Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition?
Abstract
:1. Introduction
2. Results
2.1. Floral Display and Flower Structure
2.2. Sugars in Nectar
2.3. Amino Acids in Nectar
2.4. Reproductive Success
2.5. Determinants of Reproductive Success
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Fieldwork and Floral Trait Measurements
4.3. Nectar Analysis
4.3.1. Nectar Isolation
4.3.2. Sugar and Amino Acid Determination
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kull, T.; Hutchings, M.J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 2006, 129, 31–39. [Google Scholar] [CrossRef]
- Phillips, R.D.; Reiter, N.; Peakall, R. Orchid conservation: From theory to practice. Ann. Bot. 2020, 126, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Bergman, E.; Ackerman, J.D.; Thompson, J.; Zimmerman, J.K. Land-use history affects the distribution of the saprophytic orchid Wullschlaegelia calcarata in Puerto Rico’s Tabonuco Forest. Biotropica 2006, 38, 492–499. [Google Scholar] [CrossRef]
- Besi, E.E.; Nikong, D.; Mustafa, M.; Go, R. Orchid diversity in anthropogenic-induced degraded tropical rainforest, an extrapolation towards conservation. Lankesteriana 2019, 19, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Hundera, K.; Aerts, R.; Beenhouwer, M.D.; Overtveld, K.V.; Helsen, K.; Muys, B.; Honnay, O. Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests. Biol. Conserv. 2013, 159, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Köster, N.; Friedrich, K.; Nieder, J.; Barthlott, W. Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv. Biol. 2009, 23, 911–919. [Google Scholar] [CrossRef]
- Fekete, R.; Löki, V.; Urgyán, R.; Süveges, K.; Lovas-Kiss, Á.; Vincze, O.; Molnár, V.A. Roadside verges and cemeteries: Comparative analysis of anthropogenic orchid habitats in the Eastern Mediterranean. Ecol. Evol. 2019, 9, 6655–6664. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, J. Invasive orchids: Weeds we hate to love? Lankesteriana 2007, 7, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Swarts, N.D.; Dixon, K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009, 104, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Reiter, N.; Whitfield, J.; Pollard, G.; Bedggood, W.; Argall, M.; Dixon, K.; Davis, B.; Swarts, N. Orchid re-introductions: An evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol. 2016, 217, 81–95. [Google Scholar] [CrossRef]
- Hinsley, A.; de Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Kumar, P.; Masters, S.; Metusala, D.; Roberts, D.L.; et al. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc. 2017, 186, 435–455. [Google Scholar] [CrossRef]
- Cariveau, D.P.; Winfree, R. Causes of variation in wild bee responses to anthropogenic drivers. Curr. Opin. Insect. Sci. 2015, 10, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Adamowski, W. Expansion of native orchids. In Białowieża Geobotanical Station. Long Term Studies. Data Basis on the Vegetation and Environment 1952–2002; Faliński, J.B., Ed.; Phytocoenosis 14 (N.S.), Supplementum Bibliographiae Geobotanicae 5; Warsaw University, Białowieża Geobotanical Station: Warsaw, Poland, 2002; pp. 111–113. [Google Scholar]
- Adamowski, W. Expansion of native orchids in anthropogenous habitats. Pol. Bot. Stud. 2006, 22, 35–44. [Google Scholar]
- Coates, F.; Lunt, I.D.; Tremblay, R.L. Effects of disturbance on population dynamics of the threatened orchid Prasophyllum correctum D.L. Jones and implications for grassland management in south-eastern Australia. Biol. Conserv. 2006, 129, 59–69. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Brys, R.; Hutchings, M.J. Biological flora of the British Isles: Epipactis palustris. J. Ecol. 2014, 102, 1341–1355. [Google Scholar] [CrossRef]
- Jermakowicz, E.; Brzosko, E. Demographic responses of boreal-montane orchid Malaxis monophyllos (L.) Sw. populations to contrasting environmental conditions. Acta Soc. Bot. Pol. 2016, 85. [Google Scholar] [CrossRef] [Green Version]
- Rewicz, A.; Jaskuła, R.; Rewicz, T.; Tończyk, G. Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats. PeerJ 2017, 5, e3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakhrameeva, M.G.; Tatarenko, I.V.; Varlygina, T.I.; Torosyan, G.K.; Zagulski, M.N. Orchids of Russia and Adjacent Countries (within the Borders of the Former USSR); A.R.G. Gantner Verlag, K.G.: Ruggell, Liechtenstein, 2008; p. 690. [Google Scholar]
- Kolanowska, M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 2013, 8, e77352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tałałaj, I.; Brzosko, E. Selfing potential in Epipactis palustris, E. helleborine and E. atrorubens (Orchidaceae). Plant Syst. Evol. 2008, 276, 21–29. [Google Scholar] [CrossRef]
- Kowalkowska, A.K.; Pawłowicz, M.; Guzanek, P.; Krawczyńska, A.T. Floral nectary and osmophore of Epipactis helleborine (L.) Crantz (Orchidaceae). Protoplasma 2018, 255, 1811–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubska-Busse, A.; Kadej, M.; Prządo, D.; Steininger, M. Pollination ecology of Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae) in the south-western Poland. Acta Bot. Sil. 2005, 2, 131–144. [Google Scholar]
- Ehlers, B.K.; Olesen, J.M.; Ågren, J. Floral morphology and reproductive success in the orchid Epipactis helleborine: Regional and local across-habitat variation. Plant Syst. Evol. 2002, 236, 19–32. [Google Scholar] [CrossRef]
- Jakubska-Busse, A.; Kadej, M. The pollination of Epipactis Zinn, 1757 (Orchidaceae) species in Central Europe—The significance of chemical attractants, floral morphology and concomitant insects. Acta Soc. Bot. Pol. 2011, 80, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Brzosko, E.; Bajguz, A.; Burzyńska, J.; Chmur, M. Nectar chemistry or flower morphology—What is more important for the reproductive success of generalist orchid Epipactis palustris in natural and anthropogenic populations? Int. J. Mol. Sci. 2021, 22, 12164. [Google Scholar] [CrossRef]
- Brzosko, E.; Bajguz, A.; Chmur, M.; Burzyńska, J.; Jermakowicz, E.; Mirski, P.; Zieliński, P. How are the flower structure and nectar composition of the generalistic orchid Neottia ovata adapted to a wide range of pollinators? Int. J. Mol. Sci. 2021, 22, 2214. [Google Scholar] [CrossRef]
- Gijbels, P.; Ceulemans, T.; Van den Ende, W.; Honnay, O. Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea. Oecologia 2015, 179, 785–795. [Google Scholar] [CrossRef]
- Li, T.; Wu, S.; Yang, W.; Selosse, M.-A.; Gao, J. How mycorrhizal associations influence orchid distribution and population dynamics. Front. Plant Sci. 2021, 12, 647114. [Google Scholar] [CrossRef] [PubMed]
- Selosse, M.-A. The latest news from biological interactions in orchids: In love, head to toe. New Phytol. 2014, 202, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Moré, M.; Amorim, F.W.; Benitez-Vieyra, S.; Medina, A.M.; Sazima, M.; Cocucci, A.A. Armament imbalances: Match and mismatch in plant-pollinator traits of highly specialized long-spurred orchids. PLoS ONE 2012, 7, e41878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunschke, J.; Sletvold, N.; Ågren, J. The independent and combined effects of floral traits distinguishing two pollination ecotypes of a moth-pollinated orchid. Ecol. Evol. 2019, 9, 1191–1201. [Google Scholar] [CrossRef]
- Trunschke, J.; Sletvold, N.; Ågren, J. Manipulation of trait expression and pollination regime reveals the adaptive significance of spur length. Evolution 2020, 74, 597–609. [Google Scholar] [CrossRef]
- Boberg, E.; Ågren, J. Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Funct. Ecol. 2009, 23, 1022–1028. [Google Scholar] [CrossRef]
- Boberg, E.; Alexandersson, R.; Jonsson, M.; Maad, J.; Ågren, J.; Nilsson, L.A. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia. Ann. Bot. 2014, 113, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Little, K.J.; Dieringer, G.; Romano, M. Pollination ecology, genetic diversity and selection on nectar spur length in Platanthera lacera (Orchidaceae). Plant Spec. Biol. 2005, 20, 183–190. [Google Scholar] [CrossRef]
- Maad, J.; Alexandersson, R. Variable selection in Platanthera bifolia (Orchidaceae): Phenotypic selection differed between sex functions in a drought year. J. Evol. Biol. 2004, 17, 642–650. [Google Scholar] [CrossRef]
