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Stana Tokić 1 , Maja Jirouš 2,*, Vera Plužarić 3, Martina Mihalj 3,4 , Marija Šola 3, Maja Tolušić Levak 3,5,
Kristina Glavaš 6, Peter Balogh 7 and Mario Štefanić 8,*
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Abstract: Psoriasis vulgaris (PV) is an autoinflammatory dermatosis of unknown etiology. Current
evidence suggests a pathogenic role of γδT cells, but the growing complexity of this population
has made the offending subset difficult to pinpoint. The work on γδTCRint and γδTCRhi subsets,
which express intermediate and high levels of γδTCR at their surface, respectively, is particularly
scarce, leaving their inner workings in PV essentially unresolved. We have shown here that the
γδTCRint/γδTCRhi cell composition and their transcriptom are related to the differential miRNA
expression by performing a targeted miRNA and mRNA quantification (RT-qPCR) in multiplexed,
flow-sorted γδ blood T cells from healthy controls (n = 14) and patients with PV (n = 13). A significant
loss of miR-20a in bulk γδT cells (~fourfold decrease, PV vs. controls) largely mirrored increasing
Vδ1-Vδ2- and γδintVδ1-Vδ2- cell densities in the bloodstream, culminating in a relative excess of
γδintVδ1-Vδ2- cells for PV. Transcripts encoding DNA-binding factors (ZBTB16), cytokine receptors
(IL18R1), and cell adhesion molecules (SELPLG) were depleted in the process, closely tracking miR-
20a availability in bulk γδ T-cell RNA. Compared to controls, PV was also associated with enhanced
miR-92b expression (~13-fold) in bulk γδT cells that lacked association with the γδT cell composition.
The miR-29a and let-7c expressions remained unaltered in case–control comparisons. Overall, our
data expand the current landscape of the peripheral γδT cell composition, underlining changes in its
mRNA/miRNA transcriptional circuits that may inform PV pathogenesis.

Keywords: hsa-mir-20a; hsa-mir-92b; hsa-mir-29a; hsa-let-7c; psoriasis vulgaris; γδ T cells

1. Introduction

Psoriasis vulgaris (PV) is a debilitating autoimmune dermatosis with a complex
etiology and lifelong duration. Psoriatic arthritis, diabetes, and cardiovascular disorders
often accompany the skin manifestations, making PV a systemic and highly polymorphic
condition [1–5]. Currently, PV is considered a T-cell-driven disease, and conventional αβ T
cells have been assigned a major role in epithelial, stromal, and vascular skin remodeling.
Emerging evidence, however, demonstrates that innate-like lymphocytes, particularly γδ T
cells, also participate in this process, in both human [6–8] and animal models of PV [9–11].

Mature, human γδ T cells predominantly segregate into Vδ1 and Vδ2 subsets [12]
that preferentially populate epithelial barriers and blood, respectively [6,13–18].
Both the Vδ2 and nonVδ2 subsets can be further divided into type 1- (cytotoxic,
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TBX21+EOMES+IFNG+) [19–21], type 3- (RORC+IL17A+IL18R1+) [22,23], and type 2-like
(ZBTB16+) [24] effector cells. More recently, another classification scheme has been put
forward based on the bimodal distribution of γδTCR surface expression in fluorescence-
activated flow cytometry [23]. Two distinct classes of blood and tissue γδ T cells have
thus been proposed: γδhi cells, which largely align with TRDV1 usage, and γδint cells,
which adopt a more nuanced TRDV profile (at least in the bloodstream). The exact frac-
tions, however, vary widely between different individuals and populations [23,25]. In
addition, high-throughput RNASeq studies have identified many more distinct subsets
of γδ T cells [19,22,26], but their biological significance for PV is virtually unknown. For
example, numeric aberrations of γδTCRint (blood), Vδ2+ γδTCRint (blood), and (Vγ9)Vδ2+

T cells (lesional skin and blood) have been reported [6,25], but the exact mechanism that
underpins those alterations is unknown. A challenge for future research will be to account
for all the processes contributing to γδ T-cell granularity in human PV.

