classification model has a
high prediction capability. The area under the receiver operating characteristic curve was
evaluated for the classifier’s performance by plotting all combinations of decision threshold
values in False and True Positive Rates (FPR and TPR, respectively).

3.1.3. Validation of the Models and Their Comparison

The DT and RF models demonstrated optimum accuracy through the nine input
parameters, and conditions were imposed on the dataset for performing the CART (Clas-
sification and Regression Tree) algorithm. The prediction metrics were utilized to check
the accuracy of our predictions and convey the numeral deviation from actual values. The
mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
and R2 are all measures used to assess the model’s effectiveness in regression analysis.
MSE is the average squared difference between the original and predicted values in the
dataset. In contrast, MAE is the average of the absolute error difference between the actual
and anticipated values in the dataset, i.e., assessing the variance of the residuals. RMSE
measures the standard deviation of the residuals. R2 measures how well a regression model
fits a dataset and how well it reproduces observed findings based on the proportion of total
variation in outcomes that the model is responsible for explaining. Figures 3 and 4 show
the Decision Tree obtained according to the classification based on the cell lines and their
toxicity.
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Figure 4. The decision Tree diagram confirms that, for calculating cytotoxicity and cell viability for
carcinoma cell lines, zeta potential, exposure time, reducing agent, and concentration are important
factors.

Classification was performed to differentiate between normal and cancer cells based
on the parameters provided. It was done to reflect that normal cells may have different
feature values with different cell viability. The regression was performed to predict the cell
viability for normal and cancer cells. Regression helps to analyze the different parameters
that can affect cell viability. Thus, both the classification and regression helped to validate
the cell viability based on different features. In regression analysis, MAE, MSE, RMSE, R
squared, and Adjusted R2 metrics were mainly used to evaluate the model’s performance.
The values are from the test results.

When regression analysis was performed on the Decision Tree and Random Forest
model, the R2 (0.97) of the DT model was higher than the R2 (0.87) of the RF model,
and the RMSE (4.22) value of DT was lower than the RMSE (9.75) value of RF. The high
value of R2 and low value of RMSE indicate that the prediction is accurate, suggesting
that the Decision Tree performed better than the Random Forest in predicting the toxicity
parameter. The prediction was more precise and accurate, and best fit the dataset, as shown
in Tables 2 and 3. With 10-fold cross-validation, the Decision Tree and Random Forest
models provided nearly the same results. Thus, both DT and RF are suitable for the toxicity
classification of carcinoma and normal cell lines.
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Table 2. Regression on Cytotoxicity associated with Carcinoma and Normal* cell lines.

Model MSE RMSE MAE R2

DT 160.86 12.68 8.80 0.84

RF 240.13 15.49 12.58 0.76

* DT 17.83 4.22 2.49 0.97

* RF 94.97 9.75 7.32 0.87

Table 3. Actual Values against Predicted Values.

Predicted Values

A
ct

ua
l

V
al

ue
s Negative (0) Positive (1)

Negative (0) True Negative (TN) False Negative (FN)
Positive (1) False Positive (FP) True Positive (TP)

Further, 10-fold cross-validation, Decision Tree and Random Forest provided nearly
the same results. The 10-fold cross-validation was performed using Orange Tool, which
returns only the best result. Therefore, multiple results are not provided.

The k-fold cross-validation (explained below) was used to create data splits. These
data splits are in a ratio of 9:1, where 90% were training data and 10% were testing data.
The total training data points were 734 and 81 testing for carcinoma. In addition, we used
450 data points as training and 50 rows of data as testing for normal cell lines.

The ratio between the total data of normal to carcinoma was 815:500, i.e., 8:5. Since the
dataset has a higher number of data collected on the papers worked on carcinoma cell lines
in comparison with normal cell lines, the ratio splitting preferred carcinoma over normal
cell lines.