- Scopece, G.; Juillet, N.; Lexer, C.; Cozzolino, S. Fluctuating selection across years and phenotypic variation in food-deceptive orchids. PeerJ 2017, 5, e3704. [Google Scholar] [CrossRef] [Green Version]
- Sletvold, N.; Ågren, J. Nonadditive effects of floral display and spur length on reproductive success in a deceptive orchid. Ecology 2011, 92, 2167–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sletvold, N.; Grindeland, J.M.; Ågren, J. Vegetation context influences the strength and targets of pollinator-mediated selection in a deceptive orchid. Ecology 2013, 94, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sletvold, N.; Trunschke, J.; Smit, M.; Verbeek, J.; Ågren, J. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution 2016, 70, 716–724. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.L.; Peakall, R. Experimental examination of pollinator-mediated selection in a sexually deceptive orchid. Ann. Bot. 2019, 123, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.M.; Eisen, K.E.; Martin, R.A.; Sletvold, N. A meta-analysis of the agents of selection on floral traits. Evolution 2018, 73, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Brzosko, E.; Mirski, P. Floral nectar chemistry in orchids: A short review and meta-analysis. Plants 2021, 10, 2315. [Google Scholar] [CrossRef]
- David, T.I.; Storkey, J.; Stevens, C.J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interact. 2019, 13, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Gardener, M.C.; Gillman, M.P. The taste of nectar—A neglected area of pollination ecology. Oikos 2002, 98, 552–557. [Google Scholar] [CrossRef]
- Gijbels, P.; Van den Ende, W.; Honnay, O. Phenotypic selection on nectar amino acid composition in the Lepidoptera pollinated orchid species Gymnadenia conopsea. Oikos 2015, 124, 421–427. [Google Scholar] [CrossRef]
- Baker, H.G.; Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 1990, 39, 157–166. [Google Scholar] [CrossRef]
- Abrahamczyk, S.; Kessler, M.; Hanley, D.; Karger, D.N.; Müller, M.P.J.; Knauer, A.C.; Keller, F.; Schwerdtfeger, M.; Humphreys, A.M. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 2017, 30, 112–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolson, S.W.; Thornburg, R.W. Nectar chemistry. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 215–264. [Google Scholar] [CrossRef]
- Petanidou, T. Sugars in Mediterranean floral nectars: An ecological and evolutionary approach. J. Chem. Ecol. 2005, 31, 1065–1088. [Google Scholar] [CrossRef] [PubMed]
- Roguz, K.; Hill, L.; Koethe, S.; Lunau, K.; Roguz, A.; Zych, M. Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators. Sci. Rep. 2021, 11, 11006. [Google Scholar] [CrossRef]
- Vandelook, F.; Janssens, S.B.; Gijbels, P.; Fischer, E.; Van den Ende, W.; Honnay, O.; Abrahamczyk, S. Nectar traits differ between pollination syndromes in Balsaminaceae. Ann. Bot. 2019, 124, 269–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willmer, P. Pollination by butterflies and moths. In Pollination and Floral Ecology; Willmer, P., Ed.; Princeton University Press: Princeton, NJ, USA, 2011; pp. 322–336. [Google Scholar] [CrossRef]
- Nicolson, S.W. Sweet solutions: Nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210163. [Google Scholar] [CrossRef]
- Pamminger, T.; Becker, R.; Himmelreich, S.; Schneider, C.W.; Bergtold, M. The nectar report: Quantitative review of nectar sugar concentrations offered by bee visited flowers in agricultural and non-agricultural landscapes. PeerJ 2019, 7, e6329. [Google Scholar] [CrossRef] [Green Version]
- Pyke, G.H.; Waser, N.M. The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 1981, 13, 260–270. [Google Scholar] [CrossRef]
- Fowler, R.E.; Rotheray, E.L.; Goulson, D. Floral abundance and resource quality influence pollinator choice. Insect Conserv. Divers. 2016, 9, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Parachnowitsch, A.L.; Manson, J.S.; Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 2019, 123, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Brzosko, E.; Bajguz, A. Nectar composition in moth-pollinated Platanthera bifolia and P. chlorantha and its importance for reproductive success. Planta 2019, 250, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Nocentini, D.; Pacini, E.; Guarnieri, M.; Martelli, D.; Nepi, M. Intrapopulation heterogeneity in floral nectar attributes and foraging insects of an ecotonal Mediterranean species. Plant Ecol. 2013, 214, 799–809. [Google Scholar] [CrossRef]
- Petanidou, T.; Van Laere, A.; Ellis, W.N.; Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 2006, 115, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, A.; Klein, A.-M.; Schumacher, J.; Weisser, W.W.; Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 2008, 117, 1808–1815. [Google Scholar] [CrossRef]
- Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 2006, 94, 295–304. [Google Scholar] [CrossRef]
- Juillet, N.; Gonzalez, M.A.; Page, P.A.; Gigord, L.D.B. Pollination of the European food-deceptive Traunsteinera globosa (Orchidaceae): The importance of nectar-producing neighbouring plants. Plant Syst. Evol. 2007, 265, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.M.; Jordano, P. Geographic patterns in plant-pollinator mutualistic networks. Ecology 2002, 83, 2416. [Google Scholar] [CrossRef] [Green Version]
- Venjakob, C.; Leonhardt, S.; Klein, A.-M. Inter-individual nectar chemistry changes of field Scabious, Knautia arvensis. Insects 2020, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Duffy, K.J.; Stout, J.C. The effects of plant density and nectar reward on bee visitation to the endangered orchid Spiranthes romanzoffiana. Acta Oecol.-Int. J. Ecol. 2008, 34, 131–138. [Google Scholar] [CrossRef]
- Lachmuth, S.; Henrichmann, C.; Horn, J.; Pagel, J.; Schurr, F.M. Neighbourhood effects on plant reproduction: An experimental-analytical framework and its application to the invasive Senecio inaequidens. J. Ecol. 2017, 106, 761–773. [Google Scholar] [CrossRef]
- Tremblay, R.L.; Ackerman, J.D.; Zimmerman, J.K.; Calvo, R.N. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Linn. Soc. 2005, 84, 1–54. [Google Scholar] [CrossRef]
- Jakubska-Busse, A.; Dorota, P.; Mieczysław, S.; Jadwiga, A.-K.; Kadej, M. Why do pollinators become "sluggish"? Nectar chemical constituents from Epipactis helleborine (L.) Crantz (Orchidaceae). Appl. Ecol. Environ. Res. 2005, 3, 29–38. [Google Scholar] [CrossRef]
- Neiland, M.R.M.; Wilcock, C.C. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 1998, 85, 1657–1671. [Google Scholar] [CrossRef] [PubMed]
- Tew, N.E.; Memmott, J.; Vaughan, I.P.; Bird, S.; Stone, G.N.; Potts, S.G.; Baldock, K.C.R. Quantifying nectar production by flowering plants in urban and rural landscapes. J. Ecol. 2021, 109, 1747–1757. [Google Scholar] [CrossRef]
- Kwak, M.M.; Jennersten, O. Bumblebee visitation and seedset in Melampyrum pratense and Viscaria vulgaris: Heterospecific pollen and pollen limitation. Oecologia 1991, 86, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Parra-Tabla, V.; Vargas, C.F.; Magaña-Rueda, S.; Navarro, J. Female and male pollination success of Oncidium ascendens Lindey (Orchidaceae) in two contrasting habitat patches. Biol. Conserv. 2000, 94, 335–340. [Google Scholar] [CrossRef]
- Pellegrino, G.; Bellusci, F. Effects of human disturbance on reproductive success and population viability of Serapias cordigera (Orchidaceae). Bot. J. Linn. Soc. 2014, 176, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Grindeland, J.M.; Sletvold, N.; Ims, R.A. Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct. Ecol. 2005, 19, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Kindlmann, P.; Jersáková, J. Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot. 2006, 41, 47–60. [Google Scholar] [CrossRef]
- Maad, J. Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: Targets and fitness surfaces. Evolution 2000, 54, 112–123. [Google Scholar] [CrossRef]
- Sletvold, N.; Grindeland, J.M.; Ågren, J. Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytol. 2010, 188, 385–392. [Google Scholar] [CrossRef]
- Vallius, E.; Arminen, S.; Salonen, V. Are There Fitness Advantages Associated with a Large Inflorescence in Gymnadenia conopsea ssp. conopsea? 2006. Available online: http://www.r-b-o.eu/rbo_public/Vallius_et_al_2006.html (accessed on 1 December 2020).