In this study, we examined the microRNA (miRNA) expression and its relation to the
γδhi:γδint dichotomy in the circulating γδ T cells of PV donors. Endogenously expressed
miRNAs are well-established epigenetic regulators of T-cell development and function, with
growing evidence demonstrating their critical role in various autoimmune diseases [27].
As such, PV has also been linked to the aberrant expression of >400 miRNAs [28], most
of which have been identified in full-depth biopsies of involved and non-involved psori-
atic skin [29–35]. Several whole blood [36] and exosome-derived [37] miRNAs have also
been studied, showing potential as biomarkers and instruments for a PV diagnosis [38],
prognostication [39], and developing epigenetic therapy [40]. Nonetheless, very few of
those associations have so far been confirmed in PV, and even fewer have been examined in
circulating γδ T cells [41]. That includes the members of the miR-17~92, miR-29, miR-25~92,
and let-7 families, which make up a part of the characteristic miRNA signature in psoriatic
plaques [28–35] and play roles in TCR-mediated signaling, cytokine production [42,43],
keratinocyte biology [44], type I [45] and innate [46] immunity, and T-cell survival [47]. This
paper focuses on four of these miRNAs (miR-20a, miR-29a, miR-92, and let-7c), which medi-
ate translational repression by pairing with the 3′-untranslated region of target mRNAs [48].
First, we tested for their differential expression in sorted γδ blood T cells from healthy
controls and PV, then matched these findings to the γδhi:γδint and Vδ2:Vδ1 composition by
using cytometric data from our recent and updated study [25]. In Section 2.3, we further
related the differentially expressed miRNAs to the bulk expression of their putative mRNA
targets (as indicated by TargetScan, miRDB, and TarBase tools, Supplementary Table S1)
in γδ T cells, namely, ZBTB16, RORC, RUNX3, TBX21, EOMES, IL18R1, and SELPLG. The
associated methodology and data reduction methods are described in Section 4.7. The final
section discusses the implications of our results and future challenges.

2. Results
2.1. Subject Characteristics

The detailed structure of our sample is described in [25], but we have summarized the
relevant points here. The baseline characteristics of the subjects are shown in Table 1. No
difference in the studied properties was observed between the two groups (PV vs. controls,
Table 1). Most participants were mildly affected, young and middle-aged white males
with a history of prior CMV infection, low systemic inflammatory burden, and normal-to-
overweight score on the BMI scale. Both groups were well-balanced on the CMV status, a
factor that strongly imprints on the γδ T-cell composition [49–51]. Neither the CMV viral
load (DNAemia) nor the CMV glycoprotein-specific IgG binding were examined.
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Table 1. Study participants.

Group PV Controls p *

N (male/female) 13 (10/3) 14 (9/5) 0.678 **
Age (chronological, years) 35 (28–43) 32 (28–41) 0.528

PASI 6.8 (5.5–11.5) – –
DLQI 3 (0.5–6.5) – –

BMI (kg/m2) 26.5 (21.3–30.1) 23.9 (20–25.7) 0.055
CRP (mg/L) 2 (0.7–2.8) 0.7 (0.3–1.7) 0.068

Anti—CMV IgG (AU/mL) 130 (19–178) 135 (42–171) 0.86
Anti—CMV IgG (pos/neg) 8/2 11/3 1 **

Continuous data are shown as the median (interquartile range). BMI—body mass index, CRP—C reactive protein,
CMV—cytomegalovirus, PASI—Psoriasis Area and Severity Index, DLQI—Dermatology Life Quality Index,
PV—psoriasis vulgaris, IgG—immunoglobulin G. * p-value, Mann–Whitney U-test. ** Fisher’s exact test.

2.2. The γδ T-Cell Composition Is Reshaped by the CMV Infection History and the
Case–Control Status

As previously shown [25], the γδ T-cell composition was heavily influenced by the
CMV infection history (Figure 1A) and the case–control status (Figure 1B). To illustrate
this behavior, we divided the participants by the median CMV IgG level, irrespectively of
case–control data. The total number of γδ T cells was similar in both CMV IgG groups, but
their composition changed (Figure 1A, Source Data). As expected, the PB Vδ1+ γδ cells were
numerically expanded in the highly CMV-experienced environment [49], replacing the γδint

Vδ2+ populations (Figure 1C). At the transcriptional level, EOMES, TBX21, and RUNX3
expressions were much stronger at the higher end of the IgG CMV range (Figure 1D), cul-
minating in the highest Vδ1 cell densities (Figure 1D,E, Supplementary Figure S2A,B,D–F),
consistent with their transition to the cytotoxic/effector program [19,26,52] (Supplementary
Figure S2B,D,F, Supplementary Figure S3). This agrees with the observational results from
the independent bulk (Figure 1F) and two scRNASeq studies [26,53]. As expected for a
middle-income country [54–56], a high prevalence of CMV seropositivity was observed,
which could help explain a higher proportion of TRDV1 usage in γδhi cells from our co-
hort [25] compared to some other populations [23]. This suggests that even more complex
effects of the CMV on γδ T-cell biology may be expected [50,51,57]. Still, a small, subdomi-
nant channel of γδ cell remodeling would be challenging to detect with the current sample
size. In addition, a loosely constrained proxy parameter such as CMV IgG may not possess
the desirable properties for this task [58]. As a result, we chose to rigorously account for
any potential bias stemming from CMV exposure in our downstream analysis.