The test score’s accuracy, f1-score, Precision, and Recall confirm that DT and RF classify
non-toxic and toxic parameters correctly, and DT performed better than RF in classifying
them.

K-fold cross-validation: The data samples are chosen in the same proportion from a
population based on the characteristics. The accuracy in the prediction of the generated
Decision Tree (DT) and Random Forest (RF) model was evaluated. Sampling was conducted
on the average of classes on the data points selected randomly from the entire dataset. The
inclusion of stratified sampling is vital in cross-validation to ensure that training and testing
sets have an equal proportion of the features of interest compared to the original dataset.
Usually, cross-validation is done to reduce the error arising from the inappropriate selection
of target class variables. It also ensures that no data point is over- or under-represented in
the training and test sets to give a more accurate estimation of performance or error.

The dataset was randomly divided into independent k subsets, where k = 10, and
where the entire dataset kept a union between the subsets. The intersection between these
subsets should be null and void. Then, k-1, i.e., nine subsets of the entire data, were taken
for training to produce classifiers, and the existing subset was used for substantiation. The
average value of k testing results is, finally, restored to the model.

Confusion matrix: An algorithm’s performance, frequently that of a supervised learn-
ing algorithm, can be visualized using a specialized table structure called a confusion
matrix, also known as an error matrix, in machine learning and, more specifically, in the
problem of statistical classification. The confusion matrix is a performance measurement
for ML classification problems where the output can be two or more classes.

The efficiency of a classification model is evaluated using an N × N matrix termed the
confusion matrix, where N is the total number of target classes. The developed machine
learning model compared the predicted target values to the actual target values in the
matrix. The confusion matrix shows the prediction of toxic and non-toxic data (Table 4).
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Table 4. Normal and Carcinoma cell lines Confusion Matrix.

Normal Cell Lines Confusion Matrix

DT RF

Train Predict Test Predict Train Predict Test Predict

0 1 0 1 0 1 0 1

Actual 0 279 0 279 Actual 0 31 0 31 Actual 0 279 0 279 Actual 0 31 0 31

1 0 171 171 1 0 19 19 1 0 171 171 1 0 19 19

279 171 450 31 19 50 279 171 450 31 19 50

Carcinoma Cell Lines Confusion Matrix

DT RF

Train Predict Test Predict Train Predict Test Predict

0 1 0 1 0 1 0 1

Actual 0 259 1 260 Actual 0 29 0 29 Actual 0 260 0 260 Actual 0 29 0 29

1 1 473 474 1 0 52 52 1 0 474 474 1 0 52 52

260 474 734 260 52 481 260 474 734 29 52 81

The dataset was trained and tested for the confusion matrix of normal cell lines with
the implemented DT and RF algorithms. For both the training and test set, the DT and RF
correctly classified all non-toxic data points as 0 and toxic data points as 1.

For the confusion matrix of Carcinoma cell lines, the dataset was trained and tested,
and the DT and RF algorithms were, again, implemented. For the training set, the DT
correctly classified all instances of non-toxic (0) data points, and misclassified only 1 of
toxic (1). This means that 259 out of 260 toxic rows were correctly predicted. In the table,
the next horizontal cell, i.e., Actual 0 (toxic) and Predicted 1 (non-toxic), shows the value
1. This means that only 1 out 260 toxic rows were predicted as non-toxic. The first cell of
the second row, i.e., Actual 1 (non-toxic) and Predicted 0 (toxic) in the table, shows a the
value 1. This means that only 1 out of 474 non-toxic data points were predicted as toxic.
For the test set, DT correctly classified all non-toxic data points as 0 and toxic data points
as 1. Similarly, for both the training and test sets, RF correctly classified all non-toxic data
points as 0 and toxic data points as 1.

DT and RF correctly classified all non-toxic (0) and toxic (1) data points in carcinoma
cell lines. In addition, the tree diagram represents the prediction of cell viability, where
outliers are removed for precise prediction. Thus, the tree shows an important attribute in
predicting cell viability.