- Vafaee, Y.; Mohammadi, G.; Nazari, F.; Fatahi, M.; Kaki, A.; Gholami, S.; Ghorbani, A.; Khadivi, A. Phenotypic characterization and seed-micromorphology diversity of the threatened terrestrial orchids: Implications for conservation. S. Afr. J. Bot. 2021, 137, 386–398. [Google Scholar] [CrossRef]
- Rewicz, A.; Rewers, M.; Jędrzejczyk, I.; Rewicz, T.; Kołodziejek, J.; Jakubska-Busse, A. Morphology and genome size of Epipactis helleborine (L.) Crantz (Orchidaceae) growing in anthropogenic and natural habitats. PeerJ 2018, 6, e5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbruster, W.S. The specialization continuum in pollination systems: Diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 2017, 31, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Alexandersson, R.; Johnson, S.D. Pollinator-mediated selection on flower-tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). Proc. Biol. Sci. 2002, 269, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunschke, J.; Sletvold, N.; Ågren, J. Interaction intensity and pollinator-mediated selection. New Phytol. 2017, 214, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Jacquemyn, H.; Brys, R. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Ann. Bot. 2020, 126, 445–453. [Google Scholar] [CrossRef]
- Brys, R.; Jacquemyn, H.; Hermy, M. Pollination efficiency and reproductive patterns in relation to local plant density, population size, and floral display in the rewarding Listera ovata (Orchidaceae). Bot. J. Linn. Soc. 2008, 157, 713–721. [Google Scholar] [CrossRef]
- Roguz, K.; Bajguz, A.; Chmur, M.; Gołębiewska, A.; Roguz, A.; Zych, M. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: Ecological and evolutionary implications. Sci. Rep. 2019, 9, 15209. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Smith, B.H. Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. J. Insect Physiol. 2000, 46, 793–801. [Google Scholar] [CrossRef]
- Tie, S.; He, Y.-D.; Lázaro, A.; Inouye, D.W.; Guo, Y.-H.; Yang, C.-F. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing. Plant Divers. 2022, in press. [Google Scholar] [CrossRef]
- Zambon, V.; Agostini, K.; Nepi, M.; Rossi, M.L.; Martinelli, A.P.; Sazima, M. Nectar as manipulator: How nectar traits influence changes in pollinator groups of Aechmea vanhoutteana, a bromeliad from the Brazilian Atlantic Forest. Bot. J. Linn. Soc. 2020, 192, 803–815. [Google Scholar] [CrossRef]
- Peter, C.I.; Johnson, S.D. Reproductive biology of Acrolophia cochlearis (Orchidaceae): Estimating rates of cross-pollination in epidendroid orchids. Ann. Bot. 2009, 104, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, D. Nectar sugar composition and volumes of 47 species of gentianales from a Southern Ecuadorian Montane Forest. Ann. Bot. 2006, 97, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rewicz, A.; Bomanowska, A.; Shevera, M.; Kurowski, J.; Krasoń, K.; Zielińska, K. Cities and disturbed areas as man-made shelters for orchid communities. Not. Bot. Horti. Agrobot. Cluj-Napoca 2017, 45, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Heil, M. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 2005, 308, 560–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, E.; McCue, M.D.; Davidowitz, G. More than just sugar: Allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. Biol. Sci. 2017, 284, 20162126. [Google Scholar] [CrossRef] [Green Version]
- Mevi-Schütz, J.; Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 2005, 165, 411–419. [Google Scholar] [CrossRef]
- Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 2014, 102, 108–115. [Google Scholar] [CrossRef]
- Pyke, G.H. Plant-pollinator co-evolution: It’s time to reconnect with Optimal Foraging Theory and Evolutionarily Stable Strategies. Perspect. Plant Ecol. Evol. Syst. 2016, 19, 70–76. [Google Scholar] [CrossRef]
- Carter, C.; Shafir, S.; Yehonatan, L.; Palmer, R.G.; Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 2006, 93, 72–79. [Google Scholar] [CrossRef]
- Nepi, M.; Soligo, C.; Nocentini, D.; Abate, M.; Guarnieri, M.; Cai, G.; Bini, L.; Puglia, M.; Bianchi, L.; Pacini, E. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora 2012, 207, 475–481. [Google Scholar] [CrossRef]
- Felicioli, A.; Sagona, S.; Galloni, M.; Bortolotti, L.; Bogo, G.; Guarnieri, M.; Nepi, M. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 2018, 27, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Carlesso, D.; Smargiassi, S.; Pasquini, E.; Bertelli, G.; Baracchi, D. Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci. Rep. 2021, 11, 11721. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Thornburg, R.W. Biochemistry of nectar proteins. J. Plant Biol. 2009, 52, 27–34. [Google Scholar] [CrossRef]
- Burkle, L.A.; Irwin, R.E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 2009, 203, 83–98. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (R Version 4.2.2, Innocent and Trusting). R Foundation for Statistical Computing 2022. Available online: https://www.R-project.org/ (accessed on 31 October 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2011; p. 472. [Google Scholar]
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Revelle, W. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2022; (R package version 2.2.3); Available online: https://CRAN.R-project.org/package=psych (accessed on 21 March 2022).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate data analyses (R Package Version 1.0.6). 2019. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 10 April 2021).
Parameter | Statistic | Population | |||||||
---|---|---|---|---|---|---|---|---|---|
aBIA | aCAR | aGON | aSOS | aSUR | nPOG1 | nPOG2 | nZAB | ||
Floral display | |||||||||
Shoot height (SH) (cm) | ± SE | 50.84 ± 2.73 | 71.19 ± 3.34 | 64.83 ± 3.44 | 58.78 ± 2.39 | 58.79 ± 3.06 | 69.19 ± 2.28 | 62.55 ± 2.07 | 75.07 ± 1.96 |