In contrast to the CMV, Figure 1B shows that in PV γδint Vδ1-Vδ2- cells, a poorly
characterized subset of clonally divergent γδ T cells was found in relative excess. Again,
no change in total γδ T-cell frequencies was found (Source Data). The reason for this excess
of Vδ1-Vδ2- cells in the PV γδint fraction remains to be explained. No change was observed
in other cell subsets (Source Data).
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Figure 1. Stacked barplots (average percentage) showing the γδ blood T-cell composition by (A) cy-
tomegalovirus (M corresponds to median serum CMV IgG, 132 IU/mL, panel A, 12 + 12 donors)
and (B) case (PV, n = 13)–control (CR, n = 14) status. An asterisk denotes a statistically significant
difference according to the two-tailed Mann–Whitney test, * p < 0.05. Only significant differences
are plotted. (C) The distribution of γδ T-cell subsets in ternary coordinates. The three coordinates
add to a constant of 100%. The color-coded isocontour lines of serum CMV IgG levels have been
smoothened to filter out local features. Left panel: The color and size of the points are determined
by the value of the serum CMV IgG (color bar). Right: The background shows color-coded CMV
IgG levels. (D) Gene expression associations with the γδ blood T-cell composition and serum IgG
levels. The colored scale bar reports Spearman rank correlations (R). All correlations are significant at
p < 0.05. (E) Scatter plot representing a relation between the EOMES gene expression in bulk γδ blood
T cells and their composition (Vδ1+ fraction, flow cytometry). R denotes the Spearman’s correlation
coefficient; each dot represents one donor. The black line represents a linear model fit (least squares
method), whereas the shaded region indicates the 95% confidence interval. The Y-axis (fold change) is
log-scaled. (F) Expression levels of the TRDV1, EOMES, and TBX21 genes in the whole blood samples
[n = 337, log-transformed (1 + TPM) values, GTEx project, USCS Xena, gepia2.cancer-pku.cn]. Each
dot represents one donor. Numbers denote Spearman’s correlation coefficients and their p-values.
TPM transcript per million.
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2.3. The Differential Expression of miR-20a Is Associated with Transcriptional Variations in Bulk
γδ T Cells and the Altered Vδ Composition of the γδint Compartment

Next, we investigated the effect of PV on selected peripheral blood γδ T-cell miRNAs.
For this purpose, we considered several poorly studied miRNA candidates (miR-20a, miR-
29, miR-92b, and let-7c), which potentially target RORC, RUNX3, TBX21, EOMES, IL18R1,
ZBTB16, and SELPLG transcripts encoding proteins instrumental in γδ T-cell commitment
and differentiation (Supplementary Table S1). The results showed that the bulk miR-20a
values were lower in PV compared to control γδ T cells (Figure 2A). Apparently, this loss of
miR-20a expression was largely (but not completely) dependent on increasing Vδ1-Vδ2-

(Figure 2B), and particularly, γδint Vδ1-Vδ2- cell densities (Figure 2C,D), indicating different
timescales for their production (Vδ1-Vδ2- cells vs. miR-20a). This is potentially explained
by the suppressed miR-20a formation in certain Vδ1-Vδ2- lineages, which may lead to less
efficient miR-20a enrichment. The inclusion of age, sex, and CMV status in the model did
not materially affect these results (Figure 2D,E). Notably, even though PV and miR-20a were
both associated with Vδ1-Vδ2- γδ T-cell numbers, these relations need not be mediated by
the same Vδ1-Vδ2- subset. The miR-20a levels were also decoupled from any other studied
cell types and mRNA levels of their predicted targets (RUNX3 and RORC), but coincided
well with the ZBTB16, and to a lesser degree with the IL18R1 and SELPLG expressions
(Figure 3A), which, in turn, were predominantly associated with TRDV2 usage (but not vice
versa; ZBTB16, IL18R1, Supplementary Figure S2G,H), innate-like differentiation (ZBTB16,
Supplementary Figure S2D,E), and cell trafficking (SELPLG, Supplementary Figure S3). No
statistical evidence of inverse miRNA–mRNA association was found in the pooled analysis,
although it has been shown that miRNAs can decrease their target availability. This,
however, is highly model-dependent, as the relationship relies heavily on the strength of
miRNA–mRNA coupling. In complex cellular mixtures, m(i)RNA composition is primarily
determined by cell lineage, the proportion of each cell type, and cell-type-specific programs.
miRNAs, by contrast, impart complex [59], mostly weak negative effects on their targets.
Under such conditions, modest relations (if any) may be missed, so their absence in leading-
order approximations may not be surprising. Nevertheless, a weak reciprocal relation
between the miR-20a and the TBX21 expression was observed in the control samples
(Figure 3B). This, however, neither confirms a mechanistic relationship nor precludes effects
at the protein level.
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range. p-values are from a two-tailed Mann–Whitney U-test. Scatter plot representing (B) a relation
between the hsa-miR-20a-5p expression (MIMAT0000075, fold change, log2 scale) and (C) the γδ