A heat map shown in Figure 5 was generated simultaneously, representing the correla-
tion between the parameters on each axis.

The heat map ranges between −1 and +1—the estimated value is approximately zero,
showing no linear relation between the two features. A correlation value near +1 indicates
a strong positive correlation between the parameters, and -1 indicates a weaknegative
correlation between the parameters, such that the value of one parameter increases and the
other decreases. The diagonal values are 1, depicting an optimum correlation with each
parameter correlating to itself.

Unsupervised learning is a subclass of machine learning. These models do not require
labels for the input data or sample outputs. Each one searches for patterns and trends in
the data. The used models run on unlabelled data after being trained on it. Clustering
or cluster analysis is a machine learning technique that groups unlabelled datasets. The
method follows dividing data points into groups such that each data point in a group is
similar to other data points in the same group, and dissimilar to the data points in different
groups. It is a collection of objects based on similarity and dissimilarity. The first step
is randomly selecting several clusters represented by a variable ‘k.’ Next, each cluster is
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assigned a centroid, i.e., the centre of that cluster. It is essential to define the centroids as far
off from each other as possible to reduce variation. After all of the centroids are specified,
each data point is assigned to the cluster whose centroid is closest to these data. Once all of
the data points are assigned to respective clusters, the centroid is again assigned for each
cluster. Once again, all of the data points are rearranged in specific clusters based on their
distance from the newly defined centroids. This process is repeated until the centroids stop
moving from their positions.
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All nine input features were selected to form individual cluster assignments to predict
the expected outcome. The centre of a cluster could not be obtained after iterations as
the data points seemed too varied and distinct. Expectation-maximization is a two-step
procedure used by the algorithm’s core component. The expectation step locates the closest
centroid for each data point. Then, in the maximizing stage, the mean of all points for each
cluster is calculated, and the new centroid is set. Once the centroids converge or match the
assignment from the previous iteration, the sum of the squared errors (SSE) is computed to
assess the quality of the cluster assignments. SSE is calculated as the product of the squared
distances between each point and its nearest centroid.

Given that this is a measure of error, k-means seeks to reduce this value. However,
this value could neither be minimized nor converged for our developed dataset to form a
centroid. Some significant inferences were understood through clustering analysis, and the
figures are illustrated through scatter plots.

All graphs representing the clusters of the physical properties are compiled in a
supplementary document S1 (Supplementary Figures S1–S10).
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4. Materials and Methods