Q1 | 42.50 | 67 | 52.62 | 48.50 | 47.88 | 61 | 59 | 68 | |
Q2 (IQR) | 48 (16) a | 69 (12) bc | 59.5 (26) bd | 62 (19.50) ad | 59 (18.62) ad | 68 (16.50) bc | 61 (11) bd | 73 (14.50) c | |
Q3 | 58.5 | 79.00 | 78.62 | 68 | 66.50 | 77.50 | 70.00 | 82.50 | |
n | 19 | 21 | 26 | 27 | 28 | 27 | 29 | 29 | |
Inflorescence length (IL) (cm) | ± SE | 15.68 ± 1.39 | 17.05 ± 1.31 | 17.94 ± 1.73 | 16.59 ± 0.92 | 18.02 ± 1.18 | 20.37 ± 1.32 | 15.79 ± 0.84 | 20.43 ± 0.70 |
Q1 | 11 | 12 | 10.88 | 13.50 | 12 | 16 | 13 | 18 | |
Q2 (IQR) | 15 (6) a | 17 (9) abc | 16 (13.62) abc | 16 (6.50) ab | 18 (12) abc | 19 (8) bc | 15 (6) a | 21 (5) c | |
Q3 | 17 | 21 | 24.5 | 20 | 24 | 24 | 19 | 23 | |
n | 19 | 21 | 26 | 27 | 28 | 27 | 29 | 29 | |
Number of flowers (NF) | ± SE | 8.50 ± 0.25 | 8.41 ± 0.34 | 8.90 ± 0.31 | 8.93 ± 0.33 | 9.33 ± 0.19 | 8.93 ± 0.28 | 7.03 ± 0.30 | 9.13 ± 0.29 |
Q1 | 7.25 | 7 | 8 | 8 | 8.25 | 8 | 6 | 8 | |
Q2 (IQR) | 8.50 (2.50) a | 8.5 (3) ab | 10 (2)ab | 9 (2) ab | 10 (1.75) b | 10 (2) ab | 6.5 (2) c | 10 (2) ab | |
Q3 | 9.75 | 10 | 10 | 10 | 10 | 10 | 8 | 10 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Flower structure | |||||||||
Length of lateral sepal (LS) (mm) | ± SE | 11.53 ± 0.29 | 12.54 ± 0.24 | 11.29 ± 0.27 | 12.53 ± 0.23 | 10.72 ± 0.17 | 12.54 ± 0.22 | 11.36 ± 0.25 | 11.98 ± 0.19 |
Q1 | 10.52 | 11.75 | 11.07 | 11.55 | 10.13 | 11.83 | 10.34 | 11.23 | |
Q2 (IQR) | 11.18 (1.86) ab | 12.09 (1.91) c | 11.61 (0.8) a | 12.64 (1.91) c | 10.54 (1.27) b | 12.59 (1.56) c | 11.14 (1.84) ab | 11.96 (1.32) ac | |
Q3 | 12.38 | 13.66 | 11.87 | 13.46 | 11.40 | 13.39 | 12.18 | 12.55 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Width of lateral sepal (WS) (mm) | ± SE | 5.22 ± 0.19 | 5.61 ± 0.16 | 5.51 ± 0.13 | 5.74 ± 0.12 | 5.08 ± 0.11 | 5.61 ± 0.15 | 4.82 ± 0.10 | 5.80 ± 0.10 |
Q1 | 4.49 | 5.21 | 5.26 | 5.32 | 4.71 | 5.08 | 4.51 | 5.48 | |
Q2 (IQR) | 4.98 (1.37) ab | 5.68 (0.86) ac | 5.63 (0.66) ac | 5.76 (0.91) c | 5.12 (0.86) b | 5.50 (0.83) ac | 4.78 (0.54) b | 5.70 (0.84) c | |
Q3 | 5.86 | 6.07 | 5.92 | 6.23 | 5.57 | 5.91 | 5.05 | 6.32 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Distance between petals (DP) (mm) | ± SE | 14.69 ± 0.36 | 15.96 ± 0.38 | 14.75 ± 0.28 | 15.5 ± 0.42 | 13.86 ± 0.41 | 15.40 ± 0.36 | 14.64 ± 0.24 | 15.41 ± 0.38 |
Q1 | 13.49 | 14.86 | 13.72 | 13.69 | 12.27 | 14.25 | 103.85 | 14.35 | |
Q2 (IQR) | 14.62 (2.23) ab | 15.69 (2.35) a | 14.65 (2.15) ab | 15.79 (2.98) ab | 13.17 (3.47) b | 15.38 (2.07) ab | 14.78 (1.80) ab | 14.89 (2.21) ab | |
Q3 | 15.72 | 17.21 | 15.87 | 16.67 | 15.74 | 16.32 | 15.65 | 16.57 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Distance between sepals (DS) (mm) | ± SE | 19.65 ± 0.57 | 20.6 ± 0.44 | 18.83 ± 0.39 | 20.52 ± 0.42 | 17.42 ± 0.32 | 20.49 ± 0.50 | 18.35 ± 0.40 | 19.93 ± 0.35 |
Q1 | 17.30 | 19.24 | 17.92 | 18.56 | 16.34 | 18.66 | 16.65 | 19.27 | |
Q2 (IQR) | 19.09 (4.04) abc | 20.24 (2.16) a | 18.91 (2.12) bc | 20.48 (3.84) a | 17.42 (1.77) d | 20.36 (2.94) a | 17.90 (3.20) bd | 19.94 (1.56) ac | |
Q3 | 21.34 | 21.39 | a 20.04 | 22.40 | 18.11 | 21.61 | 19.85 | 20.83 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Length of flower (LF) (mm) | ± SE | 12.25 ± 0.35 | 12.35 ± 0.31 | 12.87 ± 0.22 | 12.70 ± 0.28 | 11.9 ± 0.22 | 13.21 ± 0.35 | 12.32 ± 0.22 | 13.01 ± 0.20 |
Q1 | 11.16 | 11.54 | 12.15 | 11.66 | 10.91 | 12.63 | 11.67 | 12.40 | |
Q2 (IQR) | 11.93 (2.33) abc | 12.00 (1.53) abc | 12.71 (1.53) ab | 12.21 (1.93) abc | 12.04 (1.82) c | 13.37 (1.48) a | 12.21 (1.35) bc | 12.97 (1.05) ab | |
Q3 | 13.49 | 13.07 | 13.68 | 13.59 | 12.73 | 14.12 | 13.02 | 13.45 | |
n | 22 | 22 | 29 | 28 | 30 | 28 | 32 | 30 | |
Length of isthmus (LI) (mm) | ± SE | 1.97 ± 0.06 | 2.15 ± 0.06 | 2.07 ± 0.04 | 2.22 ± 0.05 | 1.89 ± 0.04 | 2.18 ± 0.06 | 2.16 ± 0.06 | 2.00 ± 0.05 |
Q1 | 1.81 | 2.10 | 1.93 | 2.11 | 1.73 | 2.01 | 1.89 | 1.88 | |
Q2 (IQR) | 1.94 (0.32) ab | 2.13 (0.10) ac | 2.05 (0.31) ac | 2.24 (0.25) c | 1.90 (0.30) b | 2.15 (0.37) ac | 2.19 (0.50) ac | 2.04 (0.27) ab | |
Q3 | 2.13 | 2.20 | 2.24 | 2.36 | 2.03 | 2.38 | 2.40 | 2.15 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Width of isthmus (WI) (mm) | ± SE | 2.54 ± 0.10 | 2.57 ± 0.08 | 2.77 ± 0.09 | 2.86 ± 0.07 | 2.75 ± 0.09 | 2.65 ± 0.07 | 2.49 ± 0.06 | 2.84 ± 0.06 |
Q1 | 2.20 | 2.37 | 2.65 | 2.65 | 2.40 | 2.36 | 2.30 | 2.65 | |
Q2 (IQR) | 2.36 (0.61) ab | 2.67 (0.49) abc | 2.79 (0.48) ac | 2.88 (0.40) c | 2.65 (0.72) abc | 2.60 (0.49) abc | 2.47 (0.34) b | 2.82 (0.38) c | |
Q3 | 2.81 | 2.86 | 3.13 | 3.04 | 3.12 | 2.85 | 2.64 | 3.03 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Length of hypochile (LH) (mm) | ± SE | 3.96 ± 0.07 | 4.17 ± 0.08 | 4.06 ± 0.06 | 4.27 ± 0.07 | 3.88 ± 0.06 | 4.67 ± 0.09 | 4.16 ± 0.10 | 4.42 ± 0.06 |
Q1 | 3.66 | 3.95 | 3.87 | 4.06 | 3.61 | 4.42 | 3.77 | 4.17 | |
Q2 (IQR) | 3.88 (0.47) ab | 4.15 (0.40) ac | 4.12 (0.44) abc | 4.18 (0.48) cd | 3.80 (0.55) b | 4.53 (0.43) e | 4.10 (0.76) ac | 4.40 (0.54) de | |
Q3 | 4.14 | 4.35 | 4.31 | 4.54 | 4.16 | 4.85 | 4.53 | 4.70 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Width of hypochile (WH) (mm) | ± SE | 8.18 ± 0.16 | 8.58 ± 0.12 | 8.17 ± 0.11 | 8.53 ± 0.15 | 8.01 ± 0.11 | 8.72 ± 0.16 | 8.21 ± 0.18 | 8.57 ± 0.15 |
Q1 | 7.64 | 8.02 | 7.79 | 7.87 | 7.56 | 8.15 | 7.48 | 7.99 | |
Q2 (IQR) | 8.32 (1.05) ab | 8.53 (0.98) a | 8.09 (0.81) ab | 8.55 (1.15) ab | 7.96 (0.89) b | 8.70 (1.05) a | 7.98 (1.31) ab | 8.40 (1.28) a | |
Q3 | 8.69 | 9.01 | 8.60 | 9.02 | 8.44 | 9.20 | 8.79 | 9.27 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Length of epichile (LE) (mm) | ± SE | 4.22 ± 0.12 | 4.41 ± 0.09 | 4.11 ± 0.08 | 4.27 ± 0.13 | 4.13 ± 0.07 | 4.04 ± 0.1 | 4.05 ± 0.11 | 4.15 ± 0.11 |
Q1 | 3.88 | 4.11 | 3.76 | 3.84 | 3.83 | 3.66 | 3.67 | 3.70 | |