blood T-cell composition (flow cytometry). R denotes the Spearman’s correlation coefficient; each dot
represents one donor. The black line represents a linear model fit (least squares method), whereas the
shaded region indicates the 95% confidence interval. Each dot represents one donor. The (D) hsa-
miR-20a-5p expression in bulk γδ blood T cells, multivariate assessment (fold change, log scale). The
estimates in the figure compare the predictions obtained with and without γδint cell composition
in the model (lower vs. upper panel). The beeswarm plots display Shapley values (SHAP) per
feature using min.-max. scaled feature values on the color axis. The color of the points represents
the value of the feature from low to high (i.e., higher feature values are redder), providing informa-
tion about the direction of the association between the predictor and the miRNA levels. Numbers
represent the average absolute Shapley value per predictor: The larger the absolute SHAP value,
the greater importance of the predictor for the model’s output. Each dot represents one donor. The
logCMV = log2(1 + CMV IgG) group corresponds to the case–control status. (E) Predictive importance
of the case–control status (group) with (M2) and without (M1) cell composition (TRDV usage, %
γδint T cells) for the hsa-miR-20a-5p expression. Mean absolute SHAP values, computed accord-
ing to Wodtke et al. (https://github.com/gtwodtke/nhood_mediation_airToxics [60], accessed on
6 December 2022). Each fit includes baseline variables (age, sex) and covariates (CMV IgG, body
mass index).
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(n = 13). Both axes are log-scaled. R denotes the Spearman’s correlation coefficient; each dot represents
one donor. The black line represents a linear model fit (least squares method), whereas the shaded
region indicates the 95% confidence interval.
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We also detected a difference in miR-92b abundance between the two groups (13.2-fold
enrichment, PV vs. controls, bulk γδ T cells, Figure 2A), but it lacked association with
either cell numbers, levels of putative target mRNAs (ZBTB16 and SELPLG), or any other
biological covariate. For miR-29a and let-7c, no evidence of differential expression by
case–control status was observed nor association with the expression of predicted target
genes (TBX21, EOMES, and ZBTB16, respectively). The miR-29a expression was higher
in men than in women (Source Data); however, this statement must be toned down due
to the small number of female participants. Altogether, these results point to the role of
the miR-20a in regulating the compositional and transcriptional features of the γδ T-cell
pool in PV. The results, however, rest largely on mild illness, raising the question of their
applicability to more evolved disease settings. Therefore, much remains unknown about
miRNA distribution under realistic conditions.

3. Discussion

The γδ T cells play an essential role in animal models of the disease [7,9,10]. However,
drawing a direct connection between the properties of human γδ T cells and their murine
counterparts is not possible. As a result, a mechanistically relevant population has yet to be
identified among many different γδ T-cell populations.

Here, the subsets at hand are the γδhi/int cells, a largely neglected category that owes
its name to a distinct pattern of γδTCR surface expression in flow cytometry. Current evi-
dence suggests that γδhi cells differ from γδint cells by the effector cytokines they produce,
TRDV usage, and key transcription factors [23,25]. This notion is further underscored by
preclinical data, suggesting that γδhi cells are selectively associated with synovial inflamma-
tion in patients diagnosed with spondyloarthritis, a common companion to psoriasis [60].