Several efforts have been made in recent years to develop classic Quantitative Structure–
Toxicity Relationship (QSTR) models. Unfortunately, their development is challenged by
the inadequate number of toxicity-relevant physicochemical data in the dataset [21,25]. In
contrast, the mature method called literature data mining (meta-analysis) is well known
for establishing the relationships between the structural attributes and the toxic effects of
numerous fabricated nanoparticles [22,26,27]. For data collection, the preferred keywords
were “silver nanoparticles for cytotoxicity.” To avoid replication, we restricted ourselves
to two different databases. One was ScienceDirect, and the other was MDPI. Also, we
focused on the latest research outcomes in cytotoxicity and acquired the data from October
2017 to April 2022. We focused only on the latest research articles; therefore, we could not
obtain sufficient data with only Ag-NPs as keywords for MTT assay. Thus, we increased
the data by including chemically- and biologically-synthesized silver-modified nanopar-
ticles. We found around 38 research articles from ScienceDirect and 21 from MDPI. Out
of 59 articles, approximately 39 papers were accessed, and the 40th paper was our own
previously reported article [24]. Finally, we collected 2275 datasets (cell viability and their
corresponding dosages, i.e., concentrations of NPs). Of 2275 data sets, 435 were excluded
because different assays were used to study the cytotoxicity other than the MTT assay.
Two-hundred more data points were excluded, as the concentrations were measured in
other forms rather than µg/mL. The outcome of the data mining was 1640 data points.
Out of 1640 data points, 815 data points were of carcinoma cell lines and 825 data points
were of normal cell lines. Further, 325 data points were discarded from normal cell lines
due to more than 50% of the parameters missing out of the 9 inputs considered for the
Machine Learning algorithm. Finally, 1315 filtered data points (500 normal cell lines and
815 carcinoma cell lines) from 40 articles, with the previously mentioned 9 different input
features in determining cytotoxicity tested using MTT assay, were used. The schematic
representation of the selection criteria of the datasets is shown in Figure 6.
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A list of the research articles used to develop a dataset for building machine learning
models has been provided in the Supplementary Document as Table S1.
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We have recently reported cytotoxicity studies on Ag-NPs derived from two different
routes. Turmeric, aloe vera, and turmeric mixed with aloe vera were used to obtain Ag-NPs.
Among all of the synthesized samples, Ag-NPs derived from the turmeric extract were
biocompatible with HEK 293 cells and non-toxic to the Drosophila model up to 250 µg/mL
of concentration [24]. The cytotoxicity study was done on the HEK cell line, and the toxicity
study was done on the Drosophila model [24]. The non-toxicity could be because of the
shape, size, and better stability of NPs. The Ag-NPs were a medium for an anti-cancer
study on the PC 12 carcinoma cell line. Biosynthesized turmeric-derived Ag-NPs were used
to study the proliferative activity of PC 12 carcinoma cells using (3-(4,5-Dimethylthiazol-2-
yl)-2,5-Diphenyltetrazolium Bromide) or MTT assay. In a 96-well plate, PC 12 cells were
seeded and incubated overnight. The cells were treated with a turmeric-AgNPs plate in a
dilution range from 0.1 to 100 g/mL. The treatment lasted 24, 48, 72, and 96 h. Following the
indicated incubation time, 20 µL of MTT reagent was added to each well and incubated for
4 hours in a humidified 5% CO2 incubator at 37 ◦C. After 4 hours, each well received 100 µL
of stock solution and was incubated for 1 hour to solubilize the formazan. Absorbance at
570 nm was recorded using a microplate reader (Bio Tek, Winooski, VT, USA). This report
used DT, RF, and k-means clustering to understand the relation of key parameters with
toxicity. The synthesized turmeric-derived Ag-NPs were used to study their cytotoxicity
on carcinoma cell lines (PC 12) using MTT assay, which analyses the physical parameters
that affect the cytotoxicity (as discussed in our previous study); exact classification and
prediction were made with the help of DT and RF. Even k-means clustering indirectly
predicted that the physical parameters which affect cell viability are interdependent and
hence showed complex clusters for all of the parameters.

5. Conclusions

In our previously published work, various physical properties of Ag-T-NPs were
studied. We reported that, more than other physical parameters, stability plays a vital
role in the cytotoxicity (in-vitro test) of the NPs in normal cell line and in in-vivo toxicity.
In continuation of our previous work, we have also analysed the optical property of
Ag-T-NPs. Ag-T-NPshave been used to carry out cytotoxicity on carcinoma cell lines.
Through Machine Learning, we tried to comprehend the relationship between toxicity
and physical input features such as reducing agents, particle size, zeta potential, cell type
(cancer/normal cell lines), hydrodynamic diameter, wavelength, morphology, exposure
time, and exposure dosage. We carried out this study through two well-known supervised
machine learning algorithms for regression analysis: Decision Tree (DT) and Random Forest
(RF). The obtained test scores were compared with the DT and showed a perfect accuracy
of 1 compared to RF. The obtained high value of R2 and low value of RMSE indicated that
the prediction was accurate, suggesting that DT performed better than RF in predicting the
toxicity parameter. The prediction was more precise and accurate, and best fit the dataset.
The k-means clustering was used to analyze the relationship between different features;
however, clear clusters were not formed. This was due to the relatively small dataset with
varied features.