Q2 (IQR) | 4.24 (0.90) a | 4.40 (0.65) a | 4.00 (0.57) a | 4.27 (0.83) a | 4.10 (0.62) a | 4.17 (0.81) a | 3.87 (0.62) a | 4.12 (0.90) a | |
Q3 | 4.78 | 4.76 | 4.33 | 4.67 | 4.45 | 4.47 | 4.30 | 4.59 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Width of epichile (WE) (mm) | ± SE | 3.55 ± 0.13 | 3.89 ± 0.10 | 4.09 ± 0.10 | 4.27 ± 0.12 | 3.98 ± 0.11 | 4.27 ± 0.15 | 3.6 ± 0.09 | 4.33 ± 0.09 |
Q1 | 3.14 | 3.84 | 3.83 | 3.86 | 3.52 | 3.79 | 3.26 | 4.08 | |
Q2 (IQR) | 3.30 (0.82) ab | 4.00 (0.27) ac | 4.20 (0.56) cd | 4.21 (0.77) cd | 4.06 (0.84) c | 4.19 (0.89) cd | 3.74 (0.62) b | 4.36 (0.55) d | |
Q3 | 3.96 | 4.11 | 4.39 | 4.63 | 4.36 | 4.68 | 3.88 | 4.63 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 | |
Length of labellum (LL) (mm) | ± SE | 4.66 ± 0.15 | 5.01 ± 0.10 | 5.00 ± 0.08 | 4.85 ± 0.11 | 4.58 ± 0.10 | 4.97 ± 0.10 | 4.65 ± 0.09 | 5.12 ± 0.09 |
Q1 | 4.11 | 4.74 | 4.72 | 4.52 | 4.15 | 4.54 | 4.36 | 4.80 | |
Q2 (IQR) | 4.47 (0.97) abc | 4.98 (0.52) ad | 4.94 (0.54) d | 4.82 (0.74) abcd | 4.56 (0.64) b | 4.98 (0.89) acd | 4.77 (0.58) bc | 5.06 (0.66) d | |
Q3 | 5.08 | 5.25 | 5.26 | 5.26 | 4.79 | 5.43 | 4.94 | 5.46 | |
n | 22 | 22 | 29 | 28 | 30 | 27 | 31 | 30 |
Sugar | Statistic | Population | |||||||
---|---|---|---|---|---|---|---|---|---|
aBIA | aCAR | aGON | aSOS | aSUR | nPOG1 | nPOG2 | nZAB | ||
n = 22 | n = 22 | n = 29 | n = 28 | n = 30 | n = 28 | n = 32 | n = 29 | ||
Glucose | ± SE | 15.89 ± 0.29 | 10.53 ± 0.15 | 14.02 ± 0.13 | 17.55 ± 0.13 | 13.96 ± 0.2 | 14.28 ± 0.25 | 16.89 ± 0.19 | 14.4 ± 0.29 |
Q1 | 15.07 | 10.04 | 13.52 | 17.21 | 13.26 | 13.69 | 16.15 | 13.06 | |
Q2 (IQR) | 15.57 (1.2) a | 10.55 (0.72) b | 14.09 (1.01) c | 17.45 (0.85) d | 13.61 (1.30) c | 14.24 (1.39) c | 16.76 (1.51) e | 14.41 (2.10) c | |
Q3 | 16.27 | 10.76 | 14.53 | 18.06 | 14.56 | 15.08 | 17.66 | 15.16 | |
Fructose | ± SE | 19.41 ± 0.23 | 12.11 ± 0.24 | 16.5 ± 0.2 | 20.4 ± 0.16 | 16.36 ± 0.23 | 14.59 ± 0.25 | 17.17 ± 0.2 | 14.74 ± 0.17 |
Q1 | 18.52 | 11.33 | 16.11 | 20.04 | 15.68 | 13.91 | 16.75 | 14.07 | |
Q2 (IQR) | 19.63 (1.60) a | 11.82 (1.68) b | 16.63 (1.15) c | 20.58 (0.79) d | 16.16 (1.39) c | 14.72 (1.48) e | 16.98 (0.87) f | 14.7 (1.15) e | |
Q3 | 20.12 | 13.01 | 17.26 | 20.83 | 17.07 | 15.38 | 17.62 | 15.22 | |
Sucrose | ± SE | 12.61 ± 0.2 | 14.77 ± 0.19 | 16.17 ± 0.11 | 14.02 ± 0.22 | 16.21 ± 0.12 | 26.55 ± 0.31 | 26.79 ± 0.18 | 38.34 ± 0.23 |
Q1 | 12.43 | 14.21 | 15.91 | 13.13 | 15.82 | 25.69 | 26.08 | 37.81 | |
Q2 (IQR) | 12.68 (0.6) a | 14.75 (0.91) b | 16.29 (0.61) c | 13.61 (1.74) d | 16.18 (0.82) c | 26.18 (1.31) e | 26.58 (1.41) e | 38.03 (1.09) f | |
Q3 | 13.03 | 15.12 | 16.53 | 14.87 | 16.63 | 26.99 | 27.49 | 38.9 | |
Sum of sugars | ± SE | 47.92 ± 0.54 | 37.41 ± 0.44 | 46.70 ± 0.28 | 51.97 ± 0.26 | 46.52 ± 0.38 | 55.42 ± 0.54 | 60.85 ± 0.39 | 67.48 ± 0.53 |
Q1 | 45.66 | 35.83 | 45.86 | 50.87 | 45.32 | 54.02 | 59.45 | 65.42 | |
Q2 (IQR) | 47.88 (3.34) a | 36.68 (2.85) b | 46.58 (2.09) a | 51.75 (1.73) c | 46.05 (2.28) a | 55.14 (3.51) d | 60.62 (2.85) e | 66.97 (3.87) f | |
Q3 | 49 | 38.68 | 47.95 | 52.61 | 47.60 | 57.53 | 62.30 | 69.29 |
Sugars | Statistic | Population | |||||||
---|---|---|---|---|---|---|---|---|---|
aBIA | aCAR | aGON | aSOS | aSUR | nPOG1 | nPOG2 | nZAB | ||
n = 22 | n = 22 | n = 29 | n = 28 | n = 30 | n = 28 | n = 32 | n = 29 | ||
Glucose (GLU) content in nectar (w/v) (%) | ± SE | 0.33 ± 0 | 0.24 ± 0 | 0.27 ± 0 | 0.32 ± 0 | 0.27 ± 0 | 0.18 ± 0 | 0.20 ± 0 | 0.14 ± 0 |
Q1 | 0.32 | 0.23 | 0.26 | 0.31 | 0.26 | 0.18 | 0.20 | 0.14 | |
Q2 (IQR) | 0.33 (0.02) a | 0.24 (0.02) b | 0.27 (0.02) c | 0.32 (0.02) d | 0.27 (0.02) c | 0.19 (0.01) e | 0.20 (0.01) f | 0.14 (0.01) g | |
Q3 | 0.34 | 0.25 | 0.28 | 0.33 | 0.28 | 0.19 | 0.21 | 0.15 | |
± SE | 0.28 ± 0 | 0.18 ± 0 | |||||||
Q1 | 0.26 | 0.15 | |||||||
Q2 (IQR) | 0.28 (0.06) a | 0.19 (0.05) b | |||||||
Q3 | 0.32 | 0.20 | |||||||
Fructose (FRU) content in nectar (w/v) (%) | ± SE | 0.27 ± 0 | 0.21 ± 0 | 0.23 ± 0 | 0.27 ± 0 | 0.23 ± 0 | 0.18 ± 0 | 0.2 ± 0 | 0.14 ± 0 |
Q1 | 0.26 | 0.20 | 0.22 | 0.26 | 0.22 | 0.17 | 0.19 | 0.13 | |
Q2 (IQR) | 0.26 (0.02) a | 0.20 (0.02) b | 0.23 (0.01) c | 0.27 (0.02) a | 0.23 (0.01) c | 0.18 (0.01) d | 0.20 (0.01) e | 0.14 (0.02) f | |
Q3 | 0.27 | 0.22 | 0.23 | 0.28 | 0.23 | 0.18 | 0.20 | 0.15 | |
± SE | 0.24 ± 0 | 0.17 ± 0 | |||||||
Q1 | 0.22 | 0.15 | |||||||
Q2 (IQR) | 0.23 (0.04) a | 0.18 (0.05) b | |||||||
Q3 | 0.26 | 0.20 | |||||||
Sucrose (SUC) content in nectar (w/v) (%) | ± SE | 0.40 ± 0 | 0.55 ± 0 | 0.50 ± 0 | 0.41 ± 0 | 0.50 ± 0 | 0.64 ± 0 | 0.60 ± 0 | 0.71 ± 0 |
Q1 | 0.39 | 0.54 | 0.49 | 0.39 | 0.49 | 0.62 | 0.59 | 0.71 | |
Q2 (IQR) | 0.41 (0.02) a | 0.55 (0.02) b | 0.50 (0.02) c | 0.41 (0.03) a | 0.51 (0.03) c | 0.64 (0.02) d | 0.60 (0.02) e | 0.72 (0.02) f | |
Q3 | 0.42 | 0.56 | 0.51 | 0.43 | 0.52 | 0.65 | 0.61 | 0.72 | |
± SE | 0.48 ± 0.01 | 0.65 ± 0.01 | |||||||
Q1 | 0.42 | 0.6 | |||||||
Q2 (IQR) | 0.49 (0.10) a | 0.63 (0.10) b | |||||||
Q3 | 0.52 | 0.71 | |||||||
FRU/GLU | ± SE | 0.82 ± 0.01 | 0.87 ± 0.02 | 0.85 ± 0.01 | 0.86 ± 0.01 | 0.86 ± 0.01 | 0.98 ± 0.01 | 0.99 ± 0.01 | 0.98 ± 0.02 |
Q1 | 0.78 | 0.82 | 0.81 | 0.82 | 0.81 | 0.92 | 0.94 | 0.91 | |
Q2 (IQR) | 0.82 (0.06) a | 0.86 (0.10) b | 0.84 (0.06) ab | 0.86 (0.06) b | 0.84 (0.10) ab | 0.97 (0.09) c | 0.97 (0.09) c | 0.96 (0.10) c | |
Q3 | 0.84 | 0.92 | 0.87 | 0.89 | 0.91 | 1.01 | 1.03 | 1.01 | |
± SE | 0.85 ± 0.01 | 0.98 ± 0.01 | |||||||
Q1 | 0.81 | 0.92 | |||||||
Q2 (IQR) | 0.84 (0.09) a | 0.97 (0.09) b | |||||||
Q3 | 0.90 | 1.02 | |||||||
SUC/(GLU + FRU) | ± SE | 0.68 ± 0.01 | 1.24 ± 0.02 | 1.01 ± 0.01 | 0.7 ± 0.01 | 1.02 ± 0.02 | 1.76 ± 0.04 | 1.50 ± 0.02 | 2.51 ± 0.03 |
Q1 | 0.65 | 1.20 | 0.96 | 0.65 | 0.95 | 1.66 | 1.45 | 2.41 | |
Q2 (IQR) | 0.69 (0.07) a | 1.25 (0.10) b | 1.01 (0.09) c | 0.68 (0.10) a | 1.02 (0.13) c | 1.75 (0.17) d | 1.49 (0.10) e | 2.52 (0.19) f | |