We improved upon the existing literature in several ways. First, we demonstrated
that PV can be sufficient to increase the relative size of the nonVδ1nonVδ2γδint compart-
ment in the bloodstream, although no evidence exists that this is enough to change the
composition of skin T cells. This updates the result from Plužarić [25]. Second, a significant
downregulation of the miR-20a was observed in PV patients. We found that bulk γδ T
cells, depleted from the miR-20a host’s larger Vδ1-Vδ2-γδint population in the blood, lose
reciprocally larger amounts of transcripts commonly associated with Vδ2 cells [22,25], such
as those encoding DNA-binding factors (ZBTB16), cytokine receptors (IL18R1), and cell
adhesion molecules (SELPLG) [22,61], while the levels of miR-20a-predicted targets, related
to cytotoxic effector (RUNX3) and Th17-like (RORC) γδ T-cell subsets, were apparently not
affected [22]. The total number of γδ T cells did not change in the process, indicating a
change in composition, rather than in the size of the circulating γδ T-cell pool. Although
we cannot definitively assign this result to a single biological process, these findings are
broadly consistent with the suggested blood-to-skin trafficking of Vγ9Vδ2 cells in PV [6],
and with reports of a diminished miR-20a expression in joint-infiltrating Vγ9Vδ2 T cells
from rheumatoid arthritis [62]. Correspondingly, an increased miR-20a-5p expression has
been repeatedly observed in normal-looking and affected human psoriatic skin [28,31]. In
terms of functioning, a lower miR-20a expression was previously associated with stronger
TCR-mediated signaling and cytokine secretion in CD4+ T cells [42], as well as with im-
proved NK cell-killing capacity [63]. Similarly, mice lacking miR-17~92 in mature CD8+T
cells exhibit enhanced memory differentiation and lymphoid homing of T-betloCD8+T
cells upon the LCMV challenge [64]. Additional miRNAs that might underlie changes in
peripheral γδT cell composition in PV remain to be addressed, as case–control differences
in miR-29a and let-7c expression were imperceptible, at least at the level of bulk γδ T-cell
transcriptome. This calls for a deeper analysis of miRNAs and their interplay with distinct
γδ T-cell populations in PV. Meanwhile, the mechanisms leading to Vδ1-Vδ2-γδint cell
accumulation in the blood are still unknown.

The case of miR-92b overexpression in bulk γδ T cells is more enigmatic, given the
absence of any cellular context or mRNA relationship. Higher levels of miR-92b-5p and its
antisense pair, miR-92b-3p, have been observed in non-lesional skin [28,31] and psoriatic
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keratinocytes [32], respectively, supporting the role of this miRNA family in PV. Elevated
miR-92b levels were also reported in activated T cells, and implicated in the negative
feedback regulation of the calcineurin/NFAT signaling pathway [65]. Unfortunately, very
few studies specifically analyzed the impact of miRNAs on the γδ T-cell properties.

There are also a few limitations in our study that should not be overlooked. First,
the γδhi/int cells have not been examined to the same depth and extent like the other T
cells. This triggers a series of important questions: How are the γδhi/int cells related to the
γδ T-cell clusters from high-throughput studies? How does this dichotomy translate into
biological differences? Does the clonotypic composition of Vδ1-Vδ2-γδint cells change in
PV? This, however, is beyond the scope of the present study and an attempt at a unified
description must be left to future studies. Second, the γδhi/int cells have been dichotomized
according to the fluorescence intensity of the cells stained with the pan-γδTCR antibody.
This dichotomy, however, is far from perfect. A more diffuse pattern of staining can
be observed in some individuals [25,66]. In others, the γδhi and γδint populations of
blood T cells may be split into multiple clusters [25]. Thus, methodological and technical
variations between the studies may result in significant inconsistencies. In addition, genetic
diversity, infection history, and environmental effects may conspire to obscure the results
in human studies. To provide confidence in these new results, we performed a rigorous
check against confounding by common covariates. Third, we used RNA from bulk γδ

T cells, thus precluding an efficient probe into target mRNA silencing by miRNAs. This
further emphasizes the importance of perturbative studies in highly resolved and carefully
purified cell populations, avoiding cell mixtures. The complementary approach is to
perform comprehensive (genome-wide) miRNA profiling, which is particularly important
when considering spillover effects arising from tightly co-expressed miRNAs. Fourth,
direct measurements of miRNA abundance suffer from sensitivity limits in low-expressing
cell populations; therefore, they are likely biased towards targets and samples where such
a measurement is possible, but are not representative of the population-level trend. As a
result, some degree of incompleteness is generally expected at the lower end of the miRNA
expression, which effectively puts the obtained estimates closer to their upper boundaries.
Improved measurements will be necessary to resolve the existing uncertainties. Finally,
mechanistic insight is central to the validity of these findings, posing an unmet need for a
deeper, orthogonal characterization of miRNA biology in γδhi/int cells. This would help
identify not only the most promising candidates, but also potential targets in PV that could
be exploited for a prognostic or therapeutic effect.

Despite these imitations, our new analysis provides an updated insight into the
γδhi/int partition of blood T cells and its association with the miRNA expression in PV.
Elucidating the biological mechanism is essential for interpreting the data from our and
future observations.