The close relationship that we have achieved between the experimental analysis results
and the algorithm-based predictions shows the reliability of these algorithms. Hence, we
suggest that these algorithms can be utilized as an add-on for optimizing and designing the
synthesis of Ag-NPs for extended applications such as drug delivery and cancer treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24044220/s1.
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silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [CrossRef]

http://doi.org/10.1021/cr030067f
http://doi.org/10.1111/j.1445-5994.1973.tb03123.x
http://www.ncbi.nlm.nih.gov/pubmed/4204711
http://doi.org/10.1063/1.1695709
http://doi.org/10.1039/a827001z
http://doi.org/10.1038/nbt1098-888
http://www.ncbi.nlm.nih.gov/pubmed/9788326
http://doi.org/10.1016/j.jcws.2012.05.001
http://doi.org/10.1016/j.snb.2009.01.019
http://doi.org/10.1016/S0305-4179(99)00116-3
http://doi.org/10.1016/S0002-9343(98)00240-X
http://doi.org/10.1510/icvts.2008.188870
http://www.ncbi.nlm.nih.gov/pubmed/18948308
http://doi.org/10.1002/marc.200400323
http://doi.org/10.1186/1746-4269-2-43
http://www.ncbi.nlm.nih.gov/pubmed/17026769
http://doi.org/10.1016/S0303-2647(02)00010-2
http://doi.org/10.2147/IJN.S121956
http://doi.org/10.1016/j.ijbiomac.2014.01.071
http://doi.org/10.1016/j.biomaterials.2009.07.065


Int. J. Mol. Sci. 2023, 24, 4220 16 of 17

18. Mason, C.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Switchgrass (Panicum virgatum) extract mediated green synthesis of
silver nanoparticles. World J. Nano Sci. Eng. 2012, 2, 47. [CrossRef]

19. Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H. Formation and size control of silver nanoparticles by laser ablation in
aqueous solution. J. Phys. Chem. B 2000, 104, 9111–9117. [CrossRef]

20. Zhu, J.; Liu, S.; Palchik, O.; Koltypin, Y.; Gedanken, A. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectro-
chemical methods. Langmuir 2000, 16, 6396–6399. [CrossRef]

21. Liu, L.; Zhang, Z.; Cao, L.; Xiong, Z.; Tang, Y.; Pan, Y. Cytotoxicity of phytosynthesized silver nanoparticles: A meta-analysis by
machine learning algorithms. Sustain. Chem. Pharm. 2021, 21, 100425. [CrossRef]

22. Labouta, H.I.; Asgarian, N.; Rinker, K.; Cramb, D.T. Meta-analysis of nanoparticle cytotoxicity via data-mining the literature. ACS
Nano 2019, 13, 1583–1594. [CrossRef]

23. Cheng, Y.-H.; He, C.; Riviere, J.E.; Monteiro-Riviere, N.A.; Lin, Z. Meta-analysis of nanoparticle delivery to tumors using a
physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 2020, 14, 3075–3095. [CrossRef] [PubMed]

24. Desai, A.S.; Singh, A.; Edis, Z.; Haj Bloukh, S.; Shah, P.; Pandey, B.; Agrawal, N.; Bhagat, N. An In Vitro and In Vivo Study of the
Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. J. Funct. Biomater. 2022, 13, 54. [CrossRef]

25. Burello, E. Review of (Q) SAR models for regulatory assessment of nanomaterials risks. NanoImpact 2017, 8, 48–58. [CrossRef]
26. Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing

quantum dots. Nat. Nanotechnol. 2016, 11, 479–486. [CrossRef] [PubMed]
27. Gernand, J.M.; Casman, E.A. A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and

Impurities Affect the Toxicity of Carbon Nanotubes. Risk Anal. 2014, 34, 583–597. [CrossRef] [PubMed]
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