Q3 | 0.72 | 1.29 | 1.06 | 0.75 | 1.08 | 1.82 | 1.54 | 2.60 | |
± SE | 0.93 ± 0.02 | 1.91 ± 0.05 | |||||||
Q1 | 0.71 | 1.52 | |||||||
Q2 (IQR) | 0.96 (0.36) a | 1.73 (0.89) b | |||||||
Q3 | 1.07 | 2.41 |
Amino Acid | Class | Statistic | Population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
aBIA | aCAR | aGON | aSOS | aSUR | nPOG1 | nPOG2 | nZAB | |||
n = 22 | n = 22 | n = 29 | n = 28 | n = 30 | n = 28 | n = 32 | n = 30 | |||
Proteogenic Amino Acids | ||||||||||
Asp | I | ± SE | 50.75 ± 0.24 | 101.14 ± 1.03 | 102.69 ± 0.92 | 51.51 ± 0.42 | 100.30 ± 0.42 | 59.45 ± 0.57 | 53.47 ± 0.32 | 31.23 ± 0.29 |
Q1 | 49.86 | 98.19 | 98.28 | 50.1 | 99.03 | 57.61 | 52.13 | 29.95 | ||
Q2 (IQR) | 50.51 (1.81) a | 100.89 (5.59) b | 102.10 (8.32) b | 51.48 (3.05) a | 100.26 (2.84) b | 59.88 (3.74) c | 53.15 (2.82) d | 31.17 (2.22) e | ||
Q3 | 51.66 | 103.78 | 106.6 | 53.14 | 101.86 | 61.35 | 54.95 | 32.17 | ||
Glu | I | ± SE | 107.35 ± 1.03 | 181.36 ± 1.72 | 195.43 ± 1.37 | 127.14 ± 10 | 268.45 ± 1.79 | 218.83 ± 1.80 | 228.37 ± 2.52 | 139.61 ± 1.47 |
Q1 | 103.96 | 177.31 | 192.18 | 124.31 | 260.67 | 212.44 | 219.23 | 132.60 | ||
Q2 (IQR) | 107.82 (6.02) a | 181.90 (8.05) b | 193.79 (6.04) c | 127.50 (5.65) d | 266.90 (9.65) e | 218.88 (13.40) f | 229.42 (16.43) g | 138.05 (13.45) h | ||
Q3 | 109.98 | 185.36 | 198.22 | 129.96 | 270.31 | 225.84 | 235.66 | 146.05 | ||
Ala | I | ± SE | 8.43 ± 0.06 | 8.49 ± 0.07 | 10.20 ± 0.05 | 10.73 ± 0.10 | 11.07 ± 0.07 | 10.01 ± 0.11 | 10.21 ± 0.06 | 8.21 ± 0.09 |
Q1 | 8.25 | 8.26 | 10.03 | 10.34 | 10.85 | 9.72 | 9.99 | 7.87 | ||
Q2 (IQR) | 8.39 (0.31) a | 8.57 (0.45) a | 10.18 (0.28) b | 10.77 (0.70) c | 11.02 (0.55) d | 10.07 (0.57) b | 10.24 (0.40) b | 8.16 (0.61) e | ||
Q3 | 8.57 | 8.71 | 10.31 | 11.04 | 11.40 | 10.29 | 10.39 | 8.48 | ||
Cys | I | ± SE | 18.83 ± 0.14 | 27.25 ± 0.14 | 27.91 ± 0.19 | 15.94 ± 0.12 | 23.03 ± 0.09 | 15.50 ± 0.17 | 15.11 ± 0.07 | 14.28 ± 0.12 |
Q1 | 18.45 | 26.83 | 27.71 | 15.56 | 22.73 | 14.93 | 14.99 | 13.93 | ||
Q2 (IQR) | 18.87 (0.93) a | 27.36 (0.89) b | 28.11 (0.80) c | 15.90 (0.70) d | 23.03 (0.70) e | 15.37 (0.93) f | 15.13 (0.35) f | 14.31 (0.76) g | ||
Q3 | 19.38 | 27.72 | 28.50 | 16.26 | 23.43 | 15.86 | 15.33 | 14.70 | ||
Gly | I | ± SE | 6.09 ± 0.14 | 6.88 ± 0.11 | 7.79 ± 0.08 | 4.73 ± 0.05 | 11.15 ± 0.10 | 6.83 ± 0.05 | 7.83 ± 0.05 | 4.10 ± 0.06 |
Q1 | 5.54 | 6.48 | 7.49 | 4.60 | 10.56 | 6.64 | 7.65 | 3.86 | ||
Q2 (IQR) | 6.28 (1.10) a | 6.97 (0.81) b | 7.71 (0.65) c | 4.79 (0.32) d | 11.30 (0.94) e | 6.87 (0.38) b | 7.81 (0.37) c | 4.17 (0.53) f | ||
Q3 | 6.64 | 7.29 | 8.14 | 4.92 | 11.5 | 7.02 | 8.02 | 4.39 | ||
Ser | I | ± SE | 17.39 ± 0.17 | 16.35 ± 0.19 | 22.71 ± 0.20 | 17.86 ± 0.26 | 36.48 ± 0.74 | 22.71 ± 0.15 | 20.43 ± 0.11 | 17.29 ± 0.16 |
Q1 | 16.87 | 15.74 | 22.54 | 17.01 | 36.73 | 22.20 | 19.99 | 16.87 | ||
Q2 (IQR) | 17.07 (0.83) a | 16.13 (1.10) b | 22.99 (0.86) c | 17.86 (1.39) a | 37.17 (1.10) d | 22.60 (0.75) c | 20.17 (0.64) e | 17.28 (1.13) a | ||
Q3 | 17.71 | 16.83 | 23.40 | 18.39 | 37.83 | 22.95 | 20.63 | 18.01 | ||
Thr | I | ± SE | 35.58 ± 0.19 | 14.96 ± 0.11 | 20.13 ± 0.23 | 28.91 ± 0.17 | 11.93 ± 0.17 | 33.87 ± 0.20 | 31.77 ± 0.32 | 10.91 ± 0.09 |
Q1 | 34.96 | 14.6 | 19.51 | 28.31 | 11.29 | 33.21 | 30.30 | 10.43 | ||
Q2 (IQR) | 35.71 (1.21) a | 14.95 (0.65) b | 20.01 (1.38) c | 28.90 (1.35) d | 12.17 (1.42) e | 33.80 (1.41) f | 31.72 (3.17) g | 10.79 (0.77) h | ||
Q3 | 36.17 | 15.24 | 20.89 | 29.67 | 12.71 | 34.62 | 33.47 | 11.21 | ||
Tyr | I | ± SE | 1.68 ± 0.03 | 1.07 ± 0.01 | 1.87 ± 0.02 | 1.70 ± 0.02 | 2.80 ± 0.06 | 1.77 ± 0.03 | 1.07 ± 0.01 | 1.60 ± 0.03 |
Q1 | 1.60 | 1.04 | 1.80 | 1.65 | 2.59 | 1.69 | 1.02 | 1.50 | ||
Q2 (IQR) | 1.66 (0.15) abc | 1.06 (0.05) d | 1.89 (0.14) e | 1.69 (0.09) a | 2.81 (0.41) f | 1.79 (0.16) b | 1.06 (0.09) d | 1.60 (0.21) c | ||
Q3 | 1.75 | 1.08 | 1.94 | 1.74 | 3.01 | 1.85 | 1.11 | 1.71 | ||
Arg | II | ± SE | 4.04 ± 0.03 | 2.05 ± 0.02 | 3.65 ± 0.05 | 4.67 ± 0.05 | 2.71 ± 0.04 | 1.43 ± 0.02 | 2.06 ± 0.05 | 2.25 ± 0.03 |
Q1 | 3.94 | 2.04 | 3.48 | 4.50 | 2.54 | 1.33 | 1.88 | 2.16 | ||
Q2 (IQR) | 4.01 (0.18) a | 2.06 (0.06) b | 3.63 (0.35) c | 4.68 (0.36) d | 2.68 (0.26) e | 1.44 (0.16) f | 2.01 (0.30) b | 2.26 (0.15) g | ||
Q3 | 4.12 | 2.09 | 3.83 | 4.85 | 2.80 | 1.49 | 2.18 | 2.31 | ||
Asn | II | ± SE | 30.06 ± 0.19 | 52.25 ± 0.5 | 53.71 ± 0.58 | 25.96 ± 0.28 | 101.72 ± 0.82 | 158.63 ± 1.87 | 146.85 ± 1.79 | 29.5 ± 0.38 |
Q1 | 29.34 | 50.43 | 51.81 | 24.68 | 98.90 | 152.03 | 137.70 | 28.42 | ||
Q2 (IQR) | 30.21 (1.17) a | 51.61 (3.20) b | 54.12 (3.98) b | 26.26 (2.60) c | 102.21 (4.93) d | 156.23 (11.7) e | 148.15 (15.84) f | 29.19 (1.83) g | ||
Q3 | 30.51 | 53.63 | 55.79 | 27.28 | 103.83 | 163.73 | 153.54 | 30.25 | ||
Gln | II | ± SE | 29.38 ± 0.32 | 43.87 ± 0.37 | 56.01 ± 0.43 | 25.97 ± 0.22 | 57.35 ± 0.39 | 37.46 ± 0.18 | 34.09 ± 0.13 | 17.09 ± 0.15 |
Q1 | 28.35 | 42.24 | 55.76 | 25.23 | 56.91 | 36.72 | 33.97 | 16.51 | ||
Q2 (IQR) | 29.96 (2.19) a | 44.20 (3.03) b | 56.81 (1.55) c | 25.99 (1.41) d | 57.53 (1.28) e | 37.58 (1.54) f | 34.34 (0.62) g | 17.24 (1.18) h | ||
Q3 | 30.54 | 45.27 | 57.31 | 26.63 | 58.19 | 38.26 | 34.59 | 17.69 | ||
His | II | ± SE | 4.42 ± 0.06 | 4.07 ± 0.05 | 5.31 ± 0.09 | 5.22 ± 0.08 | 6.77 ± 0.06 | 7.86 ± 0.08 | 6.93 ± 0.03 | 6.76 ± 0.07 |
Q1 | 4.27 | 3.91 | 5.19 | 4.98 | 6.42 | 7.66 | 6.82 | 6.50 | ||
Q2 (IQR) | 4.42 (0.28) a | 4.01 (0.37) b | 5.38 (0.40) c | 5.27 (0.62) c | 6.76 (0.64) de | 7.88 (0.44) f | 6.92 (0.23) d | 6.70 (0.48) e | ||
Q3 | 4.55 | 4.28 | 5.59 | 5.6 | 7.07 | 8.10 | 7.05 | 6.98 | ||
Lys | II | ± SE | 5.38 ± 0.07 | 9.45 ± 0.13 | 10.36 ± 0.06 | 4.23 ± 0.17 | 11.99 ± 0.10 | 15.55 ± 0.17 | 15.39 ± 0.07 | 4.99 ± 0.05 |
Q1 | 5.11 | 9.08 | 10.18 | 4.13 | 11.77 | 14.88 | 15.15 | 4.77 | ||