4. Materials and Methods
4.1. Study Design and Subject Selection

We used archival RNA samples extracted from flow-sorted CD3+γδTCR+ lymphocytes
of 13 clinically active, therapeutically naïve psoriatic patients (PV) [(M/F ratio: 10/3; me-
dian years of age (IQR): 35(28–43)], and 14 sex- and age-matched, unrelated healthy controls
[(M/F ratio: 9/5; 32(28–41) years of age); Table 1.]. Study participants were originally
recruited at the Department of Dermatology and Venereology, University Hospital Center
Osijek, following physical examination and pathohistological confirmation of psoriasis
vulgaris. Disease severity and the impact on the quality of life were assessed using the
PASI (Psoriasis Area and Severity Index) and the DLQI (Dermatological Life Quality Index)
questionnaires, respectively. The serological markers of past bacterial (QuantiFERON-TB
Gold test) and viral exposure (anti-CMV IgG, anti-CMV IgM, anti-HBsAg, anti-HCV) were
tested at the time of recruitment, together with a complete blood count (CBC), C-reactive
protein (CRP) serum levels, erythrocyte sedimentation rate (ESR), and body mass index
(BMI). Patients on either systemic immunomodulation or cytostatic therapy, with malignant,
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autoimmune, and infectious diseases or allergic reactions within 6 weeks before diagnostic
processing were excluded from the study. Written informed consent was collected from all
participants prior to sample collection. The study protocol was reviewed and approved by
the Ethics Committee of the Faculty of Medicine in Osijek (number: 2158-61-07-18-135).

4.2. The miRNA Selection

In order to select the miRNAs targeting previously tested mRNAs (RUNX3, IL18R,
ZBTB16, RORC, TBX21, EOMES, and SELPLG) [25], we relied on reports of previously
validated targets [40–45,60–63] and three target prediction algorithms, namely, TargetScan-
Human (Release 8.0) [67], miRDB [68], and TarBase (v.8) [69]. These algorithms incorporate
computational methods and experimental validation to predict miRNA–mRNA interactions
and they have been widely used in the field of miRNA research [65,70–73]. In line with
that, high target score predictions in at least one target algorithm, or simultaneous targeting
of at least two tested mRNAs were used as the miRNA selection criteria (Supplementary
Table S1). Some candidates were targeted by multiple miRNAs.

4.3. Isolation of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from 10 mL of freshly
collected, heparinized blood samples and fractionated by density gradient centrifugation
on the Lymphoprep medium (Stemcell Technologies, Vancouver, Canada), as advised in
the manufacturer’s leaflet. In short, 10 mL of whole blood was diluted with saline (0.9%
(w/v) NaCl) in the 1:1 ratio, carefully layered onto 15 mL of the Lymphoprep medium,
and sedimented into leukocyte fractions during a 25 min centrifugation at 800× g, with
break off. The harvested mononuclear cells were carefully washed twice in phosphate-
buffered saline (PBS), followed by resuspension and 10 min centrifugation at 550× g. The
PBMC numbers were determined with the use of the Countess II automated cell counter
(Thermo Fisher Scientific, USA) and aliquoted for flow cytometry (min 1 × 106 cells) and
fluorescence-activated cell sorting or FACS (min. 6× 106 cells).

4.4. Flow Cytometry Analysis and γδT Cell Sorting

The flow cytometry of peripheral blood γδT cells was accomplished by monoclonal
antibody staining of CD3ε (FITC, 1:250, clone UCHT1 gamma, produced at the Department
of Immunology and Biotechnology, University of Pecs), TCRγδ (PE-Cy7, 1:100, clone B1,
BioLegend), TCRVδ1 (APC, 1:100, clone TS8.2, eBiosciences), and TCRVδ2 (PerCP/Cy5.5,
1:200, clone B6, BioLegend)] surface markers. Dead cells were excluded using LIVE /DEAD
Fixable Near IR Dead fluorescent viability dye (ThermoFisher Scientific, Rockford, IL, USA)
and unspecific antibody binding was prevented by a 10 min pre-staining incubation with
the 5% FcR blocking reagent (TruStain FcX, Biolegend). The γδT cell-count acquisition
was performed with the use of the BD FACS Canto II cytometer (FACS Canto II, Becton
Dickinson, San Jose, CA, USA) and the collected data were analyzed with FlowLogic v7.2.1.
software (Inivai Technologies, Mentone, VIC, Australia). The gating strategy for peripheral
γδT cell populations (Supplementary Figure S1) was set according to compensation pa-
rameters selected by fluorescence-minus-one (FMO) and single-stained control processing,
as described in more detail previously [25]. The second, larger aliquot of paired PBMC
samples was used for cell sorting of CD3+γδTCR+ expressing cells on a 4-color S3e cell
sorter (Bio-Rad Laboratories, Hercules, CA, USA). As previously reported, a minimum of
15,000 sorted γδT cells were collected from each freshly collected PBMC aliquot, directly
into the miRVana™ miRNA Lysis/Binding buffer (Thermo Fisher Scientific, Rockford, IL,
USA) and used for subsequent RNA extraction, which was done according to the manu-
facturer’s instructions. The purity of the sorted γδT cells was estimated using RNASeq
analysis of the α-, β-, γ-, and δ-chain TCR repertoire (Archer Immunoverse High Sensitiv-
ity TCR Kit, Illumina MiniSeq sequencer, manuscript in preparation). The results of the
TRA/TRB/TRG and TRD CDR3 clonotype analysis (Archer Analysis Software) for one
representative sample are given in Supplementary Table S2.
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4.5. cDNA Synthesis and mRNA/miRNA Expression Analysis