Q2 (IQR) | 5.40 (0.49) a | 9.43 (0.61) b | 10.35 (0.42) c | 4.31 (0.47) d | 12.02 (0.54) e | 15.30 (1.20) f | 15.35 (0.34) f | 5.01 (0.44) g | ||
Q3 | 5.60 | 9.69 | 10.60 | 4.60 | 12.31 | 16.08 | 15.49 | 5.21 | ||
Pro | III | ± SE | 12.45 ± 0.05 | 13.11 ± 0.10 | 14.09 ± 0.06 | 11.68 ± 0.11 | 7.65 ± 0.04 | 11.93 ± 0.16 | 11.11 ± 0.05 | 6.47 ± 0.04 |
Q1 | 12.22 | 12.62 | 13.85 | 11.64 | 7.44 | 11.65 | 10.92 | 6.33 | ||
Q2 (IQR) | 12.50 (0.43) a | 13.25 (0.87) b | 14.15 (0.53) c | 11.79 (0.28) d | 7.63 (0.40) e | 12.14 (0.83) f | 11.04 (0.37) g | 6.45 (0.29) h | ||
Q3 | 12.65 | 13.49 | 14.38 | 11.93 | 7.84 | 12.48 | 11.30 | 6.62 | ||
Ile | IV | ± SE | 6.10 ± 0.09 | 15.01 ± 0.07 | 16.03 ± 0.08 | 5.45 ± 0.07 | 16.60 ± 0.11 | 15.71 ± 0.13 | 10.67 ± 0.07 | 14.42 ± 0.11 |
Q1 | 5.76 | 14.84 | 15.81 | 5.25 | 16.20 | 15.18 | 10.35 | 14.03 | ||
Q2 (IQR) | 6.01 (0.67) a | 14.96 (0.41) b | 16.02 (0.59) c | 5.55 (0.47) d | 16.68 (0.80) e | 15.75 (0.99) c | 10.51 (0.69) f | 14.30 (0.67) g | ||
Q3 | 6.44 | 15.25 | 16.40 | 5.72 | 17.01 | 16.16 | 11.04 | 14.70 | ||
Leu | IV | ± SE | 5.37 ± 0.06 | 5.17 ± 0.04 | 7.39 ± 0.05 | 4.51 ± 0.04 | 6.91 ± 0.07 | 10.43 ± 0.08 | 8.07 ± 0.05 | 12.88 ± 0.45 |
Q1 | 5.18 | 5.01 | 7.21 | 4.38 | 6.65 | 10.13 | 7.86 | 13.01 | ||
Q2 (IQR) | 5.37 (0.37) a | 5.13 (0.28) b | 7.31 (0.34) c | 4.50 (0.25) d | 6.95 (0.53) e | 10.39 (0.50) f | 8.03 (0.43) g | 13.30 (0.56) h | ||
Q3 | 5.55 | 5.29 | 7.55 | 4.63 | 7.18 | 10.63 | 8.28 | 13.57 | ||
Met | IV | ± SE | 4.53 ± 0.06 | 5.54 ± 0.05 | 1.36 ± 0.03 | 5.38 ± 0.08 | 4.89 ± 0.05 | 4.58 ± 0.04 | 1.63 ± 0.02 | |
Q1 | 4.29 | 5.38 | 1.23 | 5.04 | 4.72 | 4.41 | 1.56 | |||
Q2 (IQR) | 4.54 (0.46) a | 5.60 (0.33) b | 1.34 (0.25) c | 5.48 (0.66) b | 4.89 (0.30) d | 4.54 (0.33) a | 1.63 (0.13) e | |||
Q3 | 4.75 | 5.71 | 1.48 | 5.71 | 5.02 | 4.74 | 1.69 | |||
Phe | IV | ± SE | 14.12 ± 0.09 | 13.16 ± 0.09 | 13.27 ± 0.06 | 13.40 ± 0.09 | 22.42 ± 0.08 | 13.74 ± 0.14 | 12.06 ± 0.07 | 8.33 ± 0.04 |
Q1 | 13.93 | 12.86 | 13.02 | 13.01 | 22.20 | 13.41 | 11.76 | 8.18 | ||
Q2 (IQR) | 14.18 (0.43) a | 13.16 (0.54) b | 13.31 (0.49) b | 13.41 (0.69) b | 22.48 (0.49) c | 13.89 (0.80) d | 12.03 (0.56) e | 8.32 (0.35) f | ||
Q3 | 14.36 | 13.40 | 13.51 | 13.70 | 22.68 | 14.21 | 12.32 | 8.52 | ||
Trp | IV | ± SE | 17.80 ± 0.13 | 17.87 ± 0.11 | 18.57 ± 0.09 | 15.12 ± 0.13 | 26.93 ± 0.12 | 23.71 ± 0.11 | 15.41 ± 0.10 | 10.56 ± 0.04 |
Q1 | 17.32 | 17.52 | 18.27 | 14.71 | 26.54 | 23.52 | 15.01 | 10.44 | ||
Q2 (IQR) | 17.76 (0.99) a | 17.87 (0.68) a | 18.59 (0.54) b | 15.23 (0.92) c | 26.83 (0.75) d | 23.81 (0.52) e | 15.31 (0.71) c | 10.54 (0.30) f | ||
Q3 | 18.31 | 18.2 | 18.81 | 15.62 | 27.29 | 24.04 | 15.72 | 10.74 | ||
Val | IV | ± SE | 8.16 ± 0.08 | 12.64 ± 0.05 | 13.66 ± 0.09 | 8.37 ± 0.08 | 13.68 ± 0.15 | 8.53 ± 0.08 | 11.07 ± 0.06 | 6.97 ± 0.05 |
Q1 | 7.89 | 12.51 | 13.31 | 8.01 | 13.17 | 8.17 | 10.89 | 6.82 | ||
Q2 (IQR) | 8.12 (0.43) a | 12.64 (0.28) b | 13.61 (0.77) c | 8.34 (0.60) ad | 13.78 (1.03) c | 8.60 (0.70) d | 11.05 (0.30) e | 6.92 (0.29) f | ||
Q3 | 8.32 | 12.79 | 14.08 | 8.61 | 14.20 | 8.87 | 11.18 | 7.11 | ||
Sum of proteogenic AAs | ± SE | 383.37 ± 2.00 | 550.7 ± 2.30 | 606.33 ± 1.79 | 384.46 ± 1.25 | 745.34 ± 2.11 | 678.83 ± 2.58 | 646.55 ± 3.06 | 349.07 ± 1.71 | |
Q1 | 376.03 | 546.30 | 600.62 | 380.76 | 736.59 | 674.65 | 634.03 | 343.99 | ||
Q2 (IQR) | 383.02 (14.80) a | 550.78 (9.60) b | 605.78 (13.21) c | 383.9 (8.95) a | 743.07 (16.38) d | 680.97 (12.11) e | 643.10 (23.07) f | 348.38 (10.15) g | ||
Q3 | 390.83 | 555.9 | 613.83 | 389.71 | 752.97 | 686.76 | 657.09 | 354.14 | ||
Non-proteogenic amino acids | ||||||||||
Orn | ± SE | 7.46 ± 0.08 | 7.59 ± 0.06 | 7.38 ± 0.06 | 6.52 ± 0.06 | 8.24 ± 0.09 | 5.47 ± 0.05 | 4.77 ± 0.03 | 4.61 ± 0.04 | |
Q1 | 7.30 | 7.32 | 7.17 | 6.40 | 7.89 | 5.30 | 4.64 | 4.44 | ||
Q2 (IQR) | 7.56 (0.42) ab | 7.65 (0.54) a | 7.41 (0.53) b | 6.59 (0.28) c | 8.23 (0.63) d | 5.43 (0.38) e | 4.72 (0.24) f | 4.62 (0.36) g | ||
Q3 | 7.72 | 7.85 | 7.69 | 6.69 | 8.52 | 5.69 | 4.88 | 4.80 | ||
Cit | ± SE | 2.62 ± 0.03 | 2.10 ± 0.03 | 3.11 ± 0.03 | 2.45 ± 0.04 | 5.46 ± 0.04 | ||||
Q1 | 2.53 | 2.01 | 3.01 | 2.31 | 5.30 | |||||
Q2 (IQR) | 2.61 (0.19) a | 2.13 (0.18) b | 3.07 (0.22) c | 2.39 (0.30) d | 5.44 (0.21) e | |||||
Q3 | 2.72 | 2.19 | 3.22 | 2.61 | 5.51 | |||||
Tau | ± SE | 2.88 ± 0.04 | 3.45 ± 0.04 | 2.67 ± 0.03 | 3.24 ± 0.06 | 6.46 ± 0.04 | 3.42 ± 0.07 | 3.93 ± 0.03 | 6.53 ± 0.07 | |
Q1 | 2.76 | 3.32 | 2.56 | 3.01 | 6.27 | 3.16 | 3.82 | 6.32 | ||
Q2 (IQR) | 2.86 (0.22) a | 3.40 (0.26) b | 2.65 (0.17) c | 3.24 (0.35) d | 6.42 (0.35) e | 3.40 (0.54) b | 3.95 (0.20) f | 6.52 (0.45) e | ||
Q3 | 2.98 | 3.59 | 2.73 | 3.35 | 6.62 | 3.70 | 4.02 | 6.77 | ||
AABA | ± SE | 2.27 ± 0.11 | 1.74 ± 0.03 | 1.62 ± 0.03 | 2.89 ± 0.04 | 1.78 ± 0.07 | 0.85 ± 0.01 | 1.13 ± 0.01 | 1.27 ± 0.02 | |
Q1 | 2.28 | 1.63 | 1.57 | 2.82 | 1.71 | 0.82 | 1.08 | 1.19 | ||
Q2 (IQR) | 2.37 (0.15) a | 1.73 (0.21) b | 1.63 (0.17) c | 2.89 (0.20) d | 1.89 (0.23) e | 0.85 (0.07) f | 1.15 (0.10) g | 1.29 (0.16) h | ||
Q3 | 2.43 | 1.85 | 1.74 | 3.02 | 1.94 | 0.89 | 1.18 | 1.35 | ||
BABA | ± SE | 1.51 ± 0.07 | 3.67 ± 0.03 | 3.36 ± 0.03 | 1.04 ± 0.01 | 3.23 ± 0.02 | 1.06 ± 0.01 | 0.95 ± 0.05 | 2.42 ± 0.03 | |
Q1 | 1.52 | 3.56 | 3.29 | 1.01 | 3.14 | 1.03 | 0.99 | 2.30 | ||
Q2 (IQR) | 1.57 (0.13) a | 3.67 (0.22) b | 3.39 (0.21) c | 1.03 (0.08) de | 3.25 (0.17) f | 1.04 (0.08) d | 1.03 (0.06) e | 2.42 (0.25) g | ||
Q3 | 1.65 | 3.78 | 3.50 | 1.08 | 3.30 | 1.11 | 1.06 | 2.56 | ||
GABA | ± SE | 1.13 ± 0.02 | 1.03 ± 0.01 | 1.27 ± 0.02 | 1.08 ± 0.01 | 1.42 ± 0.02 | ||||
Q1 | 1.04 | 1.01 | 1.21 | 1.04 | 1.33 | |||||
Q2 (IQR) | 1.12 (0.17) a | 1.03 (0.03) b | 1.26 (0.12) c | 1.09 (0.08) a | 1.41 (0.16) d | |||||
Q3 | 1.22 | 1.04 | 1.33 | 1.12 | 1.49 | |||||
β-Ala | ± SE | 1.05 ± 0.01 | 1.16 ± 0.02 | 1.50 ± 0.02 | 1.22 ± 0.02 | 1.78 ± 0.01 | 0.56 ± 0.04 | 0.60 ± 0.03 | ||