Before being processed into cDNA, cryopreserved total RNA samples were thawed
and the available quantities were measured using the DeNovix QFX Fluorometer (DeNovix
Inc., Wilmington, USA). Reverse transcription (RT) of four candidate (hsa-miR-20a-5p, hsa-
miR-29a-3p, hsa-miR-92b-5p, hsa-let-7c-5p) and three control miRNAs (hsa-miR-192-5p,
hsa-miR-345-5p, hsa-miR-423-3p) was carried out in four sequential steps using the TaqMan
Advanced miRNA cDNA Synthesis kit (Thermo Fisher Scientific, Rockford, IL, USA). In
short, for initial 3′ poly-A tailing, 5 ng of total RNA was incubated in 5 µL of Poly(A)
reaction mixture (45 min at 37 ◦C) and the 5′ ligation of an adaptor sequence in a 15 µL
ligation blend (60 min at 16 ◦C) was performed to extend all mature miRNAs present, prior
to cDNA synthesis. Next, the extended miRNAs were reverse transcribed (15 min at 42 ◦C)
in a 15 µL RT reaction mix composed of 6 µL of 5X RT buffer, 1.2 µL of dNTP mix, 1.5 µL
of 20Xuniversal RT primers, 3 µL of 10X RT enzyme mix, and 3.3 µL of RNase-free water.
In order to improve the detection of low-expressing miRNA targets while maintaining
their relative differential expression levels, 5 µL of each cDNA sample was pre-amplified
with 2.5 µL of Universal miR-Amp Primers and 25 µL of miR-Amp Master Mix. The pre-
amplified cDNA products were diluted fivefold and the transcript levels of target miRNAs
were measured using the QuantStudio 5 Real-Time instrument (Thermo Fisher Scientific,
Rockford, IL, USA) in triplicate 15 µL quantitative real-time PCR (qRT-PCR) reactions
containing 6.75µL of the cDNA template, 7.5µL of TaqMan Fast Advanced Master Mix,
and 0.75 µL of TaqMan Advanced miRNA Assay (Applied Biosystems Foster City, CA,
USA). The cycling conditions were set according to the guidelines in the manufacturer’s
leaflet and the list of assays is given in Table 2.

Table 2. List of TaqMan assays for miRNA analysis.

Assay ID miRBase ID
miRBase

Accession
Number

Mature miRNA Sequence

478586_mir hsa-miR-20a-5p MIMAT0000075 UAAAGUGCUUAUAGUGCAGGUAG
478587_mir hsa-miR-29a-3p MIMAT0000086 UAGCACCAUCUGAAAUCGGUUA
478577_mir hsa-let-7c-5p MIMAT0000064 UGAGGUAGUAGGUUGUAUGGUU
479207_mir hsa-miR-92b-5p MIMAT0004792 AGGGACGGGACGCGGUGCAGUG
478327_mir hsa-miR-423-3p MIMAT0001340 AGCUCGGUCUGAGGCCCCUCAGU