Q1 | 1.02 | 1.09 | 1.46 | 1.13 | 1.74 | 0.55 | 0.60 | |||
Q2 (IQR) | 1.05 (0.07) a | 1.19 (0.12) b | 1.52 (0.13) c | 1.24 (0.15) b | 1.78 (0.08) d | 0.64 (0.12) e | 0.62 (0.10) e | |||
Q3 | 1.09 | 1.21 | 1.59 | 1.29 | 1.82 | 0.67 | 0.70 | |||
Sum of non-proteogenic AAs | ± SE | 18.92 ± 0.14 | 18.64 ± 0.09 | 17.79 ± 0.11 | 18.08 ± 0.11 | 22.91 ± 0.12 | 13.92 ± 0.10 | 13.80 ± 0.10 | 20.89 ± 0.13 | |
Q1 | 18.65 | 18.37 | 17.72 | 17.62 | 22.63 | 13.54 | 13.58 | 20.68 | ||
Q2 (IQR) | 19.03 (0.68) a | 18.75 (0.56) b | 17.82 (0.48) c | 18.16 (0.80) c | 22.86 (0.66) d | 13.99 (0.75) e | 13.86 (0.61) e | 20.85 (0.72) f | ||
Q3 | 19.32 | 18.93 | 18.19 | 18.41 | 23.28 | 14.29 | 14.18 | 21.40 |
Parameter | Statistic | Population | |||||||
---|---|---|---|---|---|---|---|---|---|
aBIA | aCAR | aGON | aSOS | aSUR | nPOG1 | nPOG2 | nZAB | ||
PR (%) | ± SE | 88.40 ± 3.40 | 92.33 ± 2.48 | 92.58 ± 2.65 | 81.95 ± 4.06 | 83.60 ± 3.34 | 79.9 ± 4.01 | 74.33 ± 6.77 | 96.74 ± 1.50 |
Q1 | 81.66 | 83.33 | 92 | 75.31 | 78.89 | 70 | 50 | 100 | |
Q2 (IQR) | 94.23 (18.34) ab | 100 (16.67) ab | 100 (8) ab | 88.46 (24.69) a | 90 (17.48) a | 80 (30) a | 87.50 (50) a | 100 (0) b | |
Q3 | 100 | 100 | 100 | 100 | 96.37 | 100 | 100 | 100 | |
n | 19 | 21 | 26 | 27 | 28 | 27 | 29 | 29 | |
FRS (%) | ± SE | 98.10 ± 1.24 | 83.95 ± 6.63 | 82.71 ± 5.98 | 94.11 ± 2.29 | 85.36 ± 4.17 | 62.48 ± 7.52 | 62.86 ± 10.72 | 87.48 ± 3.62 |
Q1 | 100 | 80.83 | 80 | 91.81 | 84 | 42.14 | 27.50 | 81.66 | |
Q2 (IQR) | 100 (0) a | 100 (19.17) b | 100 (20) ab | 100 (8.19) ab | 92.86 (16) b | 65.15 (42.08) c | 66.66 (72.5) c | 100 (18.34) b | |
Q3 | 100 | 100 | 100 | 100 | 100 | 84.22 | 100 | 100 | |
n | 19 | 21 | 26 | 27 | 28 | 26 | 29 | 29 | |
PR/FRS | ± SE | 0.91 ± 0.04 | 1.05 ± 0.11 | 1.40 ± 0.34 | 0.88 ± 0.04 | 1.05 ± 0.08 | 1.81 ± 0.39 | 1.73 ± 0.43 | 1.19 ± 0.09 |
Q1 | 0.81 | 0.93 | 0.96 | 0.78 | 0.90 | 0.89 | 1 | 1 | |
Q2 (IQR) | 0.96 (0.19) a | 1 (0.07) ab | 1 (0.15) ab | 1 (0.22) a | 0.96 (0.18) ab | 1.15 (1.27) ab | 1 (1.25) ab | 1 (0.16) b | |
Q3 | 1 | 1 | 1.11 | 1 | 1.07 | 2.17 | 2.25 | 1.16 | |
n | 19 | 17 | 24 | 27 | 27 | 16 | 11 | 27 |
Population | Floral Display | Flower Structure | Sugars | Amino Acids |
---|---|---|---|---|
aBIA | IL → PR (rS = 0.46) | DS → FRS (rS = −0.50) | Fructose → PR (rS = 0.48) | Asp → PR (rS = 0.54) |
LF → FRS (rS = −0.53) | Sugars → PR (rS = 0.68) | Gly → PR (rS = 0.56) | ||
WI → FRS (rS = −0.49) | Gln → PR (rS = 0.46) | |||
WH → FRS (rS = −0.59) | Trp → PR (rS = 0.55) | |||
WE → FRS (rS = −0.48) | Cit → PR (rS = −0.49) | |||
BABA → FRS (rS = 0.51) | ||||
aCAR | Pro → PR (rS = 0.48) | |||
Phe → PR (rS = 0.48) | ||||
Orn → PR (rS = 0.61) | ||||
GABA → PR (rS = 0.49) | ||||
Tyr → FRS (rS = −0.46) | ||||
aGON | Tau → PR (rS = −0.43) | |||
aSOS | SH → FRS (rS = −0.46) | Cit → PR (rS = −0.39) | ||
IL → FRS (rS = −0.61) | Tau → PR (rS = −0.42) | |||
Tau → FRS (rS = −0.39) | ||||
aSUR | SH → FRS (rS = 0.43) | WS → PR (rS = 0.43) | ||
IL → FRS (rS = 0.38) | ||||
nPOG1 | WS → PR (rS = 0.50) | Pro → PR (rS = 0.38) | ||
WE → PR (rS = 0.52) | Trp → PR (rS = 0.45) | |||
nPOG2 | DP → FRS (rS = −0.37) | Asp → PR (rS = −0.42) | ||
Arg → PR (rS = 0.38) | ||||
Met → PR (rS = −0.38) | ||||
AABA → PR (rS = 0.42) | ||||
Met → FRS (rS = −0.41) | ||||
nZAB | LI → PR (rS = −0.41) | Sucrose → FRS (rS = −0.37) | ||
LH → PR (rS = −0.48) |
Population | Geographical Coordinate | Habitat Characteristics |
---|---|---|
aBIA | 53.50192 N 22.52210 E | On the verge of a gravel road across Pinus sylvestris forest. Only Melampyrum pratense (high abundance) flowers together with Epipactis helleborine. |
aCAR | 53.46111 N 22.65337 E | On the verge of an asphalt road in the vicinity of a multi-species meadow. |
aGON | 53.46719 N 22.67077 E | In a mixed forest on the verge of asphalt road. In close proximity to the railroad and a large patch of Tanacetum vulgare. |
aSOS | 53.489287 N 22.583053 E | In the ditch on the verge of gravel road to the village of Sośnia with few apiaries, across the Pinus sylvestris forest. In the ground layer: Thymus sp., Ranunculus acris, Achillea millefolium, Centaurea jacea, Jasione montana, and Anthemis tinctoria. |
aSUR | 52.97390 N 22.98206 E | At the verge of an asphalt road and the Cucurbita pepo field. Under single trees along the road. In the undergrowth, mainly grasses. In the vicinity, there are agriculture fields with balks between them. |
nPOG1 | 53.3040 N 22.5404 E | The border of alder forests and peat bogs with the domination of grasses and sedges, and partly under shrubs and trees. |
nPOG2 | 53.3025385 N 22.5407106 E | In Tilio carpinetum typicum surrounded by peat bogs. Lack of co-flowering plants. |
nZAB | 53.29861 N 22.58101 E | Mineral island among peat bogs. Mainly open area with a small fragment of Tilio Carpinetum typicum. Neighboring mineral island with multispecies communities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzosko, E.; Bajguz, A.; Burzyńska, J.; Chmur, M. Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition? Int. J. Mol. Sci. 2023, 24, 4276. https://doi.org/10.3390/ijms24054276
Brzosko E, Bajguz A, Burzyńska J, Chmur M. Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition? International Journal of Molecular Sciences. 2023; 24(5):4276. https://doi.org/10.3390/ijms24054276
Chicago/Turabian StyleBrzosko, Emilia, Andrzej Bajguz, Justyna Burzyńska, and Magdalena Chmur. 2023. "Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition?" International Journal of Molecular Sciences 24, no. 5: 4276. https://doi.org/10.3390/ijms24054276
APA StyleBrzosko, E., Bajguz, A., Burzyńska, J., & Chmur, M. (2023). Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition? International Journal of Molecular Sciences, 24(5), 4276. https://doi.org/10.3390/ijms24054276