The threshold cycle (Ct) values were collected using QuantStudio Design&Analysis
software, v1.5.2. Amplification efficiency and pipetting precision, as assessed by the linear
regression coefficient (R2), were measured by five-point, fourfold serial dilutions of the
arbitrary standards that were run next to the samples in each experiment, providing an
insight into the final achieved ranges of efficiency (80–100%) and R2 (0.980–0.998). Intra-
assay variability was less than 1.96%, and a variation of less than 2.34% was achieved
between different PCR experiments. Among the three tested control miRNAs, only the hsa-
miR-423-3p was successfully amplified in our sample set and thus used for the NormFinder
stability evaluation (M = 2.098) and normalization of target miRNAs expression levels.
Finally, the fold difference in the relative miRNA quantity was determined with respect
to the control group levels, using the efficiency corrected model of the 2−∆∆Ct method as
described by Pfaffl [74]. The observed differences in miRNA expression were analyzed
relative to the previously collected data on the peripheral γδT cell phenotype, frequency,
and transcriptional reprogramming, as well as changes in cytokine and chemokine serum
levels of PV patients. The quantification of mRNA for EOMES, RUNX3, TBX21, RORC,
CCR6, ZBTB16, SELPLG, and IL18R was performed as reported earlier [25].

4.6. In Silico Analysis

The processed single-cell (sc)RNASeq data from Tan et al. [22] were used for creating
example figures. The dataset, including cell-type annotations, was downloaded from the
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Gene Expression Omnibus (GEO), accession number GSE149356 (FACS-sorted human γδ

T cells from 2 cord blood donors and 2 adult blood donors, 10X Genomics). The analysis
was carried out through Seurat v3.2.3 [52] and Nebulosa v1.6 [75] pipelines. For bulk
RNAseq, 337 whole blood samples from the GTEx project [76] were processed using the
Gene Expression Profiling Interactive Analysis interface [77] (http://gepia2.cancer-pku.cn,
accessed on 20 August 2022). For this analysis, we restricted ourselves to gene–gene cross-
correlations by adopting the harmonized TPM (transcript-per-million) data from UCSC
Xena [78].

4.7. Statistical Analysis

Gaussianity was assessed by the Shapiro–Wilk test, and the homogeneity of variances
by Levene’s test. Generally, a nonparametric approach was adopted. Where possible,
an equal allocation design was used to maximize statistical power. Continuous data
is presented as median with the interquartile range (IQR), except for stacked barplots,
where arithmetic means were utilized, because the sum of group-level medians does
not readily converge on the grand median. This choice did not significantly affect our
results. For downstream analysis, serum CMV IgG levels were winsorized at the upper
limit of quantification (250 IU/mL). As most subjects were CMV-experienced, we also
explored the effect of past CMV exposure by dividing the sample into two equal subgroups
using median CMV IgG quantity. The Mann–Whitney U-test was used for independent
group comparisons and the Fisher’s exact test was applied to contingency tables. Pairwise
correlations were assessed by the Spearman’s rank test. Shapley’s additive explanations [79],
representing the Shapley value decomposition of a multivariate model, were used to
determine feature importance, i.e., their marginal contributions to target variables [80].
The computed Shapley values perform reasonably well in sparse models, when predictors
are moderately correlated (shapviz v0.2.0 package). Baseline covariates (age, sex, CMV
IgG) and the case–control status were used as predictors affecting miRNA expression.
The SHAP values were then obtained by fitting the model with and without the cell
composition included as a predictor. This allowed us to identify which covariates are likely
to play a more vs. less important role in shaping miRNA expression. We also modeled a
relationship between putative mediators (case–control status, cell composition) and the
miRNA expression by adjusting for a set of baseline features (age, sex) and covariates (CMV
IgG, BMI). To this end, we adopted a recently developed framework that can accurately
handle interactions and nonlinearity, while minimizing problems due to overfitting [81].
The overall result did not differ qualitatively between the two approaches. For ternary
diagrams, color maps were interpolated by fitting 2nd- and 3rd-order polynomials in
Cartesian space under the general linear model. Each contour fit (isovalue line of a quantity)
was checked for accuracy and consistency. Where appropriate, log-transformed data
were used.

If not otherwise stated, a two-tailed p < 0.05 was considered significant. No adjustment
for multiple testing was applied. All statistical analyses were performed in R v4.0.3 (R
Core Team, www.r-project.org). The boxplots, barplots, scatterplots, and ternary maps
were generated using R-package cowplot v1.1.0, ggplot v3.3.5, ggpubr v0.4.0, ggtern v3.3.5,
patchwork v1.1.1, RColorBrewer v1.1.2, reshape2 v1.4.4, rstatix v0.7.0, scales v1.1.1, Ternary
v2.1.0, tidyverse v1.3.0, viridis v0.5.1, viridisLite v0.3.0, and xgboost v1.3.2.1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24054323/s1.
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(Mario Štefanić); writing—original draft preparation, M.J., V.P., M.Š. (Mario Štefanić), M.M. and S.T.;